# Electrical Impedance Tomography: 3D reconstructions using scattering transforms

Fabrice Delbary<sup>1</sup>, Per Christian Hansen<sup>1</sup>, Kim Knudsen<sup>2</sup>

<sup>1</sup>Department of Informatics and Mathematical Modelling, DTU, Denmark <sup>2</sup>Department of Mathematics, DTU, Denmark

Fields-MITACS Conference on Mathematics of Medical Imaging June 20-24, 2011



Fields-MITACS 2011

1/32

- 3D domain  $\Omega$ , boundary  $\partial \Omega$ , outward normal  $\nu$
- conductivity  $\sigma$  (real valued)



Dirichlet-to-Neuman map (voltage-to-current map)  $\Lambda_{\sigma}: f \mapsto g$ .

- 3D domain  $\Omega$ , boundary  $\partial \Omega$ , outward normal  $\nu$
- conductivity  $\sigma$  (real valued)



Dirichlet-to-Neuman map (voltage-to-current map)  $\Lambda_{\sigma}: f \mapsto g$ .

- 3D domain  $\Omega$ , boundary  $\partial \Omega$ , outward normal  $\nu$
- conductivity  $\sigma$  (real valued)



Dirichlet-to-Neuman map (voltage-to-current map)  $\Lambda_{\sigma}: f \mapsto g$ .

- 3D domain  $\Omega$ , boundary  $\partial \Omega$ , outward normal  $\nu$
- conductivity  $\sigma$  (real valued)



Dirichlet-to-Neuman map (voltage-to-current map)  $\Lambda_{\sigma}: f \mapsto g$ .

- 3D domain  $\Omega$ , boundary  $\partial \Omega$ , outward normal  $\nu$
- conductivity  $\sigma$  (real valued)



Dirichlet-to-Neuman map (voltage-to-current map)  $\Lambda_{\sigma}: f \mapsto g$ .

# Short and incomplete history

1980 Calderón: Problem posed, uniqueness for linearized problem, and linear, approximate reconstruction algorithm.

• 2D

1996 Nachman: Uniqueness and reconstruction for  $W^{2,p}(\Omega)$  conductivities.

1997 Liu: Stabilty for  $W^{2,p}(\Omega)$  conductivities.

1997 Brown-Torres: Uniqueness for  $W^{1,p}(\Omega)$  conductivities.

2001 Barceló-Barceló-Ruiz: Stability for  $C^{1+\epsilon}$  conductivities.

2001 Knudsen-Tamasan: Reconstruction for  $C^{1+\epsilon}$  conductivities.

2005 Astala-Päivärinta: Uniqueness and reconstruction for  $L^{\infty}(\Omega)$  conductivities.

2009 Knudsen-Lassas-Mueller-Siltanen: Regularized  $\overline{\partial}$ -method.

2010 Clop-Faraco-Ruiz: Stability for discontinuous conductivities.

• 3D

1987 Sylvester and Uhlmann: Uniqueness for smooth conductivities. Implicit reconstruction algorithm.

1987-88 Novikov, Nachman-Sylvester-Uhlmann, Nachman: Uniqueness for conductivities with 2 derivatives and explicit high frequency reconstruction algorithm. Multidimensional  $\overline{\partial}$ -bar equation.

1990 Alessandrini: Stability.

2003 Brown-Torres, Päivärinta-Panchenko-Uhlmann: Uniqueness for conductivities with 3/2 derivatives.

2006 Cornean-Knudsen-Siltanen: Low frequency reconstruction algorithm.

2010 Bikowski-Knudsen-Mueller: Numerical implementation of simplified reconstruction algorithm.

2011 Delbary-Hansen-Knudsen: Implementation of more accurate numerical reconstruction

F. Delbary (DTU)

### Outline

• Reconstruction algorithm

• Simplifications

Implementation

Numerical results

Conclusion and outlook

•  $\Omega = B(0,1)$ , unit ball in  $\mathbb{R}^3$  (to simplify implementation).

• 
$$\sigma \in C^{\infty}(\overline{\Omega})$$
 (can be less regular).

#### • $\sigma = 1$ in the neighborhood of $\partial \Omega$ (to simplify implementation).

```
\Rightarrow \sigma extended by 1 in \mathbb{R}^3 \setminus \overline{\Omega}
```

For  $f \in H^{1/2}(\partial \Omega)$ , if u is the solution to the potential equation

 $abla \cdot \sigma 
abla u = 0 \quad \text{in} \quad \Omega,$  $u = f \quad \text{on} \quad \partial \Omega,$ 

then  $v = \sigma^{1/2} u$  is the solution to the Schrödinger equation

$$-\Delta v + qv = 0$$
 in  $\Omega$ ,  
 $v = f$  on  $\partial \Omega$ ,

where  $q = rac{\Delta \sigma^{1/2}}{\sigma^{1/2}}$ .

For  $f \in H^{1/2}(\partial \Omega)$ , if u is the solution to the potential equation

$$abla \cdot \sigma 
abla u = 0 ext{ in } \Omega,$$
  
 $u = f ext{ on } \partial \Omega,$ 

then  $v = \sigma^{1/2} u$  is the solution to the Schrödinger equation

$$-\Delta v + qv = 0$$
 in  $\Omega$ ,  
 $v = f$  on  $\partial \Omega$ ,

where  $q = \frac{\Delta \sigma^{1/2}}{\sigma^{1/2}}$ .

Complex Geometrical Optics solutions (CGO)

CGO solutions  $\psi_{\zeta}$  ,  $\zeta \in \mathbb{C}^3$  ,  $\zeta \cdot \zeta = 0$ 

$$\begin{split} (-\Delta+q)\psi_{\zeta} &= 0 \ \ \text{in} \ \mathbb{R}^3, \\ \psi_{\zeta}(x) &\approx e^{ix\cdot\zeta} \ \ \text{for large} \ \ |x| \ \ \text{or} \ \ |\zeta|. \end{split}$$

Small or large  $\zeta \Rightarrow$  existence and uniqueness of the solutions.

Scattering transform

$$\xi \in \mathbb{R}^3$$
,  $\zeta \in \mathbb{C}^3$ ,  $\zeta^2 = (\xi + \zeta)^2 = 0$ 

$$\mathbf{t}(\xi,\zeta) = \int_{\mathbb{R}^3} \mathbf{q}(x) e^{-ix \cdot (\xi+\zeta)} \psi_{\boldsymbol{\zeta}}(x) \, dx.$$

 $\psi_\zeta(x)pprox e^{ix\cdot\zeta}$  for large  $\zeta\Rightarrow |\hat{q}(\xi)-{f t}(\xi,\zeta)|=\mathcal{O}\left(rac{1}{|\zeta|}
ight)$ 

How to compute **t** from  $\Lambda_{\sigma}$ ?

Scattering transform

$$\xi \in \mathbb{R}^3$$
,  $\zeta \in \mathbb{C}^3$ ,  $\zeta^2 = (\xi + \zeta)^2 = 0$ 

$$\mathbf{t}(\xi,\zeta) = \int_{\mathbb{R}^3} \mathbf{q}(x) e^{-ix \cdot (\xi+\zeta)} \psi_{\zeta}(x) \, dx.$$

$$\psi_{\boldsymbol{\zeta}}(x) pprox e^{ix \cdot \zeta}$$
 for large  $\zeta \Rightarrow |\hat{\boldsymbol{q}}(\xi) - \mathbf{t}(\xi, \zeta)| = \mathcal{O}\left(\frac{1}{|\zeta|}\right)$ 

How to compute **t** from  $\Lambda_{\sigma}$ ?

< 一型

Scattering transform

$$\xi \in \mathbb{R}^3$$
,  $\zeta \in \mathbb{C}^3$ ,  $\zeta^2 = (\xi + \zeta)^2 = 0$ 

$$\mathbf{t}(\xi,\zeta) = \int_{\mathbb{R}^3} q(x) e^{-ix \cdot (\xi+\zeta)} \psi_{\zeta}(x) \, dx.$$

$$\psi_{\boldsymbol{\zeta}}(x) pprox e^{ix \cdot \zeta}$$
 for large  $\zeta \Rightarrow |\hat{\boldsymbol{q}}(\xi) - \mathbf{t}(\xi, \zeta)| = \mathcal{O}\left(\frac{1}{|\zeta|}\right)$ 

How to compute **t** from  $\Lambda_{\sigma}$ ?

Scattering transform

$$\begin{aligned} \zeta^2 &= (\xi+\zeta)^2 = 0\\ \mathbf{t}(\xi,\zeta) &= \int_{\mathbb{R}^3} q(x) e^{-ix \cdot (\xi+\zeta)} \psi_{\boldsymbol{\zeta}}(x) \, dx. \end{aligned}$$

Green's formula in  $\Omega$ 

$$\mathbf{t}(\xi,\zeta) = \int_{\partial\Omega} e^{-ix\cdot(\xi+\zeta)} [(\Lambda_{\sigma} - \Lambda_1)\psi_{\zeta}](x) \, ds(x).$$

э

Scattering transform

$$\begin{aligned} \zeta^2 &= (\xi+\zeta)^2 = 0\\ \mathbf{t}(\xi,\zeta) &= \int_{\mathbb{R}^3} q(x) e^{-ix \cdot (\xi+\zeta)} \psi_{\boldsymbol{\zeta}}(x) \, dx. \end{aligned}$$

Green's formula in  $\Omega$ 

$$\mathbf{t}(\xi,\zeta) = \int_{\partial\Omega} e^{-ix\cdot(\xi+\zeta)} [(\Lambda_{\sigma} - \Lambda_1)\psi_{\zeta}](x) \, ds(x).$$

э

Faddeev Green's function

Faddeev Green's function

$$G_{\zeta}(x) = \frac{e^{ix\cdot\zeta}}{(2\pi)^3} \int_{\mathbb{R}^3} \frac{e^{ix\cdot\xi}}{|\xi|^2 + 2\xi\cdot\zeta} \, d\xi \, , \, x \in \mathbb{R}^3 \setminus \{0\},$$

 $G_{\zeta}$  fundamental solution to the Laplace equation

$$-\Delta G_{\zeta} = \delta_0 \ \, \text{with} \ \, G_{\zeta}(x) \sim e^{ix\cdot\zeta} \ \, \text{for large} \ \, |x|.$$

#### Reconstruction Algorithm Boundary integral equation for the CGO

$$(-\Delta + q)\psi_{\zeta} = 0 \text{ in } \mathbb{R}^3,$$
  
 $\psi_{\zeta}(x) \approx e^{ix \cdot \zeta} \text{ for large } |x| \text{ or } |\zeta|.$ 

Green's formula in  $\mathbb{R}^3 \setminus \overline{\Omega}$  and condition at infinity

$$\psi_{\zeta}(x) + \int_{\partial\Omega} G_{\zeta}(x-y) [(\Lambda_{\sigma} - \Lambda_1)\psi_{\zeta}](y) \ ds(y) = e^{ix \cdot \zeta} \ , \ x \in \partial\Omega,$$

i.e.

$$\psi_{\zeta}(x) + [S_{\zeta}(\Lambda_{\sigma} - \Lambda_1)\psi_{\zeta}](x) = e^{ix\cdot\zeta}, \ x \in \partial\Omega,$$

with  $S_{\zeta}$  single layer operator.

#### Reconstruction Algorithm Boundary integral equation for the CGO

$$(-\Delta + q)\psi_{\zeta} = 0$$
 in  $\mathbb{R}^3$ ,  
 $\psi_{\zeta}(x) \approx e^{ix \cdot \zeta}$  for large  $|x|$  or  $|\zeta|$ .

Green's formula in  $\mathbb{R}^3 \setminus \overline{\Omega}$  and condition at infinity

$$\psi_{\zeta}(x) + \int_{\partial\Omega} G_{\zeta}(x-y) [(\Lambda_{\sigma} - \Lambda_1)\psi_{\zeta}](y) \ ds(y) = e^{ix \cdot \zeta} \ , \ x \in \partial\Omega,$$

i.e.

$$\psi_{\zeta}(x) + [S_{\zeta}(\Lambda_{\sigma} - \Lambda_1)\psi_{\zeta}](x) = e^{ix\cdot\zeta}, \ x \in \partial\Omega,$$

with  $S_{\zeta}$  single layer operator.

$$\Lambda_{\sigma} \xrightarrow{1} \mathbf{t}(\xi,\zeta) \xrightarrow{2} q(x) \xrightarrow{3} \sigma(x)$$

#### Solve

$$\psi_{\zeta}(x) + [S_{\zeta}(\Lambda_{\sigma} - \Lambda_1)\psi_{\zeta}](x) = e^{ix\cdot\zeta}, \ x \in \partial\Omega$$

$$\mathbf{t}(\xi,\zeta) = \int_{\partial\Omega} e^{-ix\cdot(\xi+\zeta)} [(\Lambda_{\sigma} - \Lambda_1)\psi_{\zeta}](x) \, ds(x).$$

2 Compute 
$$q$$
 by Inverse Fourier transform and the limit

$$\lim_{|\zeta|\to\infty} \mathbf{t}(\xi,\zeta) = \hat{q}(\xi).$$

Solve

$$\begin{split} -\Delta\sigma^{1/2} + q\sigma^{1/2} &= 0 \ \ \text{in} \ \ \Omega, \\ \sigma^{1/2} &= 1 \ \ \text{on} \ \ \partial\Omega \end{split}$$

크

$$\Lambda_{\sigma} \xrightarrow{1} \mathbf{t}(\xi, \zeta) \xrightarrow{2} q(x) \xrightarrow{3} \sigma(x)$$

#### Solve

$$\psi_{\zeta}(x) + [S_{\zeta}(\Lambda_{\sigma} - \Lambda_1)\psi_{\zeta}](x) = e^{ix \cdot \zeta} , \ x \in \partial\Omega$$

and compute

$$\mathbf{t}(\xi,\zeta) = \int_{\partial\Omega} e^{-ix\cdot(\xi+\zeta)} [(\Lambda_{\sigma} - \Lambda_1)\psi_{\zeta}](x) \, ds(x).$$

② Compute q by Inverse Fourier transform and the limit

$$\lim_{|\zeta|\to\infty} \mathbf{t}(\xi,\zeta) = \hat{q}(\xi).$$

Solve

$$\begin{split} -\Delta\sigma^{1/2} + q\sigma^{1/2} &= 0 \ \ \text{in} \ \ \Omega, \\ \sigma^{1/2} &= 1 \ \ \text{on} \ \ \partial\Omega \end{split}$$

$$\Lambda_{\sigma} \xrightarrow{1} \mathbf{t}(\xi,\zeta) \xrightarrow{2} \mathbf{q}(x) \xrightarrow{3} \sigma(x)$$

#### Solve

$$\psi_{\zeta}(x) + [S_{\zeta}(\Lambda_{\sigma} - \Lambda_1)\psi_{\zeta}](x) = e^{ix \cdot \zeta} , \ x \in \partial\Omega$$

and compute

$$\mathbf{t}(\xi,\zeta) = \int_{\partial\Omega} e^{-ix\cdot(\xi+\zeta)} [(\Lambda_{\sigma} - \Lambda_1)\psi_{\zeta}](x) \, ds(x).$$

2 Compute q by Inverse Fourier transform and the limit

$$\lim_{|\zeta|\to\infty} \mathbf{t}(\xi,\zeta) = \hat{\boldsymbol{q}}(\xi).$$

3 Solve

$$\begin{split} -\Delta\sigma^{1/2} + q\sigma^{1/2} &= 0 \ \ \text{in} \ \ \Omega, \\ \sigma^{1/2} &= 1 \ \ \text{on} \ \ \partial\Omega \end{split}$$

$$\Lambda_{\sigma} \xrightarrow{1} \mathbf{t}(\xi,\zeta) \xrightarrow{2} \mathbf{q}(x) \xrightarrow{3} \sigma(x)$$

#### Solve

$$\psi_{\zeta}(x) + [S_{\zeta}(\Lambda_{\sigma} - \Lambda_1)\psi_{\zeta}](x) = e^{ix\cdot\zeta} , \ x \in \partial\Omega$$

and compute

$$\mathbf{t}(\xi,\zeta) = \int_{\partial\Omega} e^{-ix\cdot(\xi+\zeta)} [(\Lambda_{\sigma} - \Lambda_1)\psi_{\zeta}](x) \, ds(x).$$

2 Compute q by Inverse Fourier transform and the limit

$$\lim_{|\zeta|\to\infty} \mathbf{t}(\xi,\zeta) = \hat{\mathbf{q}}(\xi).$$

Solve

$$\begin{split} -\Delta \sigma^{1/2} + q \sigma^{1/2} &= 0 \ \ \text{in} \ \ \Omega, \\ \sigma^{1/2} &= 1 \ \ \text{on} \ \ \partial \Omega \end{split}$$

#### Linearization step by step

• Step 1:  $\Lambda_{\sigma} \mapsto \mathbf{t}(\xi, \zeta)$  linearized around  $\Lambda_{\sigma} = \Lambda_1 \Rightarrow$ 

$$\mathbf{t}(\xi,\zeta) \simeq \mathbf{t}^{\exp}(\xi,\zeta) = \int_{\partial\Omega} e^{-ix\cdot(\xi+\zeta)} [(\Lambda_{\sigma} - \Lambda_1)e^{iy\cdot\zeta}](x) \, ds(x).$$

• Step 2:  $\mathbf{t}^{\exp}(\xi, \zeta) \simeq \hat{q}(\xi)$ .  $\hat{q} \mapsto q$  linear.

• Step 3:  $q \mapsto \sigma^{1/2} \mapsto \sigma$  linearized around  $\sigma = 1 \Rightarrow$  Calderón's formula

$$\sigma^{\operatorname{app}}(x) = 1 - \frac{2}{(2\pi)^3} \int_{\mathbb{R}^3} \frac{\mathbf{t}^{\exp}(\xi, \zeta)}{|\xi|^2} e^{ix \cdot \xi} d\xi.$$

## Linearization step by step

• Step 1:  $\Lambda_{\sigma} \mapsto \mathbf{t}(\xi, \zeta)$  linearized around  $\Lambda_{\sigma} = \Lambda_1 \Rightarrow$ 

$$\mathbf{t}(\xi,\zeta) \simeq \mathbf{t}^{\exp}(\xi,\zeta) = \int_{\partial\Omega} e^{-ix \cdot (\xi+\zeta)} [(\Lambda_{\sigma} - \Lambda_1) e^{iy \cdot \zeta}](x) \, ds(x).$$

• Step 2:  $\mathbf{t}^{\exp}(\xi, \zeta) \simeq \hat{q}(\xi)$ .  $\hat{q} \mapsto q$  linear.

• Step 3:  $q \mapsto \sigma^{1/2} \mapsto \sigma$  linearized around  $\sigma = 1 \Rightarrow$  Calderón's formula

$$\sigma^{\operatorname{app}}(x) = 1 - \frac{2}{(2\pi)^3} \int_{\mathbb{R}^3} \frac{\mathbf{t}^{\exp}(\xi, \zeta)}{|\xi|^2} e^{ix \cdot \xi} d\xi.$$

## Linearization step by step

• Step 1:  $\Lambda_{\sigma} \mapsto \mathbf{t}(\xi, \zeta)$  linearized around  $\Lambda_{\sigma} = \Lambda_1 \Rightarrow$ 

$$\mathbf{t}(\xi,\zeta) \simeq \mathbf{t}^{\exp}(\xi,\zeta) = \int_{\partial\Omega} e^{-ix\cdot(\xi+\zeta)} [(\Lambda_{\sigma} - \Lambda_1)e^{iy\cdot\zeta}](x) \, ds(x).$$

• Step 2:  $\mathbf{t}^{\exp}(\xi, \zeta) \simeq \hat{q}(\xi)$ .  $\hat{q} \mapsto q$  linear.

• Step 3:  $q \mapsto \sigma^{1/2} \mapsto \sigma$  linearized around  $\sigma = 1 \Rightarrow$  Calderón's formula

$$\boldsymbol{\sigma}^{\mathrm{app}}(x) = 1 - \frac{2}{(2\pi)^3} \int_{\mathbb{R}^3} \frac{\mathbf{t}^{\mathrm{exp}}(\xi,\zeta)}{|\xi|^2} e^{ix\cdot\xi} \, d\xi.$$

Compute  $t^{exp}$  and use it in **Step 2** instead of t.

$$\Lambda_{\sigma} \xrightarrow{1} \mathbf{t}^{\exp}(\xi, \zeta) \xrightarrow{2} q^{\exp}(x) \xrightarrow{3} \sigma^{\exp}(x)$$

# $\mathbf{t}^0$ approximation

 $\bullet$  Use the usual Green's function  $G_0(x)=\frac{1}{4\pi|x|}$  instead of the Faddeev Green's function and solve

$$\psi_{\zeta}^{0}(x) + [S_{0}(\Lambda_{\sigma} - \Lambda_{1})\psi_{\zeta}^{0}](x) = e^{ix \cdot \zeta} , \ x \in \partial\Omega,$$

with  $S_0$  usual single layer operator.

• Use  $\psi_{\zeta}^0$  to compute

$$\mathbf{t}^{0}(\xi,\zeta) = \int_{\partial\Omega} e^{-ix\cdot(\xi+\zeta)} [(\Lambda_{\sigma} - \Lambda_{1})\psi_{\zeta}^{0}](x) \, ds(x).$$

• Use t<sup>0</sup> in **Step 2** instead of t.

$$\Lambda_{\sigma} \xrightarrow{1} \mathbf{t}^{0}(\xi,\zeta) \xrightarrow{2} q^{0}(x) \xrightarrow{3} \sigma^{0}(x)$$

#### Implementation

- N: positive integer
- $t_m$ : increasing N + 1 zeros of the Legendre polynomial  $P_{N+1}$
- $\theta_m = \arccos t_m$
- $\varphi_n = \pi n/(N+1)$ •  $2(N+1)^2$  grid points on the unit sphere  $m = 0 \dots N$ ,  $n = 0 \dots 2N + 1$ 
  - $x_{m,n} = (\sin \theta_m \cos \varphi_n, \sin \theta_m \sin \varphi_n, \cos \theta_m).$



Figure:  $N = 15 \rightarrow 512$  points

• 
$$\alpha_m = \frac{2(1-t_m^2)}{(N+1)^2 [P_N(t_m)]^2}$$
: weights of the Gauß-Legendre quadrature rule of order  $N+1$  on  $[-1,1]$ .

 $\Rightarrow$  quadrature rule on the sphere (exact for spherical harmonics of degree less than or equal to 2N+1)

$$\int_{\partial\Omega} \phi \, ds \simeq \frac{\pi}{N+1} \sum_{m=0}^{N} \sum_{n=0}^{2N+1} \alpha_m \phi(x_{m,n}) \, , \, \phi \in C^0(\partial\Omega).$$

Fields-MITACS 2011

17 / 32

Having  $\Lambda_{\sigma} - \Lambda_1$ , numerically compute

$$\mathbf{t}^{\exp}(\xi,\zeta) = \int_{\partial\Omega} e^{-ix\cdot(\xi+\zeta)} [(\Lambda_{\sigma} - \Lambda_1)e^{iy\cdot\zeta}](x) \, ds(x)$$

with previous quadrature rule.

• Boundary integral equation solved using a Nyström-like method: based on a quadrature rule to compute  $S_0\phi$  for  $\phi \in C^0(\partial\Omega)$ 

•  $Y_n^m$  are the eigenvectors of  $S_0$ 

$$\frac{1}{4\pi} \int_{\partial\Omega} \frac{Y_n^m(y)}{|x-y|} \, ds(y) = \frac{Y_n^m(x)}{2n+1} \, , \; x \in \partial\Omega.$$

•  $L^2(\partial\Omega)$  orthogonal projection operator on the span of spherical harmonics of degree less than or equal to N

$$T_N \phi = \sum_{n=0}^N \sum_{m=-n}^n \langle \phi, Y_n^m \rangle Y_n^m , \ \phi \in L^2(\partial \Omega)$$

- Inner product approximated by quadrature rule
- $\Rightarrow$  hyperinterpolation operator

$$L_N \phi = \frac{\pi}{N+1} \sum_{n=0}^N \sum_{m=-n}^n \sum_{k=0}^N \sum_{\ell=0}^{2N+1} \alpha_k \phi(x_{k\ell}) Y_n^{-m}(x_{k\ell}) Y_n^m , \ \phi \in C^0(\partial\Omega).$$

# $\frac{\text{Implementation}}{\text{Computing } \mathbf{t}^0}$

 $\Rightarrow S_0 \phi$  approximated by  $S_0 L_N \phi$ 

$$[S_0\phi](x) \simeq \frac{1}{4(N+1)} \sum_{n=0}^N \sum_{k=0}^N \sum_{\ell=0}^{2N+1} \alpha_k \phi(x_{k\ell}) P_n(x_{k\ell} \cdot x) , \ x \in \partial\Omega.$$

• Approximate the solution to

$$\psi_{\zeta}^{0}(x) + [S_{0}(\Lambda_{\sigma} - \Lambda_{1})\psi_{\zeta}^{0}](x) = e^{ix \cdot \zeta} , \ x \in \partial\Omega,$$

by the solution to

$$[I + S_0 L_N (\Lambda_{\sigma} - \Lambda_1) L_N] \psi^N(x) = e^{ix \cdot \zeta} , \ x \in \partial \Omega.$$

(sums up to a finite dimensional linear system)

 $\bullet$  Convergence rates: for any s>5/2

$$\|\psi^N - \psi^0_{\zeta}\|_{H^s(\partial\Omega)} \le \frac{C}{N^{s-5/2}} \|e^{ix \cdot \zeta}\|_{H^s(\partial\Omega)},$$

where C depends only on s.

• Having computed  $\psi_{c}^{0}$ , compute  $\mathbf{t}^{0}$  using the quadrature rule.

Fields-MITACS 2011

22 / 32

• From the theory:  $\lim_{|\zeta| \to \infty} \mathbf{t}(\xi, \zeta) = \hat{q}(\xi).$ Not true anymore for  $\mathbf{t}^{exp}$  or  $\mathbf{t}^{0}$ : divergence when  $|\zeta| \to \infty$ .

• Moreover:  $e^{ix\cdot\zeta} \Rightarrow$  exponentially growing terms  $\Rightarrow$  numerical instabilities.

 $\Rightarrow \zeta$  chosen of minimal norm.

# Inverse Fourier Transform

- Computed using a FFT.
- $\hat{q}(\xi)$  computed on an equidistant mesh in a box  $[-\xi_{\max},\xi_{\max}]^3$
- $\Rightarrow$  q(x) on an equidistant x grid in  $[-1,1]^3$ .
  - $\bullet~{\rm Number}~N^3$  of points in grid must satisfy

$$\xi_{\max} = N \frac{\pi}{2}.$$

 $\Rightarrow\,$  Upper limit for the resolution in the x-mesh in terms of the mesh-size  $h=\pi/\xi_{\rm max}.$ 

• q(x) interpolated on a tetrahedron mesh of the unit ball.

• Schrödinger equation solved using a FEM code of order 1.

Radially symmetric conductivity



Figure: Reconstructions of  $\sigma$  with truncation: left  $\xi_{max} = 8$ , right  $\xi_{max} = 9$ .

Radially symmetric conductivity: noisy data



Figure: Approximations of  $\hat{q}$  in case of noise in the data: left 0.1% noise, middle 1% noise, and right 5% noise.

Radially symmetric conductivity: noisy data



Figure: Reconstructions of  $\sigma$  with truncation: left 0.1% noise and  $\xi_{\text{max}} = 8$ , middle 1% noise and  $\xi_{\text{max}} = 7$ , and right 5% noise and  $\xi_{\text{max}} = 6$ .

Truncation of the scattering transform  $\Rightarrow$  non-linear regularization strategy.

Non radially symmetric conductivity



Figure: Left: 3D plot of phantom. Middle: profile of the conductivity  $\sigma$  in the (Oxy) plane. Right: support of  $\sigma$ -1.

Non radially symmetric conductivity



Figure: Upper row  $\xi_{max} = 6$ , lower row  $\xi_{max} = 8$ . Left  $\sigma^0$ , middle  $\sigma^{exp}$ , and right  $\sigma^{app}$ .

Non radially symmetric conductivity: noisy data



Figure: Reconstructions with different noise levels: left column 0%, middle column 0.1% and right column 1%. Upper row  $\sigma^{app}$ , middle row  $\sigma^{exp}$ , and lower row  $\sigma^{0}$ . Truncation is at  $\xi_{max} = 6$ .

# Conclusion and outlook

- + Three different numerical simplifications and implementations.
- + Fast reconstructions ( $\sim 1 \text{ min}$ ).
- Contrast not reliable.
- -  $\mathbf{t}^0$  does not give better reconstructions.
- $\bullet$  + Implementation for  $\mathbf{t}^0 \Rightarrow$  implementation for  $\mathbf{t}$  easily follows.
- + Implementation can be adapted to more general domains  $\Omega$ .
- Study more complex 3D numerical examples.
- t implementation.
- More general domains  $\Omega$ .
- Understanding spectral cut-off as regularization strategy.
- Limited data aperture.
- Real data.

#### Thank you

# Conclusion and outlook

- + Three different numerical simplifications and implementations.
- + Fast reconstructions ( $\sim 1 \text{ min}$ ).
- Contrast not reliable.
- -  $\mathbf{t}^0$  does not give better reconstructions.
- $\bullet$  + Implementation for  $\mathbf{t}^0 \Rightarrow$  implementation for  $\mathbf{t}$  easily follows.
- + Implementation can be adapted to more general domains  $\Omega$ .
- Study more complex 3D numerical examples.
- t implementation.
- More general domains  $\Omega$ .
- Understanding spectral cut-off as regularization strategy.
- Limited data aperture.
- Real data.

# Conclusion and outlook

- + Three different numerical simplifications and implementations.
- + Fast reconstructions ( $\sim 1 \text{ min}$ ).
- Contrast not reliable.
- -  $\mathbf{t}^0$  does not give better reconstructions.
- $\bullet$  + Implementation for  $\mathbf{t}^0 \Rightarrow$  implementation for  $\mathbf{t}$  easily follows.
- + Implementation can be adapted to more general domains  $\Omega$ .
- Study more complex 3D numerical examples.
- t implementation.
- More general domains  $\Omega$ .
- Understanding spectral cut-off as regularization strategy.
- Limited data aperture.
- Real data.

#### Thank you