Toronto, 2011 Jun 21

An Integrated Morphology+CFD Statistical Investigation of Parent Vessel in Cerebral Aneurysms

Alessandro VENEZIANI

Math & CS Department, Emory University, Atlanta, GA, USA W H Coulter BioMedical Engineering Department, GA Tech & Emory, Atlanta, GA, USA

Joint work with M. Piccinelli, T. Passerini (Emory), S. Vantini, L. Sangalli, P. Secchi (Politecnico di Milano, Italy), L. Antiga (Orobix)

Acknowledgments: ANEURISK (2005-2008+)

Laboratorio di Modellistica e Calcolo Scientifico Laboratorio di Meccanica delle Strutture Biologiche

Istituto di Ricerche Farmacologiche Mario Negri

OSPEDALE MAGGIORE POLICLINICO, MANGIAGALLI E REGINA ELENA - FONDAZIONE IRCSS

Azienda Ospedaliera Ospedale Niguarda Ca' Granda

Università degli Studi di Milano Neurochirurgia

The BA Foundation Project: Computational and Statistical Analysis of Cerebral Aneurysm Morphology (2010-2011)

THE BRAIN ANEURYSM FOUNDATION GOAL: Analyze the impact of morphology and hemodynamic and morphology on the development (rupture) of the aneurysm

- Distinctive features:
- a) Analysis of the parent vessel
- b) Functional Principal Component Analysis (see M. Miller plenary) for the investigation of the data&simulations

Deliverable (expected Sept 2011):

A public Brain Aneurysm Images Repository + Data

STRUCTURE OF THE PROJECT

Geometrical Reconstruction

Source: Rotational Angiographies from Niguarda Hospital, Italy

Image Manipulation: Vascular Modeling ToolKit (L. Antiga, M. Piccinelli)

3D Model

Identification of morphological features

M. Piccinelli et al, IEEE Trans Biomed Imag 2009 VMTK

Radius

FIGURE 1. A, three-dimensional model of an internal carotid artery (ICA) bearing an aneurysm. **B**, artery and aneurysmal sac centerlines; a few maximal inscribed spheres are included.¹⁵ **C**, definition of the ICA bifurcation reference system composed of normal (n), up-normal (u), and origin (o), and the ICA bifurcation plane.

FIGURE 2. A, definition of the aneurysm bifurcation reference system composed of normal (n_{an}) , up-normal (u_{an}) , and origin (o_{an}) and the aneurysm bifurcation plane. B, in-plane aneurysm bifurcation vectors characterizing the directions of the internal carotid artery and aneurysm branches arriving at and departing from the aneurysm bifurcation. The upstream vector lying on the bifurcation plane is also shown.

A.Veneziani, Integrated Morphology+CFD Statistical Analysis of Parent Vessels in Cerebral Aneurysms

11

Curvature & Tortuosity of the ICA

FIGURE 3. Local geometrical characterization of the internal carotid artery (ICA). **A**, representation of the local osculating plane (OP) and the osculating circle tangent to the curve at one point of the ICA centerline. The curvature at each point is defined as the inverse of the radius of the osculating circle. **B**, rotation of the local osculating plane between 2 points of the siphon centerline.

EMORY

FIGURE 5. Parameters for the geometric characterization of the internal carotid artery (ICA) and aneurysms with respect to the parent vessel. **A**, definition of the bend hosting the aneurysm (HB). **B**, length of the HB. **C**, radius values along the HB. **D**, curvature along the HB. **E**, torsion along the HB. **F**, position of the aneurysm ostium along the ICA centerline in terms of distance from the ICA bifurcation (abs_{aut}) and distance from the HB curvature peak (D_{aa-HB}). **G**, aneurysm ostium orientation (α_{aa}) calculated as the angle between the local ICA osculating plane normal (OP normal) and the aneurysm bifurcation plane normal (n_{an}). **H**, location of the aneurysm on the inner or outer wall of the hosting ICA. **I**, in-plane angles between the vascular branches arriving at and departing from the aneurysm bifurcation. Computed values are reported for a subset of the parameters.

13

IJCS

Bends identification

First results & statistical analysis (R)

Symbol	Description				
CA bends terminology and geometric parame	eters				
НВ	The bend hosting the				
I _{HB}	Length of the hosting				
misr _{HB}		Maximum inscribed sphere radius of the hosting bend Mean curvature of the hosting bend			
CHB CHB CHB	Mean curvature of the Maximum curvature o				
CHB true	Mean torsion of the h	-			
t ^{mean} HB t ^{prox} t ^{HB}		proximal hosting bend end point			
tdist tHB		listal hosting bend endpoint			
HB BTR	Ratio between inner b	pend mean torsion value and t_{HB}^{mean}			
Aneurysm ostium geometric parameters					
abs _{ost} D _{ost-HB}	Curvilinear abscissa (Distance measured a				
Dost-HB	curvature peak of				
α _{ost}	Angle between 2 pla	TABLE 3. Mean \pm SD, M	/linimum, and Ma	aximum Value	es for All
Gost	plane and the ane	Geometric Parameters ^a			
ICA wall _{ost}	Classification of aneu outer wall of the I	Geometric Parameter	Mean \pm SD	Minimum	Maximu
Angles between aneurysm bifurcation branche					
			9.82 ± 5.61	2 1 0	22.90
$\beta_{upstream}$	Angle between the l	HB	9.02 - 5.01	3.10	22.70
	the up-normal uni	I _{HB} misr _{HB}			
βupstream β _{downstream}	the up-normal uni Angle between the I	misr _{HB}	1.90 ± 0.49	0.98	3.83
βdownstream	the up-normal uni Angle between the I branches of the IC	misr _{HB} c _{HB} ^{mean}	$1.90~\pm~0.49$ $0.19~\pm~0.06$	0.98 0.08	3.83 0.36
	the up-normal uni Angle between the I	misr _{HB} c ^{mean} c ^{max} _{HB}	$\begin{array}{r} 1.90\ \pm\ 0.49 \\ 0.19\ \pm\ 0.06 \\ 0.27\ \pm\ 0.10 \end{array}$	0.98 0.08 0.11	3.83 0.36 0.51
βdownstream	the up-normal uni Angle between the I branches of the IC Angle between the I	misr _{HB} c ^{mean} c ^{max} _{HB}	$1.90~\pm~0.49$ $0.19~\pm~0.06$	0.98 0.08	3.83 0.36
βdownstream	the up-normal uni Angle between the I branches of the IC Angle between the I	misr _{HB} c ^{mean} c ^{max} _{HB} t ^{mean} _{HB}	$\begin{array}{r} 1.90\ \pm\ 0.49 \\ 0.19\ \pm\ 0.06 \\ 0.27\ \pm\ 0.10 \end{array}$	0.98 0.08 0.11	3.83 0.36 0.51
$\beta_{downstream}$ β_{an}	the up-normal uni Angle between the I branches of the IC Angle between the I	misr _{HB} c _{HB} ^{max} c _{HB} t _{HB} ^{mean} t _{HB} ^{dist} t _{HB} prox	$\begin{array}{c} 1.90\ \pm\ 0.49\\ 0.19\ \pm\ 0.06\\ 0.27\ \pm\ 0.10\\ 0.28\ \pm\ 0.10\\ 0.68\ \pm\ 0.78\end{array}$	0.98 0.08 0.11 0.10 0.01	3.83 0.36 0.51 0.67 4.40
$\beta_{downstream}$ β_{an}	the up-normal uni Angle between the I branches of the IC Angle between the I	misr _{HB} c ^{mean} c ^{max} _{HB} t ^{mean} _{HB} t ^{dist} _{HB} p ^{riox} _{HB}	$\begin{array}{c} 1.90\ \pm\ 0.49\\ 0.19\ \pm\ 0.06\\ 0.27\ \pm\ 0.10\\ 0.28\ \pm\ 0.10\\ 0.68\ \pm\ 0.78\\ 1.05\ \pm\ 0.91\end{array}$	0.98 0.08 0.11 0.10 0.01 0.23	3.83 0.36 0.51 0.67 4.40 4.04
$\beta_{downstream}$ β_{an}	the up-normal uni Angle between the I branches of the IC Angle between the I	misr _{HB} c ^{mean} c ^{max} t ^{mean} t ^{dist} t ^{dist} HB HB BTR	$\begin{array}{c} 1.90\ \pm\ 0.49\\ 0.19\ \pm\ 0.06\\ 0.27\ \pm\ 0.10\\ 0.28\ \pm\ 0.10\\ 0.68\ \pm\ 0.78\\ 1.05\ \pm\ 0.91\\ 0.71\ \pm\ 0.19\end{array}$	0.98 0.08 0.11 0.10 0.01 0.23 0.28	3.83 0.36 0.51 0.67 4.40 4.04 1.01
$\beta_{downstream}$ β_{an}	the up-normal uni Angle between the I branches of the IC Angle between the I	misr _{HB} c ^{mean} c ^{max} _{HB} t ^{mean} t ^{dist} _{HB} t ^{dist} _{HB} t ^{prox} _{HB} HB BTR abs _{ost}	$\begin{array}{c} 1.90 \ \pm \ 0.49 \\ 0.19 \ \pm \ 0.06 \\ 0.27 \ \pm \ 0.10 \\ 0.28 \ \pm \ 0.10 \\ 0.68 \ \pm \ 0.78 \\ 1.05 \ \pm \ 0.91 \\ 0.71 \ \pm \ 0.19 \\ -12.73 \ \pm \ 8.38 \end{array}$	0.98 0.08 0.11 0.10 0.01 0.23 0.28 - 1.70	3.83 0.36 0.51 0.67 4.40 4.04 1.01 - 39.26
$\beta_{downstream}$ β_{an}	the up-normal uni Angle between the I branches of the IC Angle between the I	misr _{HB} c ^{mean} c ^{max} t ^{max} t ^{mean} t ^{dist} HB HB BTR abs _{ost} D _{ost-HB}	$\begin{array}{c} 1.90\ \pm\ 0.49\\ 0.19\ \pm\ 0.06\\ 0.27\ \pm\ 0.10\\ 0.28\ \pm\ 0.10\\ 0.68\ \pm\ 0.78\\ 1.05\ \pm\ 0.91\\ 0.71\ \pm\ 0.19\\ -12.73\ \pm\ 8.38\\ 2.08\ \pm\ 2.70\end{array}$	0.98 0.08 0.11 0.10 0.01 0.23 0.28 - 1.70 0.00	3.83 0.36 0.51 0.67 4.40 4.04 1.01 -39.26 11.30
$\beta_{downstream}$ β_{an}	the up-normal uni Angle between the I branches of the IC Angle between the I	misr _{HB} c ^{mean} c ^{max} _{HB} t ^{mean} t ^{dist} _{HB} t ^{dist} _{HB} t ^{prox} _{HB} HB BTR abs _{ost}	$\begin{array}{c} 1.90 \pm 0.49 \\ 0.19 \pm 0.06 \\ 0.27 \pm 0.10 \\ 0.28 \pm 0.10 \\ 0.68 \pm 0.78 \\ 1.05 \pm 0.91 \\ 0.71 \pm 0.19 \\ 0.71 \pm 0.19 \\ -12.73 \pm 8.38 \\ 2.08 \pm 2.70 \\ 38.53 \pm 22.80 \end{array}$	0.98 0.08 0.11 0.10 0.01 0.23 0.28 - 1.70 0.00 1.51	3.83 0.36 0.51 0.67 4.40 4.04 1.01 -39.26 11.30 86.83
β _{downstream} β _{an} CA, internal carotid artery.	the up-normal uni Angle between the I branches of the IC Angle between the I	misr _{HB} c ^{mean} c ^{max} t ^{max} t ^{mean} t ^{dist} HB HB BTR abs _{ost} D _{ost-HB}	$\begin{array}{c} 1.90\ \pm\ 0.49\\ 0.19\ \pm\ 0.06\\ 0.27\ \pm\ 0.10\\ 0.28\ \pm\ 0.10\\ 0.68\ \pm\ 0.78\\ 1.05\ \pm\ 0.91\\ 0.71\ \pm\ 0.19\\ -12.73\ \pm\ 8.38\\ 2.08\ \pm\ 2.70\end{array}$	0.98 0.08 0.11 0.10 0.01 0.23 0.28 - 1.70 0.00	3.83 0.36 0.51 0.67 4.40 4.04 1.01 -39.26 11.30
$\beta_{downstream}$ β_{an}	the up-normal uni Angle between the I branches of the IC Angle between the I	$\begin{array}{c} misr_{HB} \\ c^{mean}_{HB} \\ c^{max}_{HB} \\ t^{mean}_{HB} \\ t^{dist}_{HB} \\ t^{dist}_{HB} \\ HB \\ BTR \\ abs_{ost} \\ D_{ost-HB} \\ \alpha_{an} \\ \end{array}$	$\begin{array}{c} 1.90 \pm 0.49 \\ 0.19 \pm 0.06 \\ 0.27 \pm 0.10 \\ 0.28 \pm 0.10 \\ 0.68 \pm 0.78 \\ 1.05 \pm 0.91 \\ 0.71 \pm 0.19 \\ 0.71 \pm 0.19 \\ -12.73 \pm 8.38 \\ 2.08 \pm 2.70 \\ 38.53 \pm 22.80 \end{array}$	0.98 0.08 0.11 0.10 0.01 0.23 0.28 - 1.70 0.00 1.51	3.83 0.36 0.51 0.67 4.40 4.04 1.01 -39.26 11.30 86.83

Maximum

3.83

0.36

4.40

11.30

95.19

Some conclusions

□ Ruptured aneurysms of ICA are in a *more distal position*

□ Ruptured aneurysms are *close to the peak of curvature* of each segment

□ Upstream tracts of the parent vasculature in ruptured aneurysms intersect *aneurysm* region with smaller angles, so that they do align more with the flow divider

□ Bends hosting ruptured aneurysms are *shorter, with a smaller radius, a less marked peak of curvature and a less abrupt torsion peak* at the proximal bend boundary compared to those hosting unruptured aneurysms

M. Piccinelli, S. Bacigaluppi, E. Boccardi B. Iordache, A. Remuzzi, A. V., L. Antiga, Neurosurgery (2011)

Fig. 3 Left: first derivatives with respect to the curvilinear abscissa of the centerlines coordinates (x' = dx/ds, y' = dy/ds, z' = dz/ds) of the estimated ICA, reconstructed from images after the free knot interpolation. The black thick curve represents the template reconstructed by the data without alignment. Right: first derivatives of centerlines after the alignment. We identified here just one cluster of data (k = 1). The template of this cluster is represented again by the black thick line.

Position	at/after ICA bifurcation	along ICA	No aneurysm
Ω	70%	48%	0%
S	30%	52%	100%

Fig. 4 Left: boxplots of similarity indexes between each curve and the corresponding template for original estimated centerlines and for centerlines aligned and clustered in k groups, k = 1, 2, 3. Right: After the alignment, a better clustering is obtained with two groups (k = 2), whose templates are represented by the solid thick lines.

s in Cerebral

RUPTURED vs UNRUPTURED

L (Lower): Aneurysms *proximal* w.r.t. carotid bifurcation

U (Upper): Aneurysms *distal* w.r.t. carotid bifurcation

R: Ruptured aneurysms N: Unruptured Aneurysms

Group		Size	Position		
			ICA	MCA	ACA
U	UN	11	1	5	5
	UR	16	1	2	13
L	LN	13	13	0	0
	LR	9	9	0	0
No		3	0	0	0
Total		52	24	7	18

PCA and Functional PCA

$$PCA and Functional PCA$$

$$X \in L^{2}(\Omega; R^{n}) \qquad \Sigma = [\sigma_{ij}] = E[(X_{i} - \mu_{i})(X_{j} - \mu_{j})] = cov(X_{i}, X_{j})$$

$$\beta \in R^{n}$$

$$\beta_{1} = argmax_{\beta}[var(\beta'X)]$$

$$\beta_{2} = argmax_{(\beta : \beta'\Sigma\beta_{1}=0)}[var(\beta'X)]$$

$$\dots = \dots$$

$$\beta_{n} = argmax_{(\beta : \beta'\Sigma\beta_{1}=0 \forall i=1,2,\dots,n-1)}[var(\beta'X)]$$

$$\left\{\beta_{1},\beta_{2},\dots,\beta_{n}\right\} = eigenvectors(\Sigma)$$

$$X(t) \in L^{2}(\Omega; L^{2}([0,T])) \qquad \Sigma(t,s) = E[(X(t) - \mu(t))(X(s) - \mu(s))] = cov(X(t), X(s))$$

$$\beta(t) \in L^{2}([0,T])$$

$$\beta_{1}(t) = argmax_{\beta(t)}[var(\int_{0}^{T} \beta(t)X(t)dt)]$$

$$\beta_{k}(t) = argmax_{(\beta(t) : \int_{0}^{T} \int_{0}^{T} \beta(t)\Sigma(t,s)\beta_{i}(s)dsdt=0 \forall i=1,2,\dots,k-1)}[var(\int_{0}^{T} \beta(t)X(t)dt)]$$

$$\{\beta_{1}(t),\beta_{2}(t),\dots\} = eigenfunctions(\Sigma(t,s))$$

A.Veneziani, Integrated Morphology+CFD Statistical Analysis of Parent Vessels in Cerebral Aneurysms

21

Some other conclusions (purely morphological analysis)

- □ ICA hosting proximal aneurysms (L class) are
 - ✓ more bended
 - ✓ smaller
 - ✓ less tapered

than ICA for U class (distal aneurysms)

No aneurysms class is similar to L

L. Sangalli, P. Secchi, S. Vantini, A. V., Jou Am Stat Assoc (2009)

22

Average WSS as function of the curvilinear abscissa

FPCA Results

Curvature

1st PC for Radius (65.9%)

Fig. 12 First column: analysis of ICA radius profiles along aligned centerlines. Second column: analysis of curvature profiles of aligned ICA centerlines. Third column: analysis of the first derivative of the WSS profiles along aligned ICA centerlines. First row: aligned profiles. Second row: projections of subject profiles on the corresponding mode of variability. Third row: boxplots of subject scores on these principal components separated per subject group.

A. Veneziani, Integrated Morphology+CFD Statistical Analysis of Parent Vessels in Cerebral Aneurysms

1st derivative of WSS

SYNTHESIS

<u>Conjecture</u>

- 1) There are two statistical significant clusters of Internal Carotid Arteries, S (2 bends) and Ω (1 bend)
- Double Bends probably ``protect" the aneurysms, by dissipating blood energy, resulting in a lower rupture risk

TO BE VALIDATED

Conclusions:

GENERAL: Proper <u>statistical methods</u> for the integrated knowledge extraction – numerical simulations treated as measured data

SPECIFIC: Some parent vessel features potentially provide *landmarks for the assessment of a risk of rupture*

TO DO LIST

- Extend the number of variables analyzed (inclusion of the sac in preparation)
- 2. Extend the number of samples
- 3. Validate our mechanical interpretation

⇔REPOSITORY

