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The 1-D model

Motivation

• Vascular disease location is associated with 
haemodynamic factors (e.g. WSS)
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The 1-D model

Motivation

• Vascular disease location is associated with 
haemodynamic factors (e.g. WSS)

• Vascular geometry strongly affects these factors



Form AR (May 09) Page 1 of 2  

 
FORM AR 

                              

                 Annual and Final Report Form            
        (For submission to: British Heart Foundation, Research Funds Dept, 
           Greater London House, 180 Hampstead Road, London NW1 7AW 
                                   Email research@bhf.org.uk) 

     (For office use only) 

 

 

Due on anniversary of start date of grant and within three months of end date.  

(Be brief, be concise, use plain English wherever possible) Please submit the original signed copy in the post and 
an electronic copy via email. (The form is available via email on request) 

 

BHF Grant No.  Report type (eg. 1st, 2nd etc, 
Final) 

 

Start date   End date      Award (£)  

Title of project  
 

 

Name of PI or 

Fellow 

 

Address  

 

Tel/Fax  Email  

 
1. Original aims and objectives (as given in application) 

 

 

 
 

 

 
 

 

2. Have your aims and objectives changed?  If so, explain in what way and why 

 
 

 

 
 

 

 

3. Summary of your findings (outcomes) in simple/lay terms (Max 150 words) 

 

 

 

 
 

 

 
 

 

4. How will these outcomes contribute to the fight against cardiovascular disease? How might the public or      

patients see the impact of your research in healthcare, and in what timescale? (Max 150 words) 

 

 

 
 

 

 

 

Fields-MITACS, 20 June 2011

The 1-D model

Atherosclerosis

Caro et al. 1978. The 
Mechanics of the Circulation

• Chronic inflammatory disease of the arterial lumen
• Good correlation with low or oscillatory WSS
• Particularly prevalent on the inner wall of curved 

arteries and the outer wall of bifurcations
Introduction: What isIntroduction: What is

atherosclerosisatherosclerosis??

The disorder begins with the accumulation of excess lipds and cholesterol in the arterial wall.

These substances infiltrate the walls of the arteries, gradually forming deposits called atheroma or

plaques. Over time, plaques can build up to form masses that impede blood flow. Atherosclerosis

can occur anywhere in arterial geometries but is particularly prevalent on the inner wall of curved

arteries and the outer  wall of bifurcations.
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•Vascular geometry affects the risk of occlusion of prothesis 
(e.g. bypass grafts, stents and arterio-venous shunts) and 
surgical vascular reconstructions

Caro et al. 2005. J. R. Soc. Interface

embedding in paraffin. Sections were prepared of the
vessels proximal and distal to the artery–graft junction,
of the graft, and of the vessels proximal and distal to the
graft–vein junction. The sections were EvG stained
for general morphology and measurement of intimal
and medial thickness. They were stained with haema-
toxylin and eosin to distinguish IH from organized
thrombus.

3. RESULTS

Because of the early losses, only five animals could
undergo graft explantation at the planned times. One
two-week animal, PC2, had a large, tense, lymphatic
fluid-filled swelling (seroma) in the upper thorax, which
was compressing the trachea and was presumed
responsible for the observed bilateral thrombosis of
the grafts. This animal’s results were excluded from the
study. The development of seromas is a recognized
complication of graft implantation; there were no
seromas in any of the other animals.

The other two week animal, PC3, had a small
amount of thrombus in four of the conventional graft
5 mm blocks, whereas the SwirlGraft was virtually free
of thrombus. There was a small amount of IH in both
the SwirlGraft and the conventional graft, but more in
the latter. Only one animal, PC5, was sacrificed at four
weeks; there was a small amount of thrombus in four of
the conventional graft 5 mm blocks, whereas there was
a small amount in one SwirlGraft block and a very small
amount in another.

There were marked differences between the conven-
tional grafts and the SwirlGraft grafts in the two
animals sacrificed at eight weeks (PC4 and PC7).
In PC4 (figure 3), the conventional graft was occluded
by thrombus and clot along approximately its distal

half. The occlusion continued into the graft–vein
anastomosis and the vein distal to the anastomosis
was occluded by IH and fibrosis. The SwirlGraft was
patent throughout its length and there were only
approximately diametrically opposed ribbons of path-
ology. The graft–vein anastomosis and vein distal to the
anastomosis were patent. There was some IH at the
graft–vein anastomosis and in the vein distal to the
anastomosis, but because of dilatation of the vessel,
there was no reduction of the cross-sectional area.

In PC7 (figure 4), the findings were similar. In the
conventional graft there was a small amount of IH
distal to the artery–graft junction. Progressing distally,
there was extensive thrombosis with some minerali-
zation implying relatively long-standing pathology,
culminating in occlusion of the graft. The graft–vein
anastomosis and vein distal to the anastomosis were
totally occluded. The SwirlGraft was patent through-
out its length, with only minimal IH. The IH was
usually present as two approximately diametrically
opposed seemingly helical ribbons, which were histo-
logically different and occupied only approximately 5%
of the graft cross-section. The graft–vein anastomosis
and vein distal to the anastomosis were patent.
There was some IH in the vein distal to the anasto-
mosis, but because of dilatation of the vessel there was
no reduction of cross-sectional area.

4. DISCUSSION AND CONCLUSIONS

The objectives of this preliminary study were to assess
the liability of conventional and SwirlGraft ePTFE
A-V shunts to develop pathology and the surgical
characteristics of the grafts. The study had several
limitations. Among these were the small number of
animals, the implantation of the SwirlGraft devices in

Figure 2. Bolus injection of 0.5 ml ink into water flowing (Reynolds number 550) in 0.8 cm internal diameter (D) pvc U-tubes,
tube radius/radius of curvature approximately 0.1. (a) Conventional tube; (b), (c) SMAHT tube, amplitude ratio and pitch
approximately 0.5D and 6D, respectively. In (a), axial dispersion is seen of the indicator, which has a long residence time in the
inlet tube (left) and at the inner wall of curvature of the U-bend. In (b) and (c), sequential images of flow in SMAHT tube, axial
dispersion of the indicator is reduced, as its retention in the inlet tube (left) and at the inner wall of curvature of the U-bend.

Helical and conventional arteriovenous shunts C. G. Caro and others 263

J. R. Soc. Interface (2005)

presence of two seemingly helical ribbons of pathology
along the grafts is therefore consistent with the fluid
mechanics significantly influencing the biological/
pathological processes.

No greater surgical difficulty was experienced in
implanting the SwirlGraft devices than the conven-
tional grafts and the SwirlGraft geometry appeared to
be maintained in situ. Contingent on confirmation of
these findings, there may be general implications for
vascular biology and implications for prolongation of
the patency of vascular interventions, including arterial
bypass grafts and arteriovenous shunts for renal
dialysis.

The surgical procedures and histopathological studies were
undertaken respectively by Ms Sandra Shurey and Dr Paul
Sibbons of Northwick Park Institute for Medical Research.
Drs Peter and Victoria Franke performed the CFD studies.
Acknowledgement is made to numerous colleagues who over
many years have contributed to this programme of research,
and to the Garfield Weston Foundation, the Clothworkers’
Foundation and the Henry Smith Charity for their

longstanding support. SwirlGraft is manufactured by Veryan
Medical Ltd. C.G.C and N.J.C are directors of Veryan
Medical Ltd.
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Figure 4. Five mm blocks from animal PC7, cut perpendicular to graft/vessel axis and assembled serially: (a)
conventional grafts, (b) SwirlGraft grafts. In both grafts, the artery–graft anastomosis is above. The conventional graft is
progressively thrombosed, proceeding distally from the artery–graft anastomosis and culminating in its occlusion. In
addition, the graft–vein anastomosis is occluded, and the vein distal to the anastomosis is collapsed and fibrosed. In
contrast, the SwirlGraft grafts are patent throughout their length and the graft and graft–vein anastomoses are almost
free of thrombus. There is some IH in the veins distal to the graft–vein anastomoses, but the vessels are patent and
because of dilatation there is no reduction of cross-sectional area. Visible in SwirlGraft sections are approximately
diametrically opposed seemingly helically distributed ribbons of pathology.
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FLOW IN CURVED PIPES 463

cross section of the pipe, a the angle between the radius vector and the

plane of symmetry, and 0 the angular distance of the cross section from

the entry of the pipe. The corresponding velocity components are
(u’, v’, w’). The following nondimensional variables are defined

r’ RO Wot’
r= --, ~=--, t=

a a a

q = ~o’ p = p~o2,
(1)

(primes denote dimensional quantities, unprimed quantities are dimen-

sionless) where t is the time, q = (u, v, w), p is the pressure, 0 the density,

and W0 the mean axial velocity in the pipe. For convenience we begin by

writing down the full governing equations for viscous flow in such a

curved pipe, without yet imposing the restriction that the flow is steady;

these are

Z/r + --
1 +26rcosa v~ 6vsinc~ ws

r l+~rcos~ +-- +
=0, (2a)

r 1 + 6rcoscx 1 + 6rcosc~

~
} ,

Ngure I ToroidN coordinate system.
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The 1-D model

• Data reduction to a few parameters by 
constructing asymptotic solutions

• E.g. Dean flow: fully developed steady and 
laminar flow in a bend of constant curvature

Asymptotic solutions

FLOW IN CURVED PIPES 469

Equations (15) and (16) for w and 4, together with boundary conditions

(18), a formulation originally given by Dean (1928), completely 

termine the problem for fully developed flow for a loosely coiled pipe.

2.1.1.1 Small Dean number For small values of the Dean number,

Dean (1927, 1928) solved the above problem by expanding the solution
in a series in powers of the Dean number, i.e.

w = ~ ~2~w,(r, a), ff -- ~ E ~2"¢?n(r, et). (19)
n=O n=0

The leading term for w, w0, is Poiseuille flow in a straight tube; the

leading term for ~ is O(~). This series expansion in ~ is equivalent 
perturbing the equivalent Poiseuille flow and calculating the influence of

the inertia terms by successive approximation, and is thus only ap-
propriate for slightly, or loosdy, coiled pipes or tubes. Figure 2 shows,

for a typical case, secondary streamlines in the pipe cross section and

0

CONTOURS OFCONST AXIAL VELOCITY

SECONDARY STREAMLINES

Figure 2 Secondary streamlines and axial-velocity contours at low Dean number. I

denotes inner bend, O outer bend.
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where R is the radius of curvature (see fig. 12), D is the pipe diameter and Re is 

the Reynolds number based on mean velocity and diameter. As noted by Berger 

et al. [44], the definition of the Dean number is not always consistent and so care 

must be taken when comparing values of the Dean number. Nevertheless the 

Dean number can be physically interpreted as the ratio of the square root of the 

product of the inertial and centrifugal forces to the viscous forces. 

For small Dean numbers an approximation of the axial flow profile in a 

toroidal pipe as shown in fig. 12 with its plane of curvature in the y-z plane is   
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where 
222
yxr += and )/(tan 1

xy
!

=" and a is the pipe radius, i.e. a = D/2. 

The axial flow profiles for De = 0, 100 and 200 are shown in fig. 13 where the 

plane of curvature is in the (y-z) plane and the centre of curvature is located at 

y=-R. The expansion is only valid for low De < 96 and so the case of De=200 is 

not strictly valid. Nevertheless the bulk flow displacement is characteristic of the 

exact flow profile of a curved pipe and therefore is a useful tool to illustrate the 

role of upstream curvature on the dynamics within a bypass junction. For 

 

Figure 12: Definition of toroidal geometry for definition of Low Dean number 

flow. 

 

α
α

De < 96a/Rc << 1
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Steady pressure
in the axial direction
Flow predominantly

Centrifugal force
acts towards the
outside of the pipe bend

Outside of
pipe bend

Dean vortices

Inside of
pipe bend

Secondary flow(b)

(a)

flow down the pipe
gradient drives

(almost Poiseuille profile)

Figure 5.4: Dean flow. (a) Longitudinal cross-section, showing Poiseuille-like profile, (b)
transverse cross-section, showing secondary flow, which forms Dean vortices.

Figure 5.5: Measured pressure and flow over the cardiac cycle

• The next correction, Q3us,1 causes the location of the maximal axial velocity to be
moved towards the outside of the bend of the pipe.

Poiseuille flow has a linear relationship between flow and pressure gradient. Interestingly, in
the relationship between flow and pressure gradient in the curved pipe, the first few terms
in the flow profile do not contribute to the axial flow rate. The departure from a linear
relationship between flow and pressure gradient occurs at the fifth power:

Q = C0D + C1D
5 + . . . , (5.5)

where C0 is the coefficient in Poiseuille flow.

5.1.4 Effect of unsteadiness in the flow (removal of assumption 4)

Flow in the cardiovascular system is not steady, but is rather highly pulsatile. This is
illustrated in the graph in figure 5.5, which shows pressure and flow in the aorta.

As discussed in Section 4.5, the qualitative nature of the flow is described by the
Womersley number. For low Womersley numbers, the flow is quasi-steady, because the
time-derivative terms in the Navier–Stokes equations may be neglected.

64
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cross section of the pipe, a the angle between the radius vector and the

plane of symmetry, and 0 the angular distance of the cross section from

the entry of the pipe. The corresponding velocity components are
(u’, v’, w’). The following nondimensional variables are defined

r’ RO Wot’
r= --, ~=--, t=

a a a

q = ~o’ p = p~o2,
(1)

(primes denote dimensional quantities, unprimed quantities are dimen-

sionless) where t is the time, q = (u, v, w), p is the pressure, 0 the density,

and W0 the mean axial velocity in the pipe. For convenience we begin by

writing down the full governing equations for viscous flow in such a

curved pipe, without yet imposing the restriction that the flow is steady;

these are

Z/r + --
1 +26rcosa v~ 6vsinc~ ws

r l+~rcos~ +-- +
=0, (2a)

r 1 + 6rcoscx 1 + 6rcosc~

~
} ,

Ngure I ToroidN coordinate system.
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The 1-D model

• Data reduction to a few parameters by 
constructing asymptotic solutions

• E.g. Dean flow: fully developed steady and 
laminar flow in a bend of constant curvature

Asymptotic solutions
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where R is the radius of curvature (see fig. 12), D is the pipe diameter and Re is 

the Reynolds number based on mean velocity and diameter. As noted by Berger 

et al. [44], the definition of the Dean number is not always consistent and so care 

must be taken when comparing values of the Dean number. Nevertheless the 

Dean number can be physically interpreted as the ratio of the square root of the 

product of the inertial and centrifugal forces to the viscous forces. 

For small Dean numbers an approximation of the axial flow profile in a 

toroidal pipe as shown in fig. 12 with its plane of curvature in the y-z plane is   
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where 
222
yxr += and )/(tan 1

xy
!

=" and a is the pipe radius, i.e. a = D/2. 

The axial flow profiles for De = 0, 100 and 200 are shown in fig. 13 where the 

plane of curvature is in the (y-z) plane and the centre of curvature is located at 

y=-R. The expansion is only valid for low De < 96 and so the case of De=200 is 

not strictly valid. Nevertheless the bulk flow displacement is characteristic of the 

exact flow profile of a curved pipe and therefore is a useful tool to illustrate the 

role of upstream curvature on the dynamics within a bypass junction. For 

 

Figure 12: Definition of toroidal geometry for definition of Low Dean number 

flow. 
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The 1-D model

• Data reduction to a few parameters by 
constructing asymptotic solutions

• E.g. Dean flow: fully developed steady and 
laminar flow in a bend of constant curvature

Asymptotic solutions

• The degree of validity of these solutions in 
blood vessels is unknown

• In the human vasculature we have 
sequences of non-planar bends with 
changing curvature and torsion
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Numerical model & methodologyNumerical model & methodology

!  A curvature conforming, high order mesh generation was applied to accurately represent

the geometry.

! The 3-D computational simulation of the flows was performed using an incompressible

Navier-Stokes solver called Nektar which is basis on a spectral/hp element method.
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Figure 1: Single and double bends (left) and helical bends (right) studied, with a constant circular
cross-section, a diameter D, and centrelines highlighted in dashed lines. The local versor N is depicted
at some locations and the value of the arc length s is shown at the extremes of lines and curves. In
straight regions, N was considered to have the same direction as in its adjacent curved region. (left)
The curvature of each bend is κ = 1

2D and the azimuthal angles between the plane of curvature of each
bend are indicated in degrees. (Modified from [24].) (right) The centrelines have a fixed helical radius of
0.125D and a pitch length of 3D and 5D.

11, 12, 13, 14, 15, 16, 17, 18]) or helical tubes of constant curvature and torsion (e.g. [14, 19, 20,
21, 22]). In particular regimes, researchers in the applied-mathematics community have reduced
the data to a handful of parameters by constructing asymptotic solutions ([7, 8, 19, 14, 16]).
However, without full knowledge of the details of the flow, the validity of the assumptions of
these flows is unknown. And even less well understood are the mechanisms responsible for the
complex flow phenomena observed in the sequences of non-planar bends with varying curvature
and torsion found in the arterial vasculature [17, 23, 24]. In these cases, the complexity of the
equations for the physiologically relevant range of parameters renders theoretical analysis rather
intractable.

Current numerical models and anatomical reconstruction techniques allow us to accurately
simulate haemodynamics in three-dimensional (3-D) patient-specific geometries. These simula-
tions are usually performed in localised areas of the arterial system (e.g. [25, 26, 27]), although
more recently within larger arterial networks [28]. Such simulations provide insight into clini-
cally relevant fluid dynamics, but unfortunately they often produce such large quantities of data
that they are unlikely to be of practical use in a clinical setting.

The aim of this work is to reduce the amount of data whilst retaining the important flow
features in order to investigate the effect of vascular geometry on the forces that govern the
generation and evolution of primary and secondary (in-plane) flows in curved vessels and their
association with axial velocity profiles, vortical structures and WSS distributions. For a given
vascular geometry, we express the Navier–Stokes and continuity equations in a centreline (local)
coordinate system. This allows us to decompose the effects of the geometry on the blood flow into
components: inertia (centrifugal, torsional and Coriolis), pressure and viscous forces and local
accelerations. Taking cross-sectional averages of these local quantities reduces the dynamics of
the system onto the vessel centreline.

We will first use this technique to investigate flow patterns in the idealised planar and non-
planar bends shown in Figure 1 (left), which loosely model, neglecting branches, the aortic arch
(135◦ case), the intracranial segment of the internal carotid artery (180◦ case), and a bypass
graft in a peripheral vessel with the proximal branch of the host vessel occluded (all the cases).
The small amplitude helical tubes in Figure 1 (right) will also be considered, since they have
been recently investigated for potential application as vascular protheses due to their favorable
in-plane mixing properties [4, 22]. All these geometries retain the dominant features of flow
structures while significantly reducing the number of parameters that define the problem [29].
The knowledge gained from these studies will then be applied to analyse the flow patterns in
the anatomically-correct carotid syphon shown in Figure 2.

2

Our goal
•Reduce the amount of data whilst retaining the clinically 
relevant mechanisms 

•Quantify the effect of vascular geometry on primary and 
secondary flows in curved vessels and their association 
with velocity profiles, vortical structures and wall stresses

helical curves

Analysis of the role of geometry 

on flow in curved vessels

Jordi Alastruey1

S. Sherwin1, D. Doorly1,  J. Siggers2, L. Antiga3

1 Department of Aeronautics, Imperial College London, U.K.
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1. Solve N-S equations in Cartesian coordinates 
(incompressible flow, Newtonian fluid and fixed geometry)
2. Transform the Cartesian velocity and pressure fields (and 
their derivatives) into an orthogonal (local) coordinate 
system following the vessel centreline

Centreline analysis

Germano 1982. J. Fluid Mech. 125
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Figure 2: Germano’s coordinate system (s, r, θ) along the centreline of a generic vessel [22]. C is the
centre of curvature at R(s).

the blood, and κ the curvature of the vessel. Taking U and D equal to unity implicitly non-
dimensionalises the primitive unknowns and many derived quantities. Thus the flow regimes
modelled depend on ν only, though they are appropriate for blood vessels with D > 1 mm. We
consider Re ∈ [50, 500] (De ∈ [141, 1414] in the bends and De ∈ [87, 1428] in the helices) to
match representative physiological conditions in medium sized human arteries [30].

3 Centreline analysis

3.1 Continuity and Navier–Stokes equations along the centreline

Given the centreline of a curved vessel with an arc length s, position R(s), tangent T(s), normal
N(s), and binormal B(s), we consider Germano’s orthogonal coordinate system (s, r, θ) following
this centreline, where r and θ are polar coordinates in the plane normal to the centreline at R(s)
(Fig. 2) [22]. Any Cartesian position vector x can be expressed in these local coordinates as

x = P −O = R− r sin (θ + φ)N + r cos (θ + φ)B, φ(s) = −
∫ s

s0

τ(s′)ds′,

where τ(s) is the torsion and s0 is a reference arc length with an arbitrary value. The unit
vectors parallel to the local coordinate directions are

as = T,
ar = cos (θ + φ)B− sin (θ + φ)N,
aθ = − sin (θ + φ)B− cos (θ + φ)N.

Using the relations

T =
dR
ds

, N =
1
κ

dT
ds

, B = T×N, (1)

where κ(s) is the curvature and the Frenet–Serret formulae

dN
ds

= τB− κT,
dB
ds

= −τN, (2)

the following orthogonal metric can be obtained

dx · dx = [1 + κr sin (θ + φ)]2 (ds)2 + (dr)2 + r2 (dθ)2 . (3)

Following the technique described in [31], we can express the continuity and Navier–Stokes
equations in local coordinates (s, r, θ) with the metric (3) as

1
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[v sin (θ + φ) + w cos (θ + φ)] = 0, (4)
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Figure 2: Germano’s coordinate system (s, r, θ) along the centreline of a generic vessel [22]. C is the
centre of curvature at R(s).
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dimensionalises the primitive unknowns and many derived quantities. Thus the flow regimes
modelled depend on ν only, though they are appropriate for blood vessels with D > 1 mm. We
consider Re ∈ [50, 500] (De ∈ [141, 1414] in the bends and De ∈ [87, 1428] in the helices) to
match representative physiological conditions in medium sized human arteries [30].
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dimensionalises the primitive unknowns and many derived quantities. Thus the flow regimes
modelled depend on ν only, though they are appropriate for blood vessels with D > 1 mm. We
consider Re ∈ [50, 500] (De ∈ [141, 1414] in the bends and De ∈ [87, 1428] in the helices) to
match representative physiological conditions in medium sized human arteries [30].
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1. Solve N-S equations in Cartesian coordinates 
(incompressible flow, Newtonian fluid and fixed geometry)
2. Transform the Cartesian velocity and pressure fields (and 
their derivatives) into an orthogonal (local) coordinate 
system following the vessel centreline
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N(s), and binormal B(s), we consider Germano’s orthogonal coordinate system (s, r, θ) following
this centreline, where r and θ are polar coordinates in the plane normal to the centreline at R(s)
(Fig. 2). Any Cartesian position vector x can be expressed in these local coordinates as [22]

x = P −O = R− r sin (θ + φ)N + r cos (θ + φ)B, φ(s) = −
∫ s
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the blood, and κ the curvature of the vessel. Taking U and D equal to unity implicitly non-
dimensionalises the primitive unknowns and many derived quantities. Thus the flow regimes
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consider Re ∈ [50, 500] (De ∈ [141, 1414] in the bends and De ∈ [87, 1428] in the helices) to
match representative physiological conditions in medium sized human arteries [30].
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3.1 Continuity and Navier–Stokes equations along the centreline

Given the centreline of a curved vessel with an arc length s, position R(s), tangent T(s), normal
N(s), and binormal B(s), we consider Germano’s orthogonal coordinate system (s, r, θ) following
this centreline, where r and θ are polar coordinates in the plane normal to the centreline at R(s)
(Fig. 2). Any Cartesian position vector x can be expressed in these local coordinates as [22]

x = P −O = R− r sin (θ + φ)N + r cos (θ + φ)B, φ(s) = −
∫ s

s0

τ(s′)ds′,

where τ(s) is the torsion and s0 is a reference arc length with an arbitrary value. The unit
vectors parallel to the local coordinate directions are

as = T,
ar = cos (θ + φ)B− sin (θ + φ)N,
aθ = − sin (θ + φ)B− cos (θ + φ)N.

Using the relations
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Centreline analysis

3. Express the N-S equations in local 
coordinates,

2.2.3 The Navier–Stokes equations

Substituting the constitutive relationship for a Newtonian fluid (2.15) into the equation for
conservation of momentum (2.22), we obtain

ρ
Dui

Dt
= −

∂p

∂xi
+ µ

∂2ui

∂xj∂xj
+ ρfi or ρ

Du

Dt
= −∇p + µ∇2u + ρf . (2.23)

It is frequently convenient to divide by the density to obtain

Dui

Dt
= −

1

ρ

∂p

∂xi
+ ν

∂2ui

∂xj∂xj
+ fi or

Du

Dt
= −

1

ρ
∇p + ν∇2u + f . (2.24)

These equations are all representations of the Navier–Stokes equation, which is of
fundamental importance in fluid mechanics.

Notes:

• The equation can be viewed as three separate equations, one for each spatial
component.

• The terms can all be interpreted physically: the left-hand side is the acceleration of
fluid particles, and the terms on the right-hand side represent the forces per unit
mass. There are two surface forces, due to the pressure gradient and the viscous
forces and also the body force per unit mass, f .

• The equations govern the motion of a Newtonian incompressible fluid and need to be
solved together with the continuity equation (2.20) providing a fourth equation.

• The most common choices for f are f = ρg (if gravity is significant) and f = 0 (if
gravity is unimportant).

Navier–Stokes equations in cylindrical coordinates In cylindrical coordinates (r, θ, z)
the continuity equation is

1

r

∂(rur)

∂r
+

1

r

∂uθ

∂θ
+

∂uz

∂z
= 0, (2.25)
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x,y,z: 

x: CAx = PGx + VFx

y: CAy = PGy + VFy

z: CAz = PGz + VFz

1. Solve N-S equations in Cartesian coordinates 
(incompressible flow, Newtonian fluid and fixed geometry)
2. Transform the Cartesian velocity and pressure fields (and 
their derivatives) into an orthogonal (local) coordinate 
system following the vessel centreline
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B: CAB = TFB + PGB + VFB

To understand the physical meaning of Co, which arises from κ (as do CFr and CFθ), we
transform the velocity field V = (u, v, w) at a particular R(s) to a coordinate system rotating
with angular velocity Ω = Ω(s, r, θ)B about C. The velocity components of a fluid element at
a particular (s, r, θ) with respect to this coordinate system are (û, v, w), with u = û + hκ−1Ω.
Substitution of this expression for u into CAs and Co in Eq. (5) yields

CAs(u) = CAs(û)− ΩVN +
Ω
κ

[
∂û

∂s
+ u

∂

∂s
(lnh− lnκ)

]
+

h

κ
DΩ, (8)

Co(u) = Co(û) + ΩVN , (9)

where VN = −v sin (θ + φ) − w cos (θ + φ) is the component of the secondary motion in the
direction of N with respect to both the rotating and local frames. The term ΩVN in Eqs. (8)
and (9) satisfies ΩVNT = −Ω×VN, VN = VNN. If we chose Ω = uκh−1, then û = 0 (i.e. the
rotating frame is moving with the local axial velocity u at a particular (s, r, θ)) and

CAs(u) = −ΩVN +
u2

h

∂

∂s
(lnh− lnκ) +

h

κ
DΩ, (10)

Co(u) = ΩVN . (11)

Eq. (11) shows that CoT = −Ω × VN; i.e. Co is half of the usual Coriolis force per unit of
mass arising from κ, VN and u. The other half arises from CAs according to Eq. (10).

Eqs. (4) to (7) reduce to the continuity and Navier–Stokes equations in toroidal coordinates
if τ = 0 and κ is constant, and in cylindrical coordinates if τ = 0 and κ = 0.

3.2 Forces and accelerations in the direction of T, N and B

We will analyse the forces, accelerations and velocities in the direction of T, N and B to inves-
tigate mechanisms underlying flow patterns in curved vessels. The local forces and acceleration
in Eq. (5) have the direction of T, since as = T. To obtain these quantities in the direction
of N (CAN , CFN , PGN and VFN ) and B (CAB, CFB, PGB and VFB) we need to project the
terms in Eqs. (6) and (7) onto N and B; i.e.

ξN = −ξr sin (θ + φ)− ξθ cos (θ + φ),

ξB = ξr cos (θ + φ)− ξθ sin (θ + φ),

with ξ = CA, CF, PG or VF. These projections lead to

CAN =
u

h

(
∂VN

∂s
− τVB

)
+ VN

∂VN

∂n
+ VB

∂VN

∂b
, (12)

CAB =
u

h

(
∂VB

∂s
+ τVN

)
+ VB

∂VB

∂b
+ VN

∂VB

∂n
, (13)

CFN = −κu2

h
, CFB = 0, (14)

PGN = −1
ρ

∂p

∂n
, PGB = −1

ρ

∂p

∂b
, (15)

where VB = v cos (θ + φ)−w sin (θ + φ) is the component of the secondary motion in the direction
of B, n = −r sin (θ + φ) a coordinate in the direction of N, and b = r cos (θ + φ) a coordinate
in the direction of B. We now define the local torsional force TF = (0,TFN ,TFB) with

TFN =
τu

h
VB, TFB = −τu

h
VN , (16)

and convective accelerations CA′
N and CA′

B,

CA′
N =

u

h

∂VN

∂s
+ VN

∂VN

∂n
+ VB

∂VN

∂b
, (17)
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CAs = Co + PGs + VFs, (5)

CAr = CFr + PGr + VFr, (6)

CAθ = CFθ + PGθ + VFθ, (7)

with

CAs = Du, Co = −κu
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[v sin (θ + φ) + w cos (θ + φ)] , PGs = − 1
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,

VFs = ν
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The variables u(s, r, θ), v(s, r, θ) and w(s, r, θ) are the velocities in the direction of as, ar and
aθ, respectively, p(s, r, θ) is the fluid kinematic pressure, ρ the blood density, and hκ−1 (h =
1 + κr sin (θ + φ)) the distance from the centre of curvature of the vessel centreline, C, to the
projection onto the plane spanned by T and N of a general point (s, r, θ). The operator D is

D =
u

h

∂

∂s
+ v

∂

∂r
+

w

r

∂

∂θ
,

and

∂h

∂s
=

dκ

ds
r sin (θ + φ)− τκr cos (θ + φ),

∂h

∂r
= κ sin (θ + φ),

∂h

∂θ
= κr cos (θ + φ).

The terms CA, CF, PG and VF are the convective acceleration and the centrifugal, pressure
gradient and viscous forces per unit of mass, respectively, along the axial, radial and circum-
ferential directions, which are indicated by the subindexes s, r and θ, respectively. Eqs. (4) to
(7) are valid for r ≤ 1/κ. Otherwise, the description of any point in the system is not unique.
Appendix 1 shows how to transform the velocity, its first and second derivatives, and pressure
gradient in Eqs. (4) to (7) from Cartesian (x, y, z) to local (s, r, θ) coordinates.
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The terms CA, CF, PG and VF are the convective acceleration and the centrifugal, pressure
gradient and viscous forces per unit of mass, respectively, along the axial, radial and circum-
ferential directions, which are indicated by the subindexes s, r and θ, respectively. Eqs. (4) to
(7) are valid for r ≤ 1/κ. Otherwise, the description of any point in the system is not unique.
Appendix 1 shows how to transform the velocity, its first and second derivatives, and pressure
gradient in Eqs. (4) to (7) from Cartesian (x, y, z) to local (s, r, θ) coordinates.
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T: CAT = Co + PGT + VFT

N: CAN = CFN + TFN + PGN + VFN

3. Express the N-S equations in local 
coordinates,

1. Solve N-S equations in Cartesian coordinates 
(incompressible flow, Newtonian fluid and fixed geometry)
2. Transform the Cartesian velocity and pressure fields (and 
their derivatives) into an orthogonal (local) coordinate 
system following the vessel centreline
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4. Take cross-sectional 
averages of the local 
quantities to reduce the 
terms onto the centreline

N: CAN = CFN + TFN + PGN + VFN

3. Express the N-S equations in local 
coordinates,

B: CAB = TFB + PGB + VFB

T: CAT = Co + PGT + VFT

1. Solve N-S equations in Cartesian coordinates 
(incompressible flow, Newtonian fluid and fixed geometry)
2. Transform the Cartesian velocity and pressure fields (and 
their derivatives) into an orthogonal (local) coordinate 
system following the vessel centreline
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CA′
B =

u

h

∂VB

∂s
+ VB

∂VB

∂b
+ VN

∂VB

∂n
, (18)

so that the balance of in-plane momentum takes the form

CA′
N = CFN + TFN + PGN + VFN , (19)

CA′
B = TFB + PGB + VFB. (20)

It is important to remark that the Cartesian convective acceleration, pressure gradient force
and viscous force yield, respectively, CAs − Co, PGs and VFs when projected onto T, CA′

N −
CFN − TFN , PGN and VFN when projected onto N, and CA′

B − TFB, PGB and VFB when
projected onto B. However, the inertial forces Co, CFN , TFN and TFB, which allow us to
quantify the effect of κ and τ on flow patterns, are not obtained explicitly.

3.3 Cross-sectional averages

Given a field ξ(s, r, θ), we define its cross-sectional average ξ at R(s) as

ξ =
1
S

∫

S
ξdA, (21)

where S(s) is the luminal area normal to the centreline at R(s) and dA = rdrdθ. Hereafter a
line over a field name will refer to its cross-sectional average.

3.4 Vorticity and wall shear stress

The components of the vorticity vector ω = ∇× (u, v, w) in local coordinates are [31]

ωs =
1
r

∂(rw)
∂r

− 1
r

∂v

∂θ
, ωr =

1
rh

[
∂(hu)

∂θ
− r

∂w

∂s

]
, ωθ =

1
h

[
∂v

∂s
− ∂(hu)

∂r

]
.

At the wall surface (r = D/2) we have

ωs|r=D/2 =
∂w

∂r

∣∣∣∣
r=D/2

. (22)

In local coordinates, the axial WSs and circumferential WSθ WSS take the form

WSs = −νρ
∂u

∂r

∣∣∣∣
r=D/2

, WSθ = −νρ
∂w

∂r

∣∣∣∣
r=D/2

,

so that the tangential traction exerted by the wall on the flow is WS = −(WSs, 0, WSθ). For
the incompressible, Newtonian fluid we are considering, WS = νρω × n is satisfied at the wall
surface (r = D/2), where n is the wall normal. This expression leads to

WSs = νρωθ|r=D/2 , WSθ = −νρωs|r=D/2 . (23)

4 Results and discussion

We will first describe and discuss the effect on secondary flows and in-plane forces, including
their averages along the centreline, of the centrifugal force alone (Section 4.1) and combined
with a continuous (Section 4.2) and impulse (Section 4.3) torsional force. We will then focus on
the effect of curvature and torsion on the axial flow (Section 4.4) and the role of the full Coriolis
force 2Co (Section 4.5) and wall stresses (Section 4.6). The cross-sectional contours in Figs. 3,4,
7, 8, 10 are normal to T and have the vectors N and B oriented as depicted in each figure.

In all our computations, the errors in the net balance of mass and momentum in Cartesian
and local coordinates are of the same order and cannot be appreciated in the scales of Figs. 5,
6, 9, 12.
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3.4 Vorticity and wall shear stress

The components of the vorticity vector ω = ∇× (u, v, w) in local coordinates are [29]

ωs = ω · T =
1
r

∂(rw)
∂r

− 1
r

∂v

∂θ
,

ωr =
1
rh

[
∂(hu)

∂θ
− r

∂w

∂s

]
,

ωθ =
1
h

[
∂v

∂s
− ∂(hu)

∂r

]
,

which reduce to (ws, wr, wθ) = (0, 0, 16Ur/D2) for Poiseuille flow.
In local coordinates, the WSS has an axial WSs and circumferential WSθ components. They

take the form
WSs = −νρ

∂u

∂r

∣∣∣∣
r=D/2

, WSθ = −νρ
∂w

∂r

∣∣∣∣
r=D/2

,

so that the tangential traction by the wall on the flow is WS = −(WSs, 0, WSθ). For the
incompressible, Newtonian fluid we are considering, WS = νρω × n is satisfied at the wall
surface (r = D/2), where n is the wall normal. This expression leads to

WSs = νρωθ|r=D/2 , WSθ = −νρωs|r=D/2 . (17)

4 Results and discussion

The centreline analysis was applied to study the steady flow fields simulated in the geometries
shown in Figures 1 and 2. We first present the results obtained in the single (Section 4.1) and
double (Section 4.2) bends, in which a step injection of κ occurs alone or combined with an
impulse injection of τ , respectively. We then present the results in the helical bends (Section
4.3), in which a step injection of both κ and τ occurs. Finally, we present the results in the
anatomically-correct geometry (Section 4.4), in which κ and τ are continuously injected.

In all the cases, the errors in the balance of momentum in Cartesian and local coordinates
were of the same order and could not be appreciated in the scales of Figures 4, 10 and 11. The
slices shown in Figures 5 to 8 are perpendicular to T (observed from downstream to upstream)
and have the in-plane vectors N and B orientated as depicted in Figure 5j.

The velocities, accelerations and forces in the idealised geometries will be compared with
the corresponding quantities calculated from the fully-developed Cartesian velocities driven by
a steady pressure gradient in a uniformly curved pipe with the same Re and De numbers,
simulated using the method described in [13].

4.1 Flow patterns in the planar single bend

Secondary flows in the planar single bend (Figure 1, left) and the local forces and accelerations
that generate and develop them are symmetrical along N, as Figures 5 to 9 show at several cross-
sections for Re = 125 and De = 353.6. Their components in the direction of B are antisymmetric
along N. Consequently, the cross-sectional averages CFN , PGN , CAN , VFN and V N are, in
general, non-zero throughout the bend, and PGB, CAB, VFB and V B are zero. Moreover, CAN

is approximately proportional to ∂V N
∂s for Re = 50, 125, 250, 375 and 500. This is in agreement

with Equation (12), since (i) τ = 0, (ii) VN
∂VN
∂n and VB

∂VN
∂b are negligible compared to u

h
∂VN
∂s

and (iii) u
h

∂VN
∂s is approximately proportional to ∂V N

∂s . Therefore, the pattern of V N is mainly
governed by CFN , PGN and VFN .

Although the Poiseuille inflow is first forced to turn by the wall at s = 2D, Figure 4 shows,
at different Re numbers, that a centripetal (in the direction of N and toward the centre of
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outflow
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3.4 Vorticity and wall shear stress

The components of the vorticity vector ω = ∇× (u, v, w) in local coordinates are [29]

ωs = ω · T =
1
r

∂(rw)
∂r

− 1
r

∂v

∂θ
,

ωr =
1
rh

[
∂(hu)

∂θ
− r

∂w

∂s

]
,

ωθ =
1
h

[
∂v

∂s
− ∂(hu)

∂r

]
,

which reduce to (ws, wr, wθ) = (0, 0, 16Ur/D2) for Poiseuille flow.
In local coordinates, the WSS has an axial WSs and circumferential WSθ components. They

take the form
WSs = −νρ

∂u

∂r

∣∣∣∣
r=D/2

, WSθ = −νρ
∂w

∂r

∣∣∣∣
r=D/2

,

so that the tangential traction by the wall on the flow is WS = −(WSs, 0, WSθ). For the
incompressible, Newtonian fluid we are considering, WS = νρω × n is satisfied at the wall
surface (r = D/2), where n is the wall normal. This expression leads to

WSs = νρωθ|r=D/2 , WSθ = −νρωs|r=D/2 . (17)

4 Results and discussion

The centreline analysis was applied to study the steady flow fields simulated in the geometries
shown in Figures 1 and 2. We first present the results obtained in the single (Section 4.1) and
double (Section 4.2) bends, in which a step injection of κ occurs alone or combined with an
impulse injection of τ , respectively. We then present the results in the helical bends (Section
4.3), in which a step injection of both κ and τ occurs. Finally, we present the results in the
anatomically-correct geometry (Section 4.4), in which κ and τ are continuously injected.

In all the cases, the errors in the balance of momentum in Cartesian and local coordinates
were of the same order and could not be appreciated in the scales of Figures 4, 10 and 11. The
slices shown in Figures 5 to 8 are perpendicular to T (observed from downstream to upstream)
and have the in-plane vectors N and B orientated as depicted in Figure 5j.

The velocities, accelerations and forces in the idealised geometries will be compared with
the corresponding quantities calculated from the fully-developed Cartesian velocities driven by
a steady pressure gradient in a uniformly curved pipe with the same Re and De numbers,
simulated using the method described in [13].

4.1 Flow patterns in the planar single bend

Secondary flows in the planar single bend (Figure 1, left) and the local forces and accelerations
that generate and develop them are symmetrical along N, as Figures 5 to 9 show at several cross-
sections for Re = 125 and De = 353.6. Their components in the direction of B are antisymmetric
along N. Consequently, the cross-sectional averages CFN , PGN , CAN , VFN and V N are, in
general, non-zero throughout the bend, and PGB, CAB, VFB and V B are zero. Moreover, CAN

is approximately proportional to ∂V N
∂s for Re = 50, 125, 250, 375 and 500. This is in agreement

with Equation (12), since (i) τ = 0, (ii) VN
∂VN
∂n and VB

∂VN
∂b are negligible compared to u

h
∂VN
∂s

and (iii) u
h

∂VN
∂s is approximately proportional to ∂V N

∂s . Therefore, the pattern of V N is mainly
governed by CFN , PGN and VFN .

Although the Poiseuille inflow is first forced to turn by the wall at s = 2D, Figure 4 shows,
at different Re numbers, that a centripetal (in the direction of N and toward the centre of

7

, in-plane
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outflow

N

BT

CA′
B =

u

h

∂VB

∂s
+ VB

∂VB

∂b
+ VN

∂VB

∂n
, (18)

so that the balance of in-plane momentum takes the form

CA′
N = CFN + TFN + PGN + VFN , (19)

CA′
B = TFB + PGB + VFB. (20)

It is important to remark that the Cartesian convective acceleration, pressure gradient force
and viscous force yield, respectively, CAs − Co, PGs and VFs when projected onto T, CA′

N −
CFN − TFN , PGN and VFN when projected onto N, and CA′

B − TFB, PGB and VFB when
projected onto B. However, the inertial forces Co, CFN , TFN and TFB, which allow us to
quantify the effect of κ and τ on flow patterns, are not obtained explicitly.

3.3 Cross-sectional averages

Given a field ξ(s, r, θ), we define its cross-sectional average ξ at R(s) as

ξ =
1
S

∫

S
ξdA, (21)

where S(s) is the luminal area normal to the centreline at R(s) and dA = rdrdθ. Hereafter a
line over a field name will refer to its cross-sectional average.

3.4 Vorticity and wall shear stress

The components of the vorticity vector ω = ∇× (u, v, w) in local coordinates are [31]

ωs =
1
r

∂(rw)
∂r

− 1
r

∂v

∂θ
, ωr =

1
rh

[
∂(hu)

∂θ
− r

∂w

∂s

]
, ωθ =

1
h

[
∂v

∂s
− ∂(hu)

∂r

]
.

At the wall surface (r = D/2) we have

ωs|r=D/2 =
∂w

∂r

∣∣∣∣
r=D/2

. (22)

In local coordinates, the axial WSs and circumferential WSθ WSS take the form

WSs = −νρ
∂u

∂r

∣∣∣∣
r=D/2

, WSθ = −νρ
∂w

∂r

∣∣∣∣
r=D/2

,

so that the tangential traction exerted by the wall on the flow is WS = −(WSs, 0, WSθ). For
the incompressible, Newtonian fluid we are considering, WS = νρω × n is satisfied at the wall
surface (r = D/2), where n is the wall normal. This expression leads to

WSs = νρωθ|r=D/2 , WSθ = −νρωs|r=D/2 . (23)

4 Results and discussion

We will first describe and discuss the effect on secondary flows and in-plane forces, including
their averages along the centreline, of the centrifugal force alone (Section 4.1) and combined
with a continuous (Section 4.2) and impulse (Section 4.3) torsional force. We will then focus on
the effect of curvature and torsion on the axial flow (Section 4.4) and the role of the full Coriolis
force 2Co (Section 4.5) and wall stresses (Section 4.6). The cross-sectional contours in Figs. 3,4,
7, 8, 10 are normal to T and have the vectors N and B oriented as depicted in each figure.

In all our computations, the errors in the net balance of mass and momentum in Cartesian
and local coordinates are of the same order and cannot be appreciated in the scales of Figs. 5,
6, 9, 12.
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3.4 Vorticity and wall shear stress

The components of the vorticity vector ω = ∇× (u, v, w) in local coordinates are [29]

ωs = ω · T =
1
r

∂(rw)
∂r

− 1
r

∂v

∂θ
,

ωr =
1
rh

[
∂(hu)

∂θ
− r

∂w

∂s

]
,

ωθ =
1
h

[
∂v

∂s
− ∂(hu)

∂r

]
,

which reduce to (ws, wr, wθ) = (0, 0, 16Ur/D2) for Poiseuille flow.
In local coordinates, the WSS has an axial WSs and circumferential WSθ components. They

take the form
WSs = −νρ

∂u

∂r

∣∣∣∣
r=D/2

, WSθ = −νρ
∂w

∂r

∣∣∣∣
r=D/2

,

so that the tangential traction by the wall on the flow is WS = −(WSs, 0, WSθ). For the
incompressible, Newtonian fluid we are considering, WS = νρω × n is satisfied at the wall
surface (r = D/2), where n is the wall normal. This expression leads to

WSs = νρωθ|r=D/2 , WSθ = −νρωs|r=D/2 . (17)

4 Results and discussion

The centreline analysis was applied to study the steady flow fields simulated in the geometries
shown in Figures 1 and 2. We first present the results obtained in the single (Section 4.1) and
double (Section 4.2) bends, in which a step injection of κ occurs alone or combined with an
impulse injection of τ , respectively. We then present the results in the helical bends (Section
4.3), in which a step injection of both κ and τ occurs. Finally, we present the results in the
anatomically-correct geometry (Section 4.4), in which κ and τ are continuously injected.

In all the cases, the errors in the balance of momentum in Cartesian and local coordinates
were of the same order and could not be appreciated in the scales of Figures 4, 10 and 11. The
slices shown in Figures 5 to 8 are perpendicular to T (observed from downstream to upstream)
and have the in-plane vectors N and B orientated as depicted in Figure 5j.

The velocities, accelerations and forces in the idealised geometries will be compared with
the corresponding quantities calculated from the fully-developed Cartesian velocities driven by
a steady pressure gradient in a uniformly curved pipe with the same Re and De numbers,
simulated using the method described in [13].

4.1 Flow patterns in the planar single bend

Secondary flows in the planar single bend (Figure 1, left) and the local forces and accelerations
that generate and develop them are symmetrical along N, as Figures 5 to 9 show at several cross-
sections for Re = 125 and De = 353.6. Their components in the direction of B are antisymmetric
along N. Consequently, the cross-sectional averages CFN , PGN , CAN , VFN and V N are, in
general, non-zero throughout the bend, and PGB, CAB, VFB and V B are zero. Moreover, CAN

is approximately proportional to ∂V N
∂s for Re = 50, 125, 250, 375 and 500. This is in agreement

with Equation (12), since (i) τ = 0, (ii) VN
∂VN
∂n and VB

∂VN
∂b are negligible compared to u

h
∂VN
∂s

and (iii) u
h

∂VN
∂s is approximately proportional to ∂V N

∂s . Therefore, the pattern of V N is mainly
governed by CFN , PGN and VFN .

Although the Poiseuille inflow is first forced to turn by the wall at s = 2D, Figure 4 shows,
at different Re numbers, that a centripetal (in the direction of N and toward the centre of
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(8) and (9) satisfies ΩVNT = −Ω ×VN, VN = VNN. If we chose Ω = uκh−1 then û = 0 (i.e.
the rotating frame is moving with the local axial velocity u at a particular (s, r, θ)) and

CAs(u) = −ΩVN +
u2

h

∂

∂s
(lnh− lnκ) +

h

κ
DΩ, (10)

Co(u) = ΩVN . (11)
Equation (11) shows that CoT = −Ω×VN; i.e. Co is half of the usual Coriolis force per unit
of mass arising from κ, VN and u. The other half arises from CAs according to Equation (10).

If τ = 0 and κ is constant, Equations (4) to (7) reduce to the Navier–Stokes and continuity
equations in toroidal coordinates. If also κ = 0, they reduce to the Navier–Stokes and continuity
equations in cylindrical coordinates.

3.2 Forces and accelerations in the direction of T, N and B

We will analyse the flow dynamics by looking at the forces, accelerations and velocities in the
direction of T, N and B. The forces per unit of mass and acceleration in Equation (4) have
the direction of T, since as = T. To obtain these quantities in the direction of N (CAN , CFN ,
PGN and VFN ) and B (CAB, CFB, PGB and VFB) we need to project the terms in Equations
(5) and (6) onto N and B; i.e.

ξN = −ξr sin (θ + φ)− ξθ cos (θ + φ),

ξB = ξr cos (θ + φ)− ξθ sin (θ + φ),
with ξ = CA, CF, PG or VF. These projections lead to

CAN =
u

h

(
∂VN

∂s
− τVB

)
+ VN

∂VN

∂n
+ VB

∂VN

∂b
, (12)

CAB =
u

h

(
∂VB

∂s
+ τVN

)
+ VB

∂VB

∂b
+ VN

∂VB

∂n
, (13)

CFN = −κu2

h
, CFB = 0, (14)

PGN = −1
ρ

∂p

∂n
, PGB = −1

ρ

∂p

∂b
, (15)

where VB = v cos (θ + φ)−w sin (θ + φ) is the component of the secondary motion in the direction
of B, n = −r sin (θ + φ) the coordinate in the direction of N, and b = r cos (θ + φ) the coordinate
in the direction of B. We now define the torsional forces TFN and TFB,

TFN =
τu

h
VB, (16)

TFB = −τu

h
VN , (17)

and the local convective accelerations CA′
N and CA′

B

CA′
N =

u

h

∂VN

∂s
+ VN

∂VN

∂n
+ VB

∂VN

∂b
, (18)

CA′
B =

u

h

∂VB

∂s
+ VB

∂VB

∂b
+ VN

∂VB

∂n
, (19)

so that we are left with the following balance of in-plane momentum

CA′
N = CFN + TFN + PGN + VFN , (20)

CA′
B = TFB + PGB + VFB. (21)

Note that direct projection of the Cartesian convective acceleration, pressure gradient force
and viscous force onto T, N and B leads to (CAs−Co, PGs, VFs), (CA′

N −CFN −TFN , PGN ,
VFN ), and (CA′

B − TFB, PGB, VFB), respectively, but it does not separate the convective
acceleration from the inertia forces Co, CFN , TFN and TFB, which depend on κ and τ explicitly.
We will use these forces to quantify the effect of κ and τ on flow patterns.
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VFN ), and (CAB + CFB, PGB, VFB), respectively. However, this approach does not provide
the Coriolis and centrifugal forces, which are necessary for quantifying the effect of the vessel
geometry on the fluid dynamics at each cross section along the centerline. The explicit evaluation
of these local forces requires the calculation in the local coordinates (s, r, θ) of the velocity and
pressure gradient fields, and the spatial derivatives of velocity that appear in Equations (10) to
(12). These calculations are shown in Appendix 1.

3.3 Vorticity and wall shear stress

In incompressible flow, the vorticity ω = ∇×v, v = (u, v, w), in the region of the wall boundaries
is closely related to WSS through

WSS = −νρω × n, (20)

where n is the wall-normal vector. In this work we will express WSS normalised against the
level of shear in a straight pipe at the same Re. The local components of ω are

ωs = ω · T =
1
r

∂(rw)
∂r

− 1
r

∂v

∂θ
, (21)

ωr =
1
rh

[
h

∂u

∂θ
− r

∂w

∂s
+

∂h

∂θ
u
]
, (22)

ωθ =
1
h

[
∂v

∂s
− h

∂u

∂r
− ∂h

∂r
u
]
. (23)

For Poiseuille flow, we have ws = 0, wr = 0, and wθ = 16Ur/D2. We see that ωs is related to
the advection of the secondary motion and it is therefore an indication of the level of in-plane
stirring of the flow.

4 Results

We now study the qualitative and quantitative features of the numerical results obtained in the
geometries of Figures 1 and 2 from a local balance of momentum perspective and focusing on
the role played by the geometry. We study the effect on the prescribed Poiseuille flow of a step
injection of curvature κ and an impulse injection of torsion τ (Section 4.1), a step injection of
both κ and τ (Section 4.2), and an anatomically-correct continuous injection of κ and τ (Section
4.3). In all the models, the errors in the local balances of momentum are of the same order
as the errors in the balance of the Cartesian Navier–Stokes equations. These errors cannot be
appreciated in the scale of Figures ?? to ??.

4.1 Flow patterns in non-planar double bends

The flow patterns developed near the inflow of the first bend (from s = 0 to approximately
s = 4D) are quantitatively the same for the five double bend configurations studied. When the
prescribed Poiseuille flow is forced to turn by the vessel wall of the first bend at s = 2D, each
fluid element experiences a centrifugal force CFN whose magnitude, according to Equation (19),
is larger for the faster moving elements in the core than for the slower moving elements near
the wall, where the no-slip condition must be satisfied (Figure ??a). The wall resists to the
displacement of fluid by CFN by exerting normal and shear stresses on the fluid. The combined
effect of these stresses yields PGN and PGB acting on the fluid (Figure ??b and c). Figure ??
shows that PGN approximately balances CFN near the wall but it is about a quarter of CFN in
the core, and PGB reaches its maximum and minimum values near the wall at azimuthal angles
θ + φ equal to 45, 135, 225 and 315 degrees. The convective accelerations resulting from CFN ,
PGN and PGB yield to the secondary (or transverse) components of velocity shown in Figure

6

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 5: Forces involved in the generation and evolution of the secondary motion in the single
bend. (a) CAs contours (b) The dashed vertical lines indicate he location of the outer (θ + φ =
90◦) and inner parts (θ + φ = 270◦) of the bend.

4 Results

We now study the qualitative and quantitative features of the numerical results obtained in the
geometries of Figures 1 and 2 from a local balance of momentum perspective and focusing on
the role played by the geometry. We first study the effect on the prescribed Poiseuille flow of a
step injection of curvature κ alone (Section 4.1) or combined with an impulse injection of torsion
τ (Section 4.2), then a step injection of both κ and τ (Section 4.3), and finally an anatomically-
correct continuous injection of κ and τ (Section 4.4). In all the models, the errors in the local
balances of momentum are of the same order as the errors in the Cartesian balance, and they
cannot be appreciated in the scale of Figures ?? to 7 and 8. The slices shown in Figures 4 and
5 are orientated perpendicular to T and with the in-plane vectors N and B located as depicted
in Figure 4f.

4.1 Flow patterns in a single double bend

Figure 4 shows the axial and secondary (or transverse) velocities, and the axial vorticity at
several cross-sections along the centerline of the 180◦ configuration in Figure 1 (left). We start
by describing the forces in the direction of N (toward the center of curvature) involved in the
generation of these flow patterns at s = 2D (where the prescribed Poiseuille flow is first forced
to turn by the vessel wall). The centrifugal force CFN (Figure 5a) discontinuously arises due
to the step injection of κ. Its magnitude, according to Equation (19), is larger for the faster
moving elements in the core than for the slower moving elements near the wall (Figure 4a),
where the no-slip condition must be satisfied. The wall resists to the displacement of fluid by
CFN by exerting pressure p and azimuthal shear stress τθ on the fluid (Figure 5m,o). Wall p
is symmetric along N, reaching its maximum and minimum in the outer (θ = 90◦) and inner
(θ = 180◦) parts of the bend, respectively. τθ is maximum at θ = 180◦ and minimum at θ = 0◦

(hereafter referred to as the ‘laterals’ of the bend), being both equal in absolute value. The
combined effect of these stresses yields PGN and PGB acting on the fluid (Figures 5b,c); PGN

approximately balances CFN near the wall but it is about a quarter of CFN in the core, and
PGB reaches its maximum and minimum values on the wall and at θ = 45◦, 135◦, 225◦ and 315◦.
According to Equation (24), τθ also generates the axial vorticity ωs on the wall shown in Figure
4f.

The force field resulting from CFN , PGN and PGB convectively accelerates the fluid elements
producing in-plane (or secondary) motion. From approximately s = 2.1D to s = 12.2D, fluid
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O I

O I

PG

1D
2D

2D

1D

CA′
B =

u

h

∂VB

∂s
+ VB

∂VB

∂b
+ VN

∂VB

∂n
, (18)

so that the balance of in-plane momentum takes the form

CA′
N = CFN + TFN + PGN + VFN , (19)

CA′
B = TFB + PGB + VFB. (20)

It is important to remark that the Cartesian convective acceleration, pressure gradient force
and viscous force yield, respectively, CAs − Co, PGs and VFs when projected onto T, CA′

N −
CFN − TFN , PGN and VFN when projected onto N, and CA′

B − TFB, PGB and VFB when
projected onto B. However, the inertial forces Co, CFN , TFN and TFB, which allow us to
quantify the effect of κ and τ on flow patterns, are not obtained explicitly.

3.3 Cross-sectional averages

Given a field ξ(s, r, θ), we define its cross-sectional average ξ at R(s) as

ξ =
1
S

∫

S
ξdA, (21)

where S(s) is the luminal area normal to the centreline at R(s) and dA = rdrdθ. Hereafter a
line over a field name will refer to its cross-sectional average.

3.4 Vorticity and wall shear stress

The components of the vorticity vector ω = ∇× (u, v, w) in local coordinates are [31]

ωs =
1
r

∂(rw)
∂r

− 1
r

∂v

∂θ
, ωr =

1
rh

[
∂(hu)

∂θ
− r

∂w

∂s

]
, ωθ =

1
h

[
∂v

∂s
− ∂(hu)

∂r

]
.

At the wall surface (r = D/2) we have

ωs|r=D/2 =
∂w

∂r

∣∣∣∣
r=D/2

. (22)

In local coordinates, the axial WSs and circumferential WSθ WSS take the form

WSs = −νρ
∂u

∂r

∣∣∣∣
r=D/2

, WSθ = −νρ
∂w

∂r

∣∣∣∣
r=D/2

,

so that the tangential traction exerted by the wall on the flow is WS = −(WSs, 0, WSθ). For
the incompressible, Newtonian fluid we are considering, WS = νρω × n is satisfied at the wall
surface (r = D/2), where n is the wall normal. This expression leads to

WSs = νρωθ|r=D/2 , WSθ = −νρωs|r=D/2 . (23)

4 Results and discussion

We will first describe and discuss the effect on secondary flows and in-plane forces, including
their averages along the centreline, of the centrifugal force alone (Section 4.1) and combined
with a continuous (Section 4.2) and impulse (Section 4.3) torsional force. We will then focus on
the effect of curvature and torsion on the axial flow (Section 4.4) and the role of the full Coriolis
force 2Co (Section 4.5) and wall stresses (Section 4.6). The cross-sectional contours in Figs. 3,4,
7, 8, 10 are normal to T and have the vectors N and B oriented as depicted in each figure.

In all our computations, the errors in the net balance of mass and momentum in Cartesian
and local coordinates are of the same order and cannot be appreciated in the scales of Figs. 5,
6, 9, 12.
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VFN ), and (CAB + CFB, PGB, VFB), respectively. However, this approach does not provide
the Coriolis and centrifugal forces, which are necessary for quantifying the effect of the vessel
geometry on the fluid dynamics at each cross section along the centerline. The explicit evaluation
of these local forces requires the calculation in the local coordinates (s, r, θ) of the velocity and
pressure gradient fields, and the spatial derivatives of velocity that appear in Equations (10) to
(12). These calculations are shown in Appendix 1.

3.3 Vorticity and wall shear stress

In incompressible flow, the vorticity ω = ∇×v, v = (u, v, w), in the region of the wall boundaries
is closely related to WSS through

WSS = −νρω × n, (20)

where n is the wall-normal vector. In this work we will express WSS normalised against the
level of shear in a straight pipe at the same Re. The local components of ω are

ωs = ω · T =
1
r

∂(rw)
∂r

− 1
r

∂v

∂θ
, (21)

ωr =
1
rh

[
h

∂u

∂θ
− r

∂w

∂s
+

∂h

∂θ
u
]
, (22)

ωθ =
1
h

[
∂v

∂s
− h

∂u

∂r
− ∂h

∂r
u
]
. (23)

For Poiseuille flow, we have ws = 0, wr = 0, and wθ = 16Ur/D2. We see that ωs is related to
the advection of the secondary motion and it is therefore an indication of the level of in-plane
stirring of the flow.

4 Results

We now study the qualitative and quantitative features of the numerical results obtained in the
geometries of Figures 1 and 2 from a local balance of momentum perspective and focusing on
the role played by the geometry. We study the effect on the prescribed Poiseuille flow of a step
injection of curvature κ and an impulse injection of torsion τ (Section 4.1), a step injection of
both κ and τ (Section 4.2), and an anatomically-correct continuous injection of κ and τ (Section
4.3). In all the models, the errors in the local balances of momentum are of the same order
as the errors in the balance of the Cartesian Navier–Stokes equations. These errors cannot be
appreciated in the scale of Figures ?? to ??.

4.1 Flow patterns in non-planar double bends

The flow patterns developed near the inflow of the first bend (from s = 0 to approximately
s = 4D) are quantitatively the same for the five double bend configurations studied. When the
prescribed Poiseuille flow is forced to turn by the vessel wall of the first bend at s = 2D, each
fluid element experiences a centrifugal force CFN whose magnitude, according to Equation (19),
is larger for the faster moving elements in the core than for the slower moving elements near
the wall, where the no-slip condition must be satisfied (Figure ??a). The wall resists to the
displacement of fluid by CFN by exerting normal and shear stresses on the fluid. The combined
effect of these stresses yields PGN and PGB acting on the fluid (Figure ??b and c). Figure ??
shows that PGN approximately balances CFN near the wall but it is about a quarter of CFN in
the core, and PGB reaches its maximum and minimum values near the wall at azimuthal angles
θ + φ equal to 45, 135, 225 and 315 degrees. The convective accelerations resulting from CFN ,
PGN and PGB yield to the secondary (or transverse) components of velocity shown in Figure

6

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 5: Forces involved in the generation and evolution of the secondary motion in the single
bend. (a) CAs contours (b) The dashed vertical lines indicate he location of the outer (θ + φ =
90◦) and inner parts (θ + φ = 270◦) of the bend.

4 Results

We now study the qualitative and quantitative features of the numerical results obtained in the
geometries of Figures 1 and 2 from a local balance of momentum perspective and focusing on
the role played by the geometry. We first study the effect on the prescribed Poiseuille flow of a
step injection of curvature κ alone (Section 4.1) or combined with an impulse injection of torsion
τ (Section 4.2), then a step injection of both κ and τ (Section 4.3), and finally an anatomically-
correct continuous injection of κ and τ (Section 4.4). In all the models, the errors in the local
balances of momentum are of the same order as the errors in the Cartesian balance, and they
cannot be appreciated in the scale of Figures ?? to 7 and 8. The slices shown in Figures 4 and
5 are orientated perpendicular to T and with the in-plane vectors N and B located as depicted
in Figure 4f.

4.1 Flow patterns in a single double bend

Figure 4 shows the axial and secondary (or transverse) velocities, and the axial vorticity at
several cross-sections along the centerline of the 180◦ configuration in Figure 1 (left). We start
by describing the forces in the direction of N (toward the center of curvature) involved in the
generation of these flow patterns at s = 2D (where the prescribed Poiseuille flow is first forced
to turn by the vessel wall). The centrifugal force CFN (Figure 5a) discontinuously arises due
to the step injection of κ. Its magnitude, according to Equation (19), is larger for the faster
moving elements in the core than for the slower moving elements near the wall (Figure 4a),
where the no-slip condition must be satisfied. The wall resists to the displacement of fluid by
CFN by exerting pressure p and azimuthal shear stress τθ on the fluid (Figure 5m,o). Wall p
is symmetric along N, reaching its maximum and minimum in the outer (θ = 90◦) and inner
(θ = 180◦) parts of the bend, respectively. τθ is maximum at θ = 180◦ and minimum at θ = 0◦

(hereafter referred to as the ‘laterals’ of the bend), being both equal in absolute value. The
combined effect of these stresses yields PGN and PGB acting on the fluid (Figures 5b,c); PGN

approximately balances CFN near the wall but it is about a quarter of CFN in the core, and
PGB reaches its maximum and minimum values on the wall and at θ = 45◦, 135◦, 225◦ and 315◦.
According to Equation (24), τθ also generates the axial vorticity ωs on the wall shown in Figure
4f.

The force field resulting from CFN , PGN and PGB convectively accelerates the fluid elements
producing in-plane (or secondary) motion. From approximately s = 2.1D to s = 12.2D, fluid
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VFN ), and (CAB + CFB, PGB, VFB), respectively. However, this approach does not provide
the Coriolis and centrifugal forces, which are necessary for quantifying the effect of the vessel
geometry on the fluid dynamics at each cross section along the centerline. The explicit evaluation
of these local forces requires the calculation in the local coordinates (s, r, θ) of the velocity and
pressure gradient fields, and the spatial derivatives of velocity that appear in Equations (10) to
(12). These calculations are shown in Appendix 1.

3.3 Vorticity and wall shear stress

In incompressible flow, the vorticity ω = ∇×v, v = (u, v, w), in the region of the wall boundaries
is closely related to WSS through

WSS = −νρω × n, (20)

where n is the wall-normal vector. In this work we will express WSS normalised against the
level of shear in a straight pipe at the same Re. The local components of ω are

ωs = ω · T =
1
r

∂(rw)
∂r

− 1
r

∂v

∂θ
, (21)

ωr =
1
rh

[
h

∂u

∂θ
− r

∂w

∂s
+

∂h

∂θ
u
]
, (22)

ωθ =
1
h

[
∂v

∂s
− h

∂u

∂r
− ∂h

∂r
u
]
. (23)

For Poiseuille flow, we have ws = 0, wr = 0, and wθ = 16Ur/D2. We see that ωs is related to
the advection of the secondary motion and it is therefore an indication of the level of in-plane
stirring of the flow.

4 Results

We now study the qualitative and quantitative features of the numerical results obtained in the
geometries of Figures 1 and 2 from a local balance of momentum perspective and focusing on
the role played by the geometry. We study the effect on the prescribed Poiseuille flow of a step
injection of curvature κ and an impulse injection of torsion τ (Section 4.1), a step injection of
both κ and τ (Section 4.2), and an anatomically-correct continuous injection of κ and τ (Section
4.3). In all the models, the errors in the local balances of momentum are of the same order
as the errors in the balance of the Cartesian Navier–Stokes equations. These errors cannot be
appreciated in the scale of Figures ?? to ??.

4.1 Flow patterns in non-planar double bends

The flow patterns developed near the inflow of the first bend (from s = 0 to approximately
s = 4D) are quantitatively the same for the five double bend configurations studied. When the
prescribed Poiseuille flow is forced to turn by the vessel wall of the first bend at s = 2D, each
fluid element experiences a centrifugal force CFN whose magnitude, according to Equation (19),
is larger for the faster moving elements in the core than for the slower moving elements near
the wall, where the no-slip condition must be satisfied (Figure ??a). The wall resists to the
displacement of fluid by CFN by exerting normal and shear stresses on the fluid. The combined
effect of these stresses yields PGN and PGB acting on the fluid (Figure ??b and c). Figure ??
shows that PGN approximately balances CFN near the wall but it is about a quarter of CFN in
the core, and PGB reaches its maximum and minimum values near the wall at azimuthal angles
θ + φ equal to 45, 135, 225 and 315 degrees. The convective accelerations resulting from CFN ,
PGN and PGB yield to the secondary (or transverse) components of velocity shown in Figure

6
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(g) (h) (i) (j) (k) (l)

Figure 5: Forces involved in the generation and evolution of the secondary motion in the single
bend. (a) CAs contours (b) The dashed vertical lines indicate he location of the outer (θ + φ =
90◦) and inner parts (θ + φ = 270◦) of the bend.

4 Results

We now study the qualitative and quantitative features of the numerical results obtained in the
geometries of Figures 1 and 2 from a local balance of momentum perspective and focusing on
the role played by the geometry. We first study the effect on the prescribed Poiseuille flow of a
step injection of curvature κ alone (Section 4.1) or combined with an impulse injection of torsion
τ (Section 4.2), then a step injection of both κ and τ (Section 4.3), and finally an anatomically-
correct continuous injection of κ and τ (Section 4.4). In all the models, the errors in the local
balances of momentum are of the same order as the errors in the Cartesian balance, and they
cannot be appreciated in the scale of Figures ?? to 7 and 8. The slices shown in Figures 4 and
5 are orientated perpendicular to T and with the in-plane vectors N and B located as depicted
in Figure 4f.

4.1 Flow patterns in a single double bend

Figure 4 shows the axial and secondary (or transverse) velocities, and the axial vorticity at
several cross-sections along the centerline of the 180◦ configuration in Figure 1 (left). We start
by describing the forces in the direction of N (toward the center of curvature) involved in the
generation of these flow patterns at s = 2D (where the prescribed Poiseuille flow is first forced
to turn by the vessel wall). The centrifugal force CFN (Figure 5a) discontinuously arises due
to the step injection of κ. Its magnitude, according to Equation (19), is larger for the faster
moving elements in the core than for the slower moving elements near the wall (Figure 4a),
where the no-slip condition must be satisfied. The wall resists to the displacement of fluid by
CFN by exerting pressure p and azimuthal shear stress τθ on the fluid (Figure 5m,o). Wall p
is symmetric along N, reaching its maximum and minimum in the outer (θ = 90◦) and inner
(θ = 180◦) parts of the bend, respectively. τθ is maximum at θ = 180◦ and minimum at θ = 0◦

(hereafter referred to as the ‘laterals’ of the bend), being both equal in absolute value. The
combined effect of these stresses yields PGN and PGB acting on the fluid (Figures 5b,c); PGN

approximately balances CFN near the wall but it is about a quarter of CFN in the core, and
PGB reaches its maximum and minimum values on the wall and at θ = 45◦, 135◦, 225◦ and 315◦.
According to Equation (24), τθ also generates the axial vorticity ωs on the wall shown in Figure
4f.

The force field resulting from CFN , PGN and PGB convectively accelerates the fluid elements
producing in-plane (or secondary) motion. From approximately s = 2.1D to s = 12.2D, fluid
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3.4 Vorticity and wall shear stress

The components of the vorticity vector ω = ∇× (u, v, w) in local coordinates are [29]

ωs = ω · T =
1
r

∂(rw)
∂r

− 1
r

∂v

∂θ
,

ωr =
1
rh

[
∂(hu)

∂θ
− r

∂w

∂s

]
,

ωθ =
1
h

[
∂v

∂s
− ∂(hu)

∂r

]
,

which reduce to (ws, wr, wθ) = (0, 0, 16Ur/D2) for Poiseuille flow.
In local coordinates, the WSS has an axial WSs and circumferential WSθ components. They

take the form
WSs = −νρ

∂u

∂r

∣∣∣∣
r=D/2

, WSθ = −νρ
∂w

∂r

∣∣∣∣
r=D/2

,

so that the tangential traction by the wall on the flow is WS = −(WSs, 0, WSθ). For the
incompressible, Newtonian fluid we are considering, WS = νρω × n is satisfied at the wall
surface (r = D/2), where n is the wall normal. This expression leads to

WSs = νρωθ|r=D/2 , WSθ = −νρωs|r=D/2 . (17)

4 Results and discussion

The centreline analysis was applied to study the steady flow fields simulated in the geometries
shown in Figures 1 and 2. We first present the results obtained in the single (Section 4.1) and
double (Section 4.2) bends, in which a step injection of κ occurs alone or combined with an
impulse injection of τ , respectively. We then present the results in the helical bends (Section
4.3), in which a step injection of both κ and τ occurs. Finally, we present the results in the
anatomically-correct geometry (Section 4.4), in which κ and τ are continuously injected.

In all the cases, the errors in the balance of momentum in Cartesian and local coordinates
were of the same order and could not be appreciated in the scales of Figures 4, 10 and 11. The
slices shown in Figures 5 to 8 are perpendicular to T (observed from downstream to upstream)
and have the in-plane vectors N and B orientated as depicted in Figure 5j.

The velocities, accelerations and forces in the idealised geometries will be compared with
the corresponding quantities calculated from the fully-developed Cartesian velocities driven by
a steady pressure gradient in a uniformly curved pipe with the same Re and De numbers,
simulated using the method described in [13].

4.1 Flow patterns in the planar single bend

Secondary flows in the planar single bend (Figure 1, left) and the local forces and accelerations
that generate and develop them are symmetrical along N, as Figures 5 to 9 show at several cross-
sections for Re = 125 and De = 353.6. Their components in the direction of B are antisymmetric
along N. Consequently, the cross-sectional averages CFN , PGN , CAN , VFN and V N are, in
general, non-zero throughout the bend, and PGB, CAB, VFB and V B are zero. Moreover, CAN

is approximately proportional to ∂V N
∂s for Re = 50, 125, 250, 375 and 500. This is in agreement

with Equation (12), since (i) τ = 0, (ii) VN
∂VN
∂n and VB

∂VN
∂b are negligible compared to u

h
∂VN
∂s

and (iii) u
h

∂VN
∂s is approximately proportional to ∂V N

∂s . Therefore, the pattern of V N is mainly
governed by CFN , PGN and VFN .

Although the Poiseuille inflow is first forced to turn by the wall at s = 2D, Figure 4 shows,
at different Re numbers, that a centripetal (in the direction of N and toward the centre of
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N

PG
B

u

s=2D

s=6D

VF
N

VFN ), and (CAB + CFB, PGB, VFB), respectively. However, this approach does not provide
the Coriolis and centrifugal forces, which are necessary for quantifying the effect of the vessel
geometry on the fluid dynamics at each cross section along the centerline. The explicit evaluation
of these local forces requires the calculation in the local coordinates (s, r, θ) of the velocity and
pressure gradient fields, and the spatial derivatives of velocity that appear in Equations (10) to
(12). These calculations are shown in Appendix 1.

3.3 Vorticity and wall shear stress

In incompressible flow, the vorticity ω = ∇×v, v = (u, v, w), in the region of the wall boundaries
is closely related to WSS through

WSS = −νρω × n, (20)

where n is the wall-normal vector. In this work we will express WSS normalised against the
level of shear in a straight pipe at the same Re. The local components of ω are

ωs = ω · T =
1
r

∂(rw)
∂r

− 1
r

∂v

∂θ
, (21)

ωr =
1
rh

[
h

∂u

∂θ
− r

∂w

∂s
+

∂h

∂θ
u
]
, (22)

ωθ =
1
h

[
∂v

∂s
− h

∂u

∂r
− ∂h

∂r
u
]
. (23)

For Poiseuille flow, we have ws = 0, wr = 0, and wθ = 16Ur/D2. We see that ωs is related to
the advection of the secondary motion and it is therefore an indication of the level of in-plane
stirring of the flow.

4 Results

We now study the qualitative and quantitative features of the numerical results obtained in the
geometries of Figures 1 and 2 from a local balance of momentum perspective and focusing on
the role played by the geometry. We study the effect on the prescribed Poiseuille flow of a step
injection of curvature κ and an impulse injection of torsion τ (Section 4.1), a step injection of
both κ and τ (Section 4.2), and an anatomically-correct continuous injection of κ and τ (Section
4.3). In all the models, the errors in the local balances of momentum are of the same order
as the errors in the balance of the Cartesian Navier–Stokes equations. These errors cannot be
appreciated in the scale of Figures ?? to ??.

4.1 Flow patterns in non-planar double bends

The flow patterns developed near the inflow of the first bend (from s = 0 to approximately
s = 4D) are quantitatively the same for the five double bend configurations studied. When the
prescribed Poiseuille flow is forced to turn by the vessel wall of the first bend at s = 2D, each
fluid element experiences a centrifugal force CFN whose magnitude, according to Equation (19),
is larger for the faster moving elements in the core than for the slower moving elements near
the wall, where the no-slip condition must be satisfied (Figure ??a). The wall resists to the
displacement of fluid by CFN by exerting normal and shear stresses on the fluid. The combined
effect of these stresses yields PGN and PGB acting on the fluid (Figure ??b and c). Figure ??
shows that PGN approximately balances CFN near the wall but it is about a quarter of CFN in
the core, and PGB reaches its maximum and minimum values near the wall at azimuthal angles
θ + φ equal to 45, 135, 225 and 315 degrees. The convective accelerations resulting from CFN ,
PGN and PGB yield to the secondary (or transverse) components of velocity shown in Figure

6

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 5: Forces involved in the generation and evolution of the secondary motion in the single
bend. (a) CAs contours (b) The dashed vertical lines indicate he location of the outer (θ + φ =
90◦) and inner parts (θ + φ = 270◦) of the bend.

4 Results

We now study the qualitative and quantitative features of the numerical results obtained in the
geometries of Figures 1 and 2 from a local balance of momentum perspective and focusing on
the role played by the geometry. We first study the effect on the prescribed Poiseuille flow of a
step injection of curvature κ alone (Section 4.1) or combined with an impulse injection of torsion
τ (Section 4.2), then a step injection of both κ and τ (Section 4.3), and finally an anatomically-
correct continuous injection of κ and τ (Section 4.4). In all the models, the errors in the local
balances of momentum are of the same order as the errors in the Cartesian balance, and they
cannot be appreciated in the scale of Figures ?? to 7 and 8. The slices shown in Figures 4 and
5 are orientated perpendicular to T and with the in-plane vectors N and B located as depicted
in Figure 4f.

4.1 Flow patterns in a single double bend

Figure 4 shows the axial and secondary (or transverse) velocities, and the axial vorticity at
several cross-sections along the centerline of the 180◦ configuration in Figure 1 (left). We start
by describing the forces in the direction of N (toward the center of curvature) involved in the
generation of these flow patterns at s = 2D (where the prescribed Poiseuille flow is first forced
to turn by the vessel wall). The centrifugal force CFN (Figure 5a) discontinuously arises due
to the step injection of κ. Its magnitude, according to Equation (19), is larger for the faster
moving elements in the core than for the slower moving elements near the wall (Figure 4a),
where the no-slip condition must be satisfied. The wall resists to the displacement of fluid by
CFN by exerting pressure p and azimuthal shear stress τθ on the fluid (Figure 5m,o). Wall p
is symmetric along N, reaching its maximum and minimum in the outer (θ = 90◦) and inner
(θ = 180◦) parts of the bend, respectively. τθ is maximum at θ = 180◦ and minimum at θ = 0◦

(hereafter referred to as the ‘laterals’ of the bend), being both equal in absolute value. The
combined effect of these stresses yields PGN and PGB acting on the fluid (Figures 5b,c); PGN

approximately balances CFN near the wall but it is about a quarter of CFN in the core, and
PGB reaches its maximum and minimum values on the wall and at θ = 45◦, 135◦, 225◦ and 315◦.
According to Equation (24), τθ also generates the axial vorticity ωs on the wall shown in Figure
4f.

The force field resulting from CFN , PGN and PGB convectively accelerates the fluid elements
producing in-plane (or secondary) motion. From approximately s = 2.1D to s = 12.2D, fluid
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Figure 4: Cross-sectional averages CA′
N , CA′

B (dashed lines), ∂VN
∂s and ∂VB

∂s (solid lines) along the
centreline of (a) the single bend, (b) double bend with a 90◦ azimuthal angle, and (c) helical bend with a
pitch length of 5D in Figure 1 at Re = 125. They were nondimensionalised by their maximum values and
are shown in black in the N–direction and in red in the B–direction. The dashed vertical lines indicate
the start and end of the curved regions.
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start and end of the curved region.

negligible compared to u
h

∂VN
∂s and (ii) u

h
∂VN
∂s is approximately proportional to ∂VN

∂s . Therefore,
the evolution of VN with s is mainly governed by CFN , PGN and VFN at Re ∈ [50, 500].

Although the Poiseuille inflow is first forced to turn by the wall at s = 2D, Figure 5 shows, at
different Re, that a centripetal (in the direction of N and toward the centre of curvature) PGN

gradually develops about s = D to anticipate the opposition to the discontinuous appearance
of CFN at s = 2D. Moreover, PGN starts vanishing before the end of the bend at s = 8.3D
to anticipate the discontinuous disappearance of CFN . For any s, VFN is centrifugal (in the
direction of N and away from the centre of curvature) and approximately 20% of −PGN at
Re = 50, 16% at Re = 125, 13% at Re = 250, 11% at Re = 375, and 10% at Re = 500. Using
the asymptotic model developed in [16] we obtained zero VN and CAN , and PGN = CFN +VFN

(Table 1) when the flow is fully developed and driven by a steady pressure gradient in an
uniformly curved pipe with the same Re and De numbers as in our single bend.

The results shown in Figures 4a, and 5 and Table 1 suggest that CAN and VN play the role
of the acceleration and velocity, respectively, of an under-damped oscillator around the fully-
developed state, with CFN the driving force, PGN the restoring force, and VFN a dissipative
force opposing PGN . With increasing Re the opposition of VFN decreases, but CFN becomes
stronger. As a result, CAN and VN oscillate with greater amplitudes around the fully-developed
state, so that it takes a longer distance for PGN to dump the oscillations of CAN and achieve
the equilibrium fully-developed state in the bend.

According to Yao and Berger [36], the entry length for a steady flow with a uniformly
distributed velocity at the entrance of a uniformly curved pipe is e1Re1/2(κD/2)−1/40.5D. For
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CAN ∼ ∂VN

∂s

CAB ∼
∂VB

∂s

Re=125

CA′
B =

u

h

∂VB

∂s
+ VB

∂VB

∂b
+ VN

∂VB

∂n
, (18)

so that the balance of in-plane momentum takes the form

CA′
N = CFN + TFN + PGN + VFN , (19)

CA′
B = TFB + PGB + VFB. (20)

It is important to remark that the Cartesian convective acceleration, pressure gradient force
and viscous force yield, respectively, CAs − Co, PGs and VFs when projected onto T, CA′

N −
CFN − TFN , PGN and VFN when projected onto N, and CA′

B − TFB, PGB and VFB when
projected onto B. However, the inertial forces Co, CFN , TFN and TFB, which allow us to
quantify the effect of κ and τ on flow patterns, are not obtained explicitly.

3.3 Cross-sectional averages

Given a field ξ(s, r, θ), we define its cross-sectional average ξ at R(s) as

ξ =
1
S

∫

S
ξdA, (21)

where S(s) is the luminal area normal to the centreline at R(s) and dA = rdrdθ. Hereafter a
line over a field name will refer to its cross-sectional average.

3.4 Vorticity and wall shear stress

The components of the vorticity vector ω = ∇× (u, v, w) in local coordinates are [31]

ωs =
1
r

∂(rw)
∂r

− 1
r

∂v

∂θ
, ωr =

1
rh

[
∂(hu)

∂θ
− r

∂w

∂s

]
, ωθ =

1
h

[
∂v

∂s
− ∂(hu)

∂r

]
.

At the wall surface (r = D/2) we have

ωs|r=D/2 =
∂w

∂r

∣∣∣∣
r=D/2

. (22)

In local coordinates, the axial WSs and circumferential WSθ WSS take the form

WSs = −νρ
∂u

∂r

∣∣∣∣
r=D/2

, WSθ = −νρ
∂w

∂r

∣∣∣∣
r=D/2

,

so that the tangential traction exerted by the wall on the flow is WS = −(WSs, 0, WSθ). For
the incompressible, Newtonian fluid we are considering, WS = νρω × n is satisfied at the wall
surface (r = D/2), where n is the wall normal. This expression leads to

WSs = νρωθ|r=D/2 , WSθ = −νρωs|r=D/2 . (23)

4 Results and discussion

We will first describe and discuss the effect on secondary flows and in-plane forces, including
their averages along the centreline, of the centrifugal force alone (Section 4.1) and combined
with a continuous (Section 4.2) and impulse (Section 4.3) torsional force. We will then focus on
the effect of curvature and torsion on the axial flow (Section 4.4) and the role of the full Coriolis
force 2Co (Section 4.5) and wall stresses (Section 4.6). The cross-sectional contours in Figs. 3,4,
7, 8, 10 are normal to T and have the vectors N and B oriented as depicted in each figure.

In all our computations, the errors in the net balance of mass and momentum in Cartesian
and local coordinates are of the same order and cannot be appreciated in the scales of Figs. 5,
6, 9, 12.
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It is important to remark that the Cartesian convective acceleration, pressure gradient force
and viscous force yield, respectively, CAs − Co, PGs and VFs when projected onto T, CA′

N −
CFN − TFN , PGN and VFN when projected onto N, and CA′

B − TFB, PGB and VFB when
projected onto B. However, the inertial forces Co, CFN , TFN and TFB, which allow us to
quantify the effect of κ and τ on flow patterns, are not obtained explicitly.

3.3 Cross-sectional averages

Given a field ξ(s, r, θ), we define its cross-sectional average ξ at R(s) as

ξ =
1
S

∫

S
ξdA, (21)
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The components of the vorticity vector ω = ∇× (u, v, w) in local coordinates are [31]
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,

so that the tangential traction exerted by the wall on the flow is WS = −(WSs, 0, WSθ). For
the incompressible, Newtonian fluid we are considering, WS = νρω × n is satisfied at the wall
surface (r = D/2), where n is the wall normal. This expression leads to

WSs = νρωθ|r=D/2 , WSθ = −νρωs|r=D/2 . (23)

4 Results and discussion

We will first describe and discuss the effect on secondary flows and in-plane forces, including
their averages along the centreline, of the centrifugal force alone (Section 4.1) and combined
with a continuous (Section 4.2) and impulse (Section 4.3) torsional force. We will then focus on
the effect of curvature and torsion on the axial flow (Section 4.4) and the role of the full Coriolis
force 2Co (Section 4.5) and wall stresses (Section 4.6). The cross-sectional contours in Figs. 3,4,
7, 8, 10 are normal to T and have the vectors N and B oriented as depicted in each figure.

In all our computations, the errors in the net balance of mass and momentum in Cartesian
and local coordinates are of the same order and cannot be appreciated in the scales of Figs. 5,
6, 9, 12.
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Poiseuille
inflow

To understand the physical meaning of Co, which arises from κ (as do CFr and CFθ), we
transform the velocity field V = (u, v, w) at a particular R(s) to a coordinate system rotating
with angular velocity Ω = Ω(s, r, θ)B about C. The velocity components of a fluid element at
a particular (s, r, θ) with respect to this coordinate system are (û, v, w), with u = û + hκ−1Ω.
Substitution of this expression for u into CAs and Co in Eq. (5) yields

CAs(u) = CAs(û)− ΩVN +
Ω
κ

[
∂û

∂s
+ u

∂

∂s
(lnh− lnκ)

]
+

h

κ
DΩ, (8)

Co(u) = Co(û) + ΩVN , (9)

where VN = −v sin (θ + φ) − w cos (θ + φ) is the component of the secondary motion in the
direction of N with respect to both the rotating and local frames. The term ΩVN in Eqs. (8)
and (9) satisfies ΩVNT = −Ω×VN, VN = VNN. If we chose Ω = uκh−1, then û = 0 (i.e. the
rotating frame is moving with the local axial velocity u at a particular (s, r, θ)) and

CAs(u) = −ΩVN +
u2

h

∂

∂s
(lnh− lnκ) +

h

κ
DΩ, (10)

Co(u) = ΩVN . (11)

Eq. (11) shows that CoT = −Ω × VN; i.e. Co is half of the usual Coriolis force per unit of
mass arising from κ, VN and u. The other half arises from CAs according to Eq. (10).

Eqs. (4) to (7) reduce to the continuity and Navier–Stokes equations in toroidal coordinates
if τ = 0 and κ is constant, and in cylindrical coordinates if τ = 0 and κ = 0.

3.2 Forces and accelerations in the direction of T, N and B

We will analyse the forces, accelerations and velocities in the direction of T, N and B to inves-
tigate mechanisms underlying flow patterns in curved vessels. The local forces and acceleration
in Eq. (5) have the direction of T, since as = T. To obtain these quantities in the direction
of N (CAN , CFN , PGN and VFN ) and B (CAB, CFB, PGB and VFB) we need to project the
terms in Eqs. (6) and (7) onto N and B; i.e.

ξN = −ξr sin (θ + φ)− ξθ cos (θ + φ),

ξB = ξr cos (θ + φ)− ξθ sin (θ + φ),

with ξ = CA, CF, PG or VF. These projections lead to

CAN =
u

h

(
∂VN

∂s
− τVB

)
+ VN

∂VN

∂n
+ VB

∂VN

∂b
, (12)

CAB =
u

h

(
∂VB

∂s
+ τVN

)
+ VB

∂VB

∂b
+ VN

∂VB

∂n
, (13)

CFN = −κu2

h
, CFB = 0, (14)

PGN = −1
ρ

∂p

∂n
, PGB = −1

ρ

∂p

∂b
, (15)

where VB = v cos (θ + φ)−w sin (θ + φ) is the component of the secondary motion in the direction
of B, n = −r sin (θ + φ) a coordinate in the direction of N, and b = r cos (θ + φ) a coordinate
in the direction of B. We now define the local torsional force TF = (0,TFN ,TFB) with

TFN =
τu

h
VB, TFB = −τu

h
VN , (16)

and convective accelerations CA′
N and CA′

B,

CA′
N =

u

h

∂VN

∂s
+ VN

∂VN

∂n
+ VB

∂VN

∂b
, (17)

5 B, VB

N, VN

T, u
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Figure 1: Single and double bends (left) and helical bends (right) studied, with a constant circular
cross-section, a diameter D, and centrelines highlighted in dashed lines. The local versor N is depicted
at some locations and the value of the arc length s is shown at the extremes of lines and curves. In
straight regions, N was considered to have the same direction as in its adjacent curved region. (left)
The curvature of each bend is κ = 1

2D and the azimuthal angles between the plane of curvature of each
bend are indicated in degrees. (Modified from [24].) (right) The centrelines have a fixed helical radius of
0.125D and a pitch length of 3D and 5D.

11, 12, 13, 14, 15, 16, 17, 18]) or helical tubes of constant curvature and torsion (e.g. [14, 19, 20,
21, 22]). In particular regimes, researchers in the applied-mathematics community have reduced
the data to a handful of parameters by constructing asymptotic solutions ([7, 8, 19, 14, 16]).
However, without full knowledge of the details of the flow, the validity of the assumptions of
these flows is unknown. And even less well understood are the mechanisms responsible for the
complex flow phenomena observed in the sequences of non-planar bends with varying curvature
and torsion found in the arterial vasculature [17, 23, 24]. In these cases, the complexity of the
equations for the physiologically relevant range of parameters renders theoretical analysis rather
intractable.

Current numerical models and anatomical reconstruction techniques allow us to accurately
simulate haemodynamics in three-dimensional (3-D) patient-specific geometries. These simula-
tions are usually performed in localised areas of the arterial system (e.g. [25, 26, 27]), although
more recently within larger arterial networks [28]. Such simulations provide insight into clini-
cally relevant fluid dynamics, but unfortunately they often produce such large quantities of data
that they are unlikely to be of practical use in a clinical setting.

The aim of this work is to reduce the amount of data whilst retaining the important flow
features in order to investigate the effect of vascular geometry on the forces that govern the
generation and evolution of primary and secondary (in-plane) flows in curved vessels and their
association with axial velocity profiles, vortical structures and WSS distributions. For a given
vascular geometry, we express the Navier–Stokes and continuity equations in a centreline (local)
coordinate system. This allows us to decompose the effects of the geometry on the blood flow into
components: inertia (centrifugal, torsional and Coriolis), pressure and viscous forces and local
accelerations. Taking cross-sectional averages of these local quantities reduces the dynamics of
the system onto the vessel centreline.

We will first use this technique to investigate flow patterns in the idealised planar and non-
planar bends shown in Figure 1 (left), which loosely model, neglecting branches, the aortic arch
(135◦ case), the intracranial segment of the internal carotid artery (180◦ case), and a bypass
graft in a peripheral vessel with the proximal branch of the host vessel occluded (all the cases).
The small amplitude helical tubes in Figure 1 (right) will also be considered, since they have
been recently investigated for potential application as vascular protheses due to their favorable
in-plane mixing properties [4, 22]. All these geometries retain the dominant features of flow
structures while significantly reducing the number of parameters that define the problem [29].
The knowledge gained from these studies will then be applied to analyse the flow patterns in
the anatomically-correct carotid syphon shown in Figure 2.
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Figure 4: Cross-sectional averages CA′
N , CA′

B (dashed lines), ∂VN
∂s and ∂VB

∂s (solid lines) along the
centreline of (a) the single bend, (b) double bend with a 90◦ azimuthal angle, and (c) helical bend with a
pitch length of 5D in Figure 1 at Re = 125. They were nondimensionalised by their maximum values and
are shown in black in the N–direction and in red in the B–direction. The dashed vertical lines indicate
the start and end of the curved regions.
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Figure 5: Cross-sectional averages CAN = CA′
N , −CFN , PGN , VFN and VN along the centreline of the

single bend in Figure 1 (left) at (a) Re = 125, (b) 250 and (c) 500. The dashed vertical lines indicate the
start and end of the curved region.

negligible compared to u
h

∂VN
∂s and (ii) u

h
∂VN
∂s is approximately proportional to ∂VN

∂s . Therefore,
the evolution of VN with s is mainly governed by CFN , PGN and VFN at Re ∈ [50, 500].

Although the Poiseuille inflow is first forced to turn by the wall at s = 2D, Figure 5 shows, at
different Re, that a centripetal (in the direction of N and toward the centre of curvature) PGN

gradually develops about s = D to anticipate the opposition to the discontinuous appearance
of CFN at s = 2D. Moreover, PGN starts vanishing before the end of the bend at s = 8.3D
to anticipate the discontinuous disappearance of CFN . For any s, VFN is centrifugal (in the
direction of N and away from the centre of curvature) and approximately 20% of −PGN at
Re = 50, 16% at Re = 125, 13% at Re = 250, 11% at Re = 375, and 10% at Re = 500. Using
the asymptotic model developed in [16] we obtained zero VN and CAN , and PGN = CFN +VFN

(Table 1) when the flow is fully developed and driven by a steady pressure gradient in an
uniformly curved pipe with the same Re and De numbers as in our single bend.

The results shown in Figures 4a, and 5 and Table 1 suggest that CAN and VN play the role
of the acceleration and velocity, respectively, of an under-damped oscillator around the fully-
developed state, with CFN the driving force, PGN the restoring force, and VFN a dissipative
force opposing PGN . With increasing Re the opposition of VFN decreases, but CFN becomes
stronger. As a result, CAN and VN oscillate with greater amplitudes around the fully-developed
state, so that it takes a longer distance for PGN to dump the oscillations of CAN and achieve
the equilibrium fully-developed state in the bend.

According to Yao and Berger [36], the entry length for a steady flow with a uniformly
distributed velocity at the entrance of a uniformly curved pipe is e1Re1/2(κD/2)−1/40.5D. For
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Figure 4: Cross-sectional averages CA′
N , CA′

B (dashed lines), ∂VN
∂s and ∂VB

∂s (solid lines) along the
centreline of (a) the single bend, (b) double bend with a 90◦ azimuthal angle, and (c) helical bend with a
pitch length of 5D in Figure 1 at Re = 125. They were nondimensionalised by their maximum values and
are shown in black in the N–direction and in red in the B–direction. The dashed vertical lines indicate
the start and end of the curved regions.
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Figure 5: Cross-sectional averages CAN = CA′
N , −CFN , PGN , VFN and VN along the centreline of the

single bend in Figure 1 (left) at (a) Re = 125, (b) 250 and (c) 500. The dashed vertical lines indicate the
start and end of the curved region.

negligible compared to u
h

∂VN
∂s and (ii) u

h
∂VN
∂s is approximately proportional to ∂VN

∂s . Therefore,
the evolution of VN with s is mainly governed by CFN , PGN and VFN at Re ∈ [50, 500].

Although the Poiseuille inflow is first forced to turn by the wall at s = 2D, Figure 5 shows, at
different Re, that a centripetal (in the direction of N and toward the centre of curvature) PGN

gradually develops about s = D to anticipate the opposition to the discontinuous appearance
of CFN at s = 2D. Moreover, PGN starts vanishing before the end of the bend at s = 8.3D
to anticipate the discontinuous disappearance of CFN . For any s, VFN is centrifugal (in the
direction of N and away from the centre of curvature) and approximately 20% of −PGN at
Re = 50, 16% at Re = 125, 13% at Re = 250, 11% at Re = 375, and 10% at Re = 500. Using
the asymptotic model developed in [16] we obtained zero VN and CAN , and PGN = CFN +VFN

(Table 1) when the flow is fully developed and driven by a steady pressure gradient in an
uniformly curved pipe with the same Re and De numbers as in our single bend.

The results shown in Figures 4a, and 5 and Table 1 suggest that CAN and VN play the role
of the acceleration and velocity, respectively, of an under-damped oscillator around the fully-
developed state, with CFN the driving force, PGN the restoring force, and VFN a dissipative
force opposing PGN . With increasing Re the opposition of VFN decreases, but CFN becomes
stronger. As a result, CAN and VN oscillate with greater amplitudes around the fully-developed
state, so that it takes a longer distance for PGN to dump the oscillations of CAN and achieve
the equilibrium fully-developed state in the bend.

According to Yao and Berger [36], the entry length for a steady flow with a uniformly
distributed velocity at the entrance of a uniformly curved pipe is e1Re1/2(κD/2)−1/40.5D. For
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Numerical model & methodologyNumerical model & methodology

!  A curvature conforming, high order mesh generation was applied to accurately represent

the geometry.

! The 3-D computational simulation of the flows was performed using an incompressible

Navier-Stokes solver called Nektar which is basis on a spectral/hp element method.
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Figure 1: Single and double bends (left) and helical bends (right) studied, with a constant circular
cross-section, a diameter D, and centrelines highlighted in dashed lines. The local versor N is depicted
at some locations and the value of the arc length s is shown at the extremes of lines and curves. In
straight regions, N was considered to have the same direction as in its adjacent curved region. (left)
The curvature of each bend is κ = 1

2D and the azimuthal angles between the plane of curvature of each
bend are indicated in degrees. (Modified from [24].) (right) The centrelines have a fixed helical radius of
0.125D and a pitch length of 3D and 5D.

11, 12, 13, 14, 15, 16, 17, 18]) or helical tubes of constant curvature and torsion (e.g. [14, 19, 20,
21, 22]). In particular regimes, researchers in the applied-mathematics community have reduced
the data to a handful of parameters by constructing asymptotic solutions ([7, 8, 19, 14, 16]).
However, without full knowledge of the details of the flow, the validity of the assumptions of
these flows is unknown. And even less well understood are the mechanisms responsible for the
complex flow phenomena observed in the sequences of non-planar bends with varying curvature
and torsion found in the arterial vasculature [17, 23, 24]. In these cases, the complexity of the
equations for the physiologically relevant range of parameters renders theoretical analysis rather
intractable.

Current numerical models and anatomical reconstruction techniques allow us to accurately
simulate haemodynamics in three-dimensional (3-D) patient-specific geometries. These simula-
tions are usually performed in localised areas of the arterial system (e.g. [25, 26, 27]), although
more recently within larger arterial networks [28]. Such simulations provide insight into clini-
cally relevant fluid dynamics, but unfortunately they often produce such large quantities of data
that they are unlikely to be of practical use in a clinical setting.

The aim of this work is to reduce the amount of data whilst retaining the important flow
features in order to investigate the effect of vascular geometry on the forces that govern the
generation and evolution of primary and secondary (in-plane) flows in curved vessels and their
association with axial velocity profiles, vortical structures and WSS distributions. For a given
vascular geometry, we express the Navier–Stokes and continuity equations in a centreline (local)
coordinate system. This allows us to decompose the effects of the geometry on the blood flow into
components: inertia (centrifugal, torsional and Coriolis), pressure and viscous forces and local
accelerations. Taking cross-sectional averages of these local quantities reduces the dynamics of
the system onto the vessel centreline.

We will first use this technique to investigate flow patterns in the idealised planar and non-
planar bends shown in Figure 1 (left), which loosely model, neglecting branches, the aortic arch
(135◦ case), the intracranial segment of the internal carotid artery (180◦ case), and a bypass
graft in a peripheral vessel with the proximal branch of the host vessel occluded (all the cases).
The small amplitude helical tubes in Figure 1 (right) will also be considered, since they have
been recently investigated for potential application as vascular protheses due to their favorable
in-plane mixing properties [4, 22]. All these geometries retain the dominant features of flow
structures while significantly reducing the number of parameters that define the problem [29].
The knowledge gained from these studies will then be applied to analyse the flow patterns in
the anatomically-correct carotid syphon shown in Figure 2.
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Average in-plane velocities and CAs
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!  A curvature conforming, high order mesh generation was applied to accurately represent

the geometry.

! The 3-D computational simulation of the flows was performed using an incompressible

Navier-Stokes solver called Nektar which is basis on a spectral/hp element method.
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Figure 4: Cross-sectional averages CA′
N , CA′

B (dashed lines), ∂VN
∂s and ∂VB

∂s (solid lines) along the
centreline of (a) the single bend, (b) double bend with a 90◦ azimuthal angle, and (c) helical bend with a
pitch length of 5D in Figure 1 at Re = 125. They were nondimensionalised by their maximum values and
are shown in black in the N–direction and in red in the B–direction. The dashed vertical lines indicate
the start and end of the curved regions.
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Figure 5: Cross-sectional averages CAN = CA′
N , −CFN , PGN , VFN and VN along the centreline of the

single bend in Figure 1 (left) at (a) Re = 125, (b) 250 and (c) 500. The dashed vertical lines indicate the
start and end of the curved region.

negligible compared to u
h

∂VN
∂s and (ii) u

h
∂VN
∂s is approximately proportional to ∂VN

∂s . Therefore,
the evolution of VN with s is mainly governed by CFN , PGN and VFN at Re ∈ [50, 500].

Although the Poiseuille inflow is first forced to turn by the wall at s = 2D, Figure 5 shows, at
different Re, that a centripetal (in the direction of N and toward the centre of curvature) PGN

gradually develops about s = D to anticipate the opposition to the discontinuous appearance
of CFN at s = 2D. Moreover, PGN starts vanishing before the end of the bend at s = 8.3D
to anticipate the discontinuous disappearance of CFN . For any s, VFN is centrifugal (in the
direction of N and away from the centre of curvature) and approximately 20% of −PGN at
Re = 50, 16% at Re = 125, 13% at Re = 250, 11% at Re = 375, and 10% at Re = 500. Using
the asymptotic model developed in [16] we obtained zero VN and CAN , and PGN = CFN +VFN

(Table 1) when the flow is fully developed and driven by a steady pressure gradient in an
uniformly curved pipe with the same Re and De numbers as in our single bend.

The results shown in Figures 4a, and 5 and Table 1 suggest that CAN and VN play the role
of the acceleration and velocity, respectively, of an under-damped oscillator around the fully-
developed state, with CFN the driving force, PGN the restoring force, and VFN a dissipative
force opposing PGN . With increasing Re the opposition of VFN decreases, but CFN becomes
stronger. As a result, CAN and VN oscillate with greater amplitudes around the fully-developed
state, so that it takes a longer distance for PGN to dump the oscillations of CAN and achieve
the equilibrium fully-developed state in the bend.

According to Yao and Berger [36], the entry length for a steady flow with a uniformly
distributed velocity at the entrance of a uniformly curved pipe is e1Re1/2(κD/2)−1/40.5D. For
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Numerical model & methodologyNumerical model & methodology

!  A curvature conforming, high order mesh generation was applied to accurately represent

the geometry.

! The 3-D computational simulation of the flows was performed using an incompressible

Navier-Stokes solver called Nektar which is basis on a spectral/hp element method.
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Figure 4: Cross-sectional averages CA′
N , CA′

B (dashed lines), ∂VN
∂s and ∂VB

∂s (solid lines) along the
centreline of (a) the single bend, (b) double bend with a 90◦ azimuthal angle, and (c) helical bend with a
pitch length of 5D in Figure 1 at Re = 125. They were nondimensionalised by their maximum values and
are shown in black in the N–direction and in red in the B–direction. The dashed vertical lines indicate
the start and end of the curved regions.
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Figure 5: Cross-sectional averages CAN = CA′
N , −CFN , PGN , VFN and VN along the centreline of the

single bend in Figure 1 (left) at (a) Re = 125, (b) 250 and (c) 500. The dashed vertical lines indicate the
start and end of the curved region.

negligible compared to u
h

∂VN
∂s and (ii) u

h
∂VN
∂s is approximately proportional to ∂VN

∂s . Therefore,
the evolution of VN with s is mainly governed by CFN , PGN and VFN at Re ∈ [50, 500].

Although the Poiseuille inflow is first forced to turn by the wall at s = 2D, Figure 5 shows, at
different Re, that a centripetal (in the direction of N and toward the centre of curvature) PGN

gradually develops about s = D to anticipate the opposition to the discontinuous appearance
of CFN at s = 2D. Moreover, PGN starts vanishing before the end of the bend at s = 8.3D
to anticipate the discontinuous disappearance of CFN . For any s, VFN is centrifugal (in the
direction of N and away from the centre of curvature) and approximately 20% of −PGN at
Re = 50, 16% at Re = 125, 13% at Re = 250, 11% at Re = 375, and 10% at Re = 500. Using
the asymptotic model developed in [16] we obtained zero VN and CAN , and PGN = CFN +VFN

(Table 1) when the flow is fully developed and driven by a steady pressure gradient in an
uniformly curved pipe with the same Re and De numbers as in our single bend.

The results shown in Figures 4a, and 5 and Table 1 suggest that CAN and VN play the role
of the acceleration and velocity, respectively, of an under-damped oscillator around the fully-
developed state, with CFN the driving force, PGN the restoring force, and VFN a dissipative
force opposing PGN . With increasing Re the opposition of VFN decreases, but CFN becomes
stronger. As a result, CAN and VN oscillate with greater amplitudes around the fully-developed
state, so that it takes a longer distance for PGN to dump the oscillations of CAN and achieve
the equilibrium fully-developed state in the bend.

According to Yao and Berger [36], the entry length for a steady flow with a uniformly
distributed velocity at the entrance of a uniformly curved pipe is e1Re1/2(κD/2)−1/40.5D. For
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Figure 4: Cross-sectional averages CA′
N , CA′

B (dashed lines), ∂VN
∂s and ∂VB

∂s (solid lines) along the
centreline of (a) the single bend, (b) double bend with a 90◦ azimuthal angle, and (c) helical bend with a
pitch length of 5D in Figure 1 at Re = 125. They were nondimensionalised by their maximum values and
are shown in black in the N–direction and in red in the B–direction. The dashed vertical lines indicate
the start and end of the curved regions.
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Figure 5: Cross-sectional averages CAN = CA′
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single bend in Figure 1 (left) at (a) Re = 125, (b) 250 and (c) 500. The dashed vertical lines indicate the
start and end of the curved region.

negligible compared to u
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∂s and (ii) u

h
∂VN
∂s is approximately proportional to ∂VN

∂s . Therefore,
the evolution of VN with s is mainly governed by CFN , PGN and VFN at Re ∈ [50, 500].

Although the Poiseuille inflow is first forced to turn by the wall at s = 2D, Figure 5 shows, at
different Re, that a centripetal (in the direction of N and toward the centre of curvature) PGN

gradually develops about s = D to anticipate the opposition to the discontinuous appearance
of CFN at s = 2D. Moreover, PGN starts vanishing before the end of the bend at s = 8.3D
to anticipate the discontinuous disappearance of CFN . For any s, VFN is centrifugal (in the
direction of N and away from the centre of curvature) and approximately 20% of −PGN at
Re = 50, 16% at Re = 125, 13% at Re = 250, 11% at Re = 375, and 10% at Re = 500. Using
the asymptotic model developed in [16] we obtained zero VN and CAN , and PGN = CFN +VFN

(Table 1) when the flow is fully developed and driven by a steady pressure gradient in an
uniformly curved pipe with the same Re and De numbers as in our single bend.

The results shown in Figures 4a, and 5 and Table 1 suggest that CAN and VN play the role
of the acceleration and velocity, respectively, of an under-damped oscillator around the fully-
developed state, with CFN the driving force, PGN the restoring force, and VFN a dissipative
force opposing PGN . With increasing Re the opposition of VFN decreases, but CFN becomes
stronger. As a result, CAN and VN oscillate with greater amplitudes around the fully-developed
state, so that it takes a longer distance for PGN to dump the oscillations of CAN and achieve
the equilibrium fully-developed state in the bend.

According to Yao and Berger [36], the entry length for a steady flow with a uniformly
distributed velocity at the entrance of a uniformly curved pipe is e1Re1/2(κD/2)−1/40.5D. For
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Figure 1: Single and double bends (left) and helical bends (right) studied, with a constant circular
cross-section, a diameter D, and centrelines highlighted in dashed lines. The local versor N is depicted
at some locations and the value of the arc length s is shown at the extremes of lines and curves. In
straight regions, N was considered to have the same direction as in its adjacent curved region. (left)
The curvature of each bend is κ = 1

2D and the azimuthal angles between the plane of curvature of each
bend are indicated in degrees. (Modified from [24].) (right) The centrelines have a fixed helical radius of
0.125D and a pitch length of 3D and 5D.

11, 12, 13, 14, 15, 16, 17, 18]) or helical tubes of constant curvature and torsion (e.g. [14, 19, 20,
21, 22]). In particular regimes, researchers in the applied-mathematics community have reduced
the data to a handful of parameters by constructing asymptotic solutions ([7, 8, 19, 14, 16]).
However, without full knowledge of the details of the flow, the validity of the assumptions of
these flows is unknown. And even less well understood are the mechanisms responsible for the
complex flow phenomena observed in the sequences of non-planar bends with varying curvature
and torsion found in the arterial vasculature [17, 23, 24]. In these cases, the complexity of the
equations for the physiologically relevant range of parameters renders theoretical analysis rather
intractable.

Current numerical models and anatomical reconstruction techniques allow us to accurately
simulate haemodynamics in three-dimensional (3-D) patient-specific geometries. These simula-
tions are usually performed in localised areas of the arterial system (e.g. [25, 26, 27]), although
more recently within larger arterial networks [28]. Such simulations provide insight into clini-
cally relevant fluid dynamics, but unfortunately they often produce such large quantities of data
that they are unlikely to be of practical use in a clinical setting.

The aim of this work is to reduce the amount of data whilst retaining the important flow
features in order to investigate the effect of vascular geometry on the forces that govern the
generation and evolution of primary and secondary (in-plane) flows in curved vessels and their
association with axial velocity profiles, vortical structures and WSS distributions. For a given
vascular geometry, we express the Navier–Stokes and continuity equations in a centreline (local)
coordinate system. This allows us to decompose the effects of the geometry on the blood flow into
components: inertia (centrifugal, torsional and Coriolis), pressure and viscous forces and local
accelerations. Taking cross-sectional averages of these local quantities reduces the dynamics of
the system onto the vessel centreline.

We will first use this technique to investigate flow patterns in the idealised planar and non-
planar bends shown in Figure 1 (left), which loosely model, neglecting branches, the aortic arch
(135◦ case), the intracranial segment of the internal carotid artery (180◦ case), and a bypass
graft in a peripheral vessel with the proximal branch of the host vessel occluded (all the cases).
The small amplitude helical tubes in Figure 1 (right) will also be considered, since they have
been recently investigated for potential application as vascular protheses due to their favorable
in-plane mixing properties [4, 22]. All these geometries retain the dominant features of flow
structures while significantly reducing the number of parameters that define the problem [29].
The knowledge gained from these studies will then be applied to analyse the flow patterns in
the anatomically-correct carotid syphon shown in Figure 2.
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negligible compared to u
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∂s and (ii) u
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∂VN
∂s is approximately proportional to ∂VN

∂s . Therefore,
the evolution of VN with s is mainly governed by CFN , PGN and VFN at Re ∈ [50, 500].

Although the Poiseuille inflow is first forced to turn by the wall at s = 2D, Figure 5 shows, at
different Re, that a centripetal (in the direction of N and toward the centre of curvature) PGN

gradually develops about s = D to anticipate the opposition to the discontinuous appearance
of CFN at s = 2D. Moreover, PGN starts vanishing before the end of the bend at s = 8.3D
to anticipate the discontinuous disappearance of CFN . For any s, VFN is centrifugal (in the
direction of N and away from the centre of curvature) and approximately 20% of −PGN at
Re = 50, 16% at Re = 125, 13% at Re = 250, 11% at Re = 375, and 10% at Re = 500. Using
the asymptotic model developed in [16] we obtained zero VN and CAN , and PGN = CFN +VFN

(Table 1) when the flow is fully developed and driven by a steady pressure gradient in an
uniformly curved pipe with the same Re and De numbers as in our single bend.

The results shown in Figures 4a, and 5 and Table 1 suggest that CAN and VN play the role
of the acceleration and velocity, respectively, of an under-damped oscillator around the fully-
developed state, with CFN the driving force, PGN the restoring force, and VFN a dissipative
force opposing PGN . With increasing Re the opposition of VFN decreases, but CFN becomes
stronger. As a result, CAN and VN oscillate with greater amplitudes around the fully-developed
state, so that it takes a longer distance for PGN to dump the oscillations of CAN and achieve
the equilibrium fully-developed state in the bend.

According to Yao and Berger [36], the entry length for a steady flow with a uniformly
distributed velocity at the entrance of a uniformly curved pipe is e1Re1/2(κD/2)−1/40.5D. For
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the evolution of VN with s is mainly governed by CFN , PGN and VFN at Re ∈ [50, 500].

Although the Poiseuille inflow is first forced to turn by the wall at s = 2D, Figure 5 shows, at
different Re, that a centripetal (in the direction of N and toward the centre of curvature) PGN

gradually develops about s = D to anticipate the opposition to the discontinuous appearance
of CFN at s = 2D. Moreover, PGN starts vanishing before the end of the bend at s = 8.3D
to anticipate the discontinuous disappearance of CFN . For any s, VFN is centrifugal (in the
direction of N and away from the centre of curvature) and approximately 20% of −PGN at
Re = 50, 16% at Re = 125, 13% at Re = 250, 11% at Re = 375, and 10% at Re = 500. Using
the asymptotic model developed in [16] we obtained zero VN and CAN , and PGN = CFN +VFN

(Table 1) when the flow is fully developed and driven by a steady pressure gradient in an
uniformly curved pipe with the same Re and De numbers as in our single bend.

The results shown in Figures 4a, and 5 and Table 1 suggest that CAN and VN play the role
of the acceleration and velocity, respectively, of an under-damped oscillator around the fully-
developed state, with CFN the driving force, PGN the restoring force, and VFN a dissipative
force opposing PGN . With increasing Re the opposition of VFN decreases, but CFN becomes
stronger. As a result, CAN and VN oscillate with greater amplitudes around the fully-developed
state, so that it takes a longer distance for PGN to dump the oscillations of CAN and achieve
the equilibrium fully-developed state in the bend.

According to Yao and Berger [36], the entry length for a steady flow with a uniformly
distributed velocity at the entrance of a uniformly curved pipe is e1Re1/2(κD/2)−1/40.5D. For

8

Numerical model & methodologyNumerical model & methodology

!  A curvature conforming, high order mesh generation was applied to accurately represent

the geometry.

! The 3-D computational simulation of the flows was performed using an incompressible

Navier-Stokes solver called Nektar which is basis on a spectral/hp element method.

0 model

45

90135

180

s=0
2D (2+!)D

(8+2!)D

s=8+2! s=8+2!

(2+2!)D

(8+2!)D

(8+2!)D

(8+2!)D

(8+2!)D
N

N
N

N

N

N N

s=8+2! s=8+2!

s=0 2D

5.1D 11.1D

s=0 2D

7.1D
13.1D

N

N

N

N

N

N

N

N

Figure 1: Single and double bends (left) and helical bends (right) studied, with a constant circular
cross-section, a diameter D, and centrelines highlighted in dashed lines. The local versor N is depicted
at some locations and the value of the arc length s is shown at the extremes of lines and curves. In
straight regions, N was considered to have the same direction as in its adjacent curved region. (left)
The curvature of each bend is κ = 1

2D and the azimuthal angles between the plane of curvature of each
bend are indicated in degrees. (Modified from [24].) (right) The centrelines have a fixed helical radius of
0.125D and a pitch length of 3D and 5D.

11, 12, 13, 14, 15, 16, 17, 18]) or helical tubes of constant curvature and torsion (e.g. [14, 19, 20,
21, 22]). In particular regimes, researchers in the applied-mathematics community have reduced
the data to a handful of parameters by constructing asymptotic solutions ([7, 8, 19, 14, 16]).
However, without full knowledge of the details of the flow, the validity of the assumptions of
these flows is unknown. And even less well understood are the mechanisms responsible for the
complex flow phenomena observed in the sequences of non-planar bends with varying curvature
and torsion found in the arterial vasculature [17, 23, 24]. In these cases, the complexity of the
equations for the physiologically relevant range of parameters renders theoretical analysis rather
intractable.

Current numerical models and anatomical reconstruction techniques allow us to accurately
simulate haemodynamics in three-dimensional (3-D) patient-specific geometries. These simula-
tions are usually performed in localised areas of the arterial system (e.g. [25, 26, 27]), although
more recently within larger arterial networks [28]. Such simulations provide insight into clini-
cally relevant fluid dynamics, but unfortunately they often produce such large quantities of data
that they are unlikely to be of practical use in a clinical setting.

The aim of this work is to reduce the amount of data whilst retaining the important flow
features in order to investigate the effect of vascular geometry on the forces that govern the
generation and evolution of primary and secondary (in-plane) flows in curved vessels and their
association with axial velocity profiles, vortical structures and WSS distributions. For a given
vascular geometry, we express the Navier–Stokes and continuity equations in a centreline (local)
coordinate system. This allows us to decompose the effects of the geometry on the blood flow into
components: inertia (centrifugal, torsional and Coriolis), pressure and viscous forces and local
accelerations. Taking cross-sectional averages of these local quantities reduces the dynamics of
the system onto the vessel centreline.

We will first use this technique to investigate flow patterns in the idealised planar and non-
planar bends shown in Figure 1 (left), which loosely model, neglecting branches, the aortic arch
(135◦ case), the intracranial segment of the internal carotid artery (180◦ case), and a bypass
graft in a peripheral vessel with the proximal branch of the host vessel occluded (all the cases).
The small amplitude helical tubes in Figure 1 (right) will also be considered, since they have
been recently investigated for potential application as vascular protheses due to their favorable
in-plane mixing properties [4, 22]. All these geometries retain the dominant features of flow
structures while significantly reducing the number of parameters that define the problem [29].
The knowledge gained from these studies will then be applied to analyse the flow patterns in
the anatomically-correct carotid syphon shown in Figure 2.
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N , −CFN , PGN , VFN and VN along the centreline of the
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start and end of the curved region.
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∂s . Therefore,
the evolution of VN with s is mainly governed by CFN , PGN and VFN at Re ∈ [50, 500].

Although the Poiseuille inflow is first forced to turn by the wall at s = 2D, Figure 5 shows, at
different Re, that a centripetal (in the direction of N and toward the centre of curvature) PGN

gradually develops about s = D to anticipate the opposition to the discontinuous appearance
of CFN at s = 2D. Moreover, PGN starts vanishing before the end of the bend at s = 8.3D
to anticipate the discontinuous disappearance of CFN . For any s, VFN is centrifugal (in the
direction of N and away from the centre of curvature) and approximately 20% of −PGN at
Re = 50, 16% at Re = 125, 13% at Re = 250, 11% at Re = 375, and 10% at Re = 500. Using
the asymptotic model developed in [16] we obtained zero VN and CAN , and PGN = CFN +VFN

(Table 1) when the flow is fully developed and driven by a steady pressure gradient in an
uniformly curved pipe with the same Re and De numbers as in our single bend.

The results shown in Figures 4a, and 5 and Table 1 suggest that CAN and VN play the role
of the acceleration and velocity, respectively, of an under-damped oscillator around the fully-
developed state, with CFN the driving force, PGN the restoring force, and VFN a dissipative
force opposing PGN . With increasing Re the opposition of VFN decreases, but CFN becomes
stronger. As a result, CAN and VN oscillate with greater amplitudes around the fully-developed
state, so that it takes a longer distance for PGN to dump the oscillations of CAN and achieve
the equilibrium fully-developed state in the bend.

According to Yao and Berger [36], the entry length for a steady flow with a uniformly
distributed velocity at the entrance of a uniformly curved pipe is e1Re1/2(κD/2)−1/40.5D. For
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∂s . Therefore,
the evolution of VN with s is mainly governed by CFN , PGN and VFN at Re ∈ [50, 500].

Although the Poiseuille inflow is first forced to turn by the wall at s = 2D, Figure 5 shows, at
different Re, that a centripetal (in the direction of N and toward the centre of curvature) PGN

gradually develops about s = D to anticipate the opposition to the discontinuous appearance
of CFN at s = 2D. Moreover, PGN starts vanishing before the end of the bend at s = 8.3D
to anticipate the discontinuous disappearance of CFN . For any s, VFN is centrifugal (in the
direction of N and away from the centre of curvature) and approximately 20% of −PGN at
Re = 50, 16% at Re = 125, 13% at Re = 250, 11% at Re = 375, and 10% at Re = 500. Using
the asymptotic model developed in [16] we obtained zero VN and CAN , and PGN = CFN +VFN

(Table 1) when the flow is fully developed and driven by a steady pressure gradient in an
uniformly curved pipe with the same Re and De numbers as in our single bend.

The results shown in Figures 4a, and 5 and Table 1 suggest that CAN and VN play the role
of the acceleration and velocity, respectively, of an under-damped oscillator around the fully-
developed state, with CFN the driving force, PGN the restoring force, and VFN a dissipative
force opposing PGN . With increasing Re the opposition of VFN decreases, but CFN becomes
stronger. As a result, CAN and VN oscillate with greater amplitudes around the fully-developed
state, so that it takes a longer distance for PGN to dump the oscillations of CAN and achieve
the equilibrium fully-developed state in the bend.

According to Yao and Berger [36], the entry length for a steady flow with a uniformly
distributed velocity at the entrance of a uniformly curved pipe is e1Re1/2(κD/2)−1/40.5D. For
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Figure 1: Single and double bends (left) and helical bends (right) studied, with a constant circular
cross-section, a diameter D, and centrelines highlighted in dashed lines. The local versor N is depicted
at some locations and the value of the arc length s is shown at the extremes of lines and curves. In
straight regions, N was considered to have the same direction as in its adjacent curved region. (left)
The curvature of each bend is κ = 1

2D and the azimuthal angles between the plane of curvature of each
bend are indicated in degrees. (Modified from [24].) (right) The centrelines have a fixed helical radius of
0.125D and a pitch length of 3D and 5D.

11, 12, 13, 14, 15, 16, 17, 18]) or helical tubes of constant curvature and torsion (e.g. [14, 19, 20,
21, 22]). In particular regimes, researchers in the applied-mathematics community have reduced
the data to a handful of parameters by constructing asymptotic solutions ([7, 8, 19, 14, 16]).
However, without full knowledge of the details of the flow, the validity of the assumptions of
these flows is unknown. And even less well understood are the mechanisms responsible for the
complex flow phenomena observed in the sequences of non-planar bends with varying curvature
and torsion found in the arterial vasculature [17, 23, 24]. In these cases, the complexity of the
equations for the physiologically relevant range of parameters renders theoretical analysis rather
intractable.

Current numerical models and anatomical reconstruction techniques allow us to accurately
simulate haemodynamics in three-dimensional (3-D) patient-specific geometries. These simula-
tions are usually performed in localised areas of the arterial system (e.g. [25, 26, 27]), although
more recently within larger arterial networks [28]. Such simulations provide insight into clini-
cally relevant fluid dynamics, but unfortunately they often produce such large quantities of data
that they are unlikely to be of practical use in a clinical setting.

The aim of this work is to reduce the amount of data whilst retaining the important flow
features in order to investigate the effect of vascular geometry on the forces that govern the
generation and evolution of primary and secondary (in-plane) flows in curved vessels and their
association with axial velocity profiles, vortical structures and WSS distributions. For a given
vascular geometry, we express the Navier–Stokes and continuity equations in a centreline (local)
coordinate system. This allows us to decompose the effects of the geometry on the blood flow into
components: inertia (centrifugal, torsional and Coriolis), pressure and viscous forces and local
accelerations. Taking cross-sectional averages of these local quantities reduces the dynamics of
the system onto the vessel centreline.

We will first use this technique to investigate flow patterns in the idealised planar and non-
planar bends shown in Figure 1 (left), which loosely model, neglecting branches, the aortic arch
(135◦ case), the intracranial segment of the internal carotid artery (180◦ case), and a bypass
graft in a peripheral vessel with the proximal branch of the host vessel occluded (all the cases).
The small amplitude helical tubes in Figure 1 (right) will also be considered, since they have
been recently investigated for potential application as vascular protheses due to their favorable
in-plane mixing properties [4, 22]. All these geometries retain the dominant features of flow
structures while significantly reducing the number of parameters that define the problem [29].
The knowledge gained from these studies will then be applied to analyse the flow patterns in
the anatomically-correct carotid syphon shown in Figure 2.
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the start and end of the curved regions.

Text

! " # $ %&
!!'(

!!')

!

!')

!'(

s

!
N

*+
,

-.
,

/0
,

-0
,

u
N

! " # $ %&
!!'(

!!')

!

!')

!'(

s

!
N

*+
,

-.
,

/0
,

-0
,

u
N

! " # $ %&
!!'(

!!')

!

!')

!'(

s

!
N

*+
,

-.
,

/0
,

-0
,u

N

ss s

Re=125(a) (b) (c)

V V V

_ _ _

Re=250 Re=500

Figure 5: Cross-sectional averages CAN = CA′
N , −CFN , PGN , VFN and VN along the centreline of the

single bend in Figure 1 (left) at (a) Re = 125, (b) 250 and (c) 500. The dashed vertical lines indicate the
start and end of the curved region.

negligible compared to u
h

∂VN
∂s and (ii) u

h
∂VN
∂s is approximately proportional to ∂VN

∂s . Therefore,
the evolution of VN with s is mainly governed by CFN , PGN and VFN at Re ∈ [50, 500].

Although the Poiseuille inflow is first forced to turn by the wall at s = 2D, Figure 5 shows, at
different Re, that a centripetal (in the direction of N and toward the centre of curvature) PGN

gradually develops about s = D to anticipate the opposition to the discontinuous appearance
of CFN at s = 2D. Moreover, PGN starts vanishing before the end of the bend at s = 8.3D
to anticipate the discontinuous disappearance of CFN . For any s, VFN is centrifugal (in the
direction of N and away from the centre of curvature) and approximately 20% of −PGN at
Re = 50, 16% at Re = 125, 13% at Re = 250, 11% at Re = 375, and 10% at Re = 500. Using
the asymptotic model developed in [16] we obtained zero VN and CAN , and PGN = CFN +VFN

(Table 1) when the flow is fully developed and driven by a steady pressure gradient in an
uniformly curved pipe with the same Re and De numbers as in our single bend.

The results shown in Figures 4a, and 5 and Table 1 suggest that CAN and VN play the role
of the acceleration and velocity, respectively, of an under-damped oscillator around the fully-
developed state, with CFN the driving force, PGN the restoring force, and VFN a dissipative
force opposing PGN . With increasing Re the opposition of VFN decreases, but CFN becomes
stronger. As a result, CAN and VN oscillate with greater amplitudes around the fully-developed
state, so that it takes a longer distance for PGN to dump the oscillations of CAN and achieve
the equilibrium fully-developed state in the bend.

According to Yao and Berger [36], the entry length for a steady flow with a uniformly
distributed velocity at the entrance of a uniformly curved pipe is e1Re1/2(κD/2)−1/40.5D. For
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N , −CFN , PGN , VFN and VN along the centreline of the

single bend in Figure 1 (left) at (a) Re = 125, (b) 250 and (c) 500. The dashed vertical lines indicate the
start and end of the curved region.

negligible compared to u
h

∂VN
∂s and (ii) u

h
∂VN
∂s is approximately proportional to ∂VN

∂s . Therefore,
the evolution of VN with s is mainly governed by CFN , PGN and VFN at Re ∈ [50, 500].

Although the Poiseuille inflow is first forced to turn by the wall at s = 2D, Figure 5 shows, at
different Re, that a centripetal (in the direction of N and toward the centre of curvature) PGN

gradually develops about s = D to anticipate the opposition to the discontinuous appearance
of CFN at s = 2D. Moreover, PGN starts vanishing before the end of the bend at s = 8.3D
to anticipate the discontinuous disappearance of CFN . For any s, VFN is centrifugal (in the
direction of N and away from the centre of curvature) and approximately 20% of −PGN at
Re = 50, 16% at Re = 125, 13% at Re = 250, 11% at Re = 375, and 10% at Re = 500. Using
the asymptotic model developed in [16] we obtained zero VN and CAN , and PGN = CFN +VFN

(Table 1) when the flow is fully developed and driven by a steady pressure gradient in an
uniformly curved pipe with the same Re and De numbers as in our single bend.

The results shown in Figures 4a, and 5 and Table 1 suggest that CAN and VN play the role
of the acceleration and velocity, respectively, of an under-damped oscillator around the fully-
developed state, with CFN the driving force, PGN the restoring force, and VFN a dissipative
force opposing PGN . With increasing Re the opposition of VFN decreases, but CFN becomes
stronger. As a result, CAN and VN oscillate with greater amplitudes around the fully-developed
state, so that it takes a longer distance for PGN to dump the oscillations of CAN and achieve
the equilibrium fully-developed state in the bend.

According to Yao and Berger [36], the entry length for a steady flow with a uniformly
distributed velocity at the entrance of a uniformly curved pipe is e1Re1/2(κD/2)−1/40.5D. For
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Figure 5: Cross-sectional averages CAN = CA′
N , −CFN , PGN , VFN and VN along the centreline of the

single bend in Figure 1 (left) at (a) Re = 125, (b) 250 and (c) 500. The dashed vertical lines indicate the
start and end of the curved region.

negligible compared to u
h

∂VN
∂s and (ii) u

h
∂VN
∂s is approximately proportional to ∂VN

∂s . Therefore,
the evolution of VN with s is mainly governed by CFN , PGN and VFN at Re ∈ [50, 500].

Although the Poiseuille inflow is first forced to turn by the wall at s = 2D, Figure 5 shows, at
different Re, that a centripetal (in the direction of N and toward the centre of curvature) PGN

gradually develops about s = D to anticipate the opposition to the discontinuous appearance
of CFN at s = 2D. Moreover, PGN starts vanishing before the end of the bend at s = 8.3D
to anticipate the discontinuous disappearance of CFN . For any s, VFN is centrifugal (in the
direction of N and away from the centre of curvature) and approximately 20% of −PGN at
Re = 50, 16% at Re = 125, 13% at Re = 250, 11% at Re = 375, and 10% at Re = 500. Using
the asymptotic model developed in [16] we obtained zero VN and CAN , and PGN = CFN +VFN

(Table 1) when the flow is fully developed and driven by a steady pressure gradient in an
uniformly curved pipe with the same Re and De numbers as in our single bend.

The results shown in Figures 4a, and 5 and Table 1 suggest that CAN and VN play the role
of the acceleration and velocity, respectively, of an under-damped oscillator around the fully-
developed state, with CFN the driving force, PGN the restoring force, and VFN a dissipative
force opposing PGN . With increasing Re the opposition of VFN decreases, but CFN becomes
stronger. As a result, CAN and VN oscillate with greater amplitudes around the fully-developed
state, so that it takes a longer distance for PGN to dump the oscillations of CAN and achieve
the equilibrium fully-developed state in the bend.

According to Yao and Berger [36], the entry length for a steady flow with a uniformly
distributed velocity at the entrance of a uniformly curved pipe is e1Re1/2(κD/2)−1/40.5D. For
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Figure 1: Single and double bends (left) and helical bends (right) studied, with a constant circular
cross-section, a diameter D, and centrelines highlighted in dashed lines. The local versor N is depicted
at some locations and the value of the arc length s is shown at the extremes of lines and curves. In
straight regions, N was considered to have the same direction as in its adjacent curved region. (left)
The curvature of each bend is κ = 1

2D and the azimuthal angles between the plane of curvature of each
bend are indicated in degrees. (Modified from [24].) (right) The centrelines have a fixed helical radius of
0.125D and a pitch length of 3D and 5D.

11, 12, 13, 14, 15, 16, 17, 18]) or helical tubes of constant curvature and torsion (e.g. [14, 19, 20,
21, 22]). In particular regimes, researchers in the applied-mathematics community have reduced
the data to a handful of parameters by constructing asymptotic solutions ([7, 8, 19, 14, 16]).
However, without full knowledge of the details of the flow, the validity of the assumptions of
these flows is unknown. And even less well understood are the mechanisms responsible for the
complex flow phenomena observed in the sequences of non-planar bends with varying curvature
and torsion found in the arterial vasculature [17, 23, 24]. In these cases, the complexity of the
equations for the physiologically relevant range of parameters renders theoretical analysis rather
intractable.

Current numerical models and anatomical reconstruction techniques allow us to accurately
simulate haemodynamics in three-dimensional (3-D) patient-specific geometries. These simula-
tions are usually performed in localised areas of the arterial system (e.g. [25, 26, 27]), although
more recently within larger arterial networks [28]. Such simulations provide insight into clini-
cally relevant fluid dynamics, but unfortunately they often produce such large quantities of data
that they are unlikely to be of practical use in a clinical setting.

The aim of this work is to reduce the amount of data whilst retaining the important flow
features in order to investigate the effect of vascular geometry on the forces that govern the
generation and evolution of primary and secondary (in-plane) flows in curved vessels and their
association with axial velocity profiles, vortical structures and WSS distributions. For a given
vascular geometry, we express the Navier–Stokes and continuity equations in a centreline (local)
coordinate system. This allows us to decompose the effects of the geometry on the blood flow into
components: inertia (centrifugal, torsional and Coriolis), pressure and viscous forces and local
accelerations. Taking cross-sectional averages of these local quantities reduces the dynamics of
the system onto the vessel centreline.

We will first use this technique to investigate flow patterns in the idealised planar and non-
planar bends shown in Figure 1 (left), which loosely model, neglecting branches, the aortic arch
(135◦ case), the intracranial segment of the internal carotid artery (180◦ case), and a bypass
graft in a peripheral vessel with the proximal branch of the host vessel occluded (all the cases).
The small amplitude helical tubes in Figure 1 (right) will also be considered, since they have
been recently investigated for potential application as vascular protheses due to their favorable
in-plane mixing properties [4, 22]. All these geometries retain the dominant features of flow
structures while significantly reducing the number of parameters that define the problem [29].
The knowledge gained from these studies will then be applied to analyse the flow patterns in
the anatomically-correct carotid syphon shown in Figure 2.
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Figure 5: Cross-sectional averages CAN = CA′
N , −CFN , PGN , VFN and VN along the centreline of the

single bend in Figure 1 (left) at (a) Re = 125, (b) 250 and (c) 500. The dashed vertical lines indicate the
start and end of the curved region.

negligible compared to u
h

∂VN
∂s and (ii) u

h
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∂s is approximately proportional to ∂VN
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the evolution of VN with s is mainly governed by CFN , PGN and VFN at Re ∈ [50, 500].

Although the Poiseuille inflow is first forced to turn by the wall at s = 2D, Figure 5 shows, at
different Re, that a centripetal (in the direction of N and toward the centre of curvature) PGN

gradually develops about s = D to anticipate the opposition to the discontinuous appearance
of CFN at s = 2D. Moreover, PGN starts vanishing before the end of the bend at s = 8.3D
to anticipate the discontinuous disappearance of CFN . For any s, VFN is centrifugal (in the
direction of N and away from the centre of curvature) and approximately 20% of −PGN at
Re = 50, 16% at Re = 125, 13% at Re = 250, 11% at Re = 375, and 10% at Re = 500. Using
the asymptotic model developed in [16] we obtained zero VN and CAN , and PGN = CFN +VFN

(Table 1) when the flow is fully developed and driven by a steady pressure gradient in an
uniformly curved pipe with the same Re and De numbers as in our single bend.

The results shown in Figures 4a, and 5 and Table 1 suggest that CAN and VN play the role
of the acceleration and velocity, respectively, of an under-damped oscillator around the fully-
developed state, with CFN the driving force, PGN the restoring force, and VFN a dissipative
force opposing PGN . With increasing Re the opposition of VFN decreases, but CFN becomes
stronger. As a result, CAN and VN oscillate with greater amplitudes around the fully-developed
state, so that it takes a longer distance for PGN to dump the oscillations of CAN and achieve
the equilibrium fully-developed state in the bend.

According to Yao and Berger [36], the entry length for a steady flow with a uniformly
distributed velocity at the entrance of a uniformly curved pipe is e1Re1/2(κD/2)−1/40.5D. For
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different Re, that a centripetal (in the direction of N and toward the centre of curvature) PGN

gradually develops about s = D to anticipate the opposition to the discontinuous appearance
of CFN at s = 2D. Moreover, PGN starts vanishing before the end of the bend at s = 8.3D
to anticipate the discontinuous disappearance of CFN . For any s, VFN is centrifugal (in the
direction of N and away from the centre of curvature) and approximately 20% of −PGN at
Re = 50, 16% at Re = 125, 13% at Re = 250, 11% at Re = 375, and 10% at Re = 500. Using
the asymptotic model developed in [16] we obtained zero VN and CAN , and PGN = CFN +VFN

(Table 1) when the flow is fully developed and driven by a steady pressure gradient in an
uniformly curved pipe with the same Re and De numbers as in our single bend.

The results shown in Figures 4a, and 5 and Table 1 suggest that CAN and VN play the role
of the acceleration and velocity, respectively, of an under-damped oscillator around the fully-
developed state, with CFN the driving force, PGN the restoring force, and VFN a dissipative
force opposing PGN . With increasing Re the opposition of VFN decreases, but CFN becomes
stronger. As a result, CAN and VN oscillate with greater amplitudes around the fully-developed
state, so that it takes a longer distance for PGN to dump the oscillations of CAN and achieve
the equilibrium fully-developed state in the bend.

According to Yao and Berger [36], the entry length for a steady flow with a uniformly
distributed velocity at the entrance of a uniformly curved pipe is e1Re1/2(κD/2)−1/40.5D. For

8

Numerical model & methodologyNumerical model & methodology

!  A curvature conforming, high order mesh generation was applied to accurately represent

the geometry.

! The 3-D computational simulation of the flows was performed using an incompressible

Navier-Stokes solver called Nektar which is basis on a spectral/hp element method.

0 model

45

90135

180

s=0
2D (2+!)D

(8+2!)D

s=8+2! s=8+2!

(2+2!)D

(8+2!)D

(8+2!)D

(8+2!)D

(8+2!)D
N

N
N

N

N

N N

s=8+2! s=8+2!

s=0 2D

5.1D 11.1D

s=0 2D

7.1D
13.1D

N

N

N

N

N

N

N

N

Figure 1: Single and double bends (left) and helical bends (right) studied, with a constant circular
cross-section, a diameter D, and centrelines highlighted in dashed lines. The local versor N is depicted
at some locations and the value of the arc length s is shown at the extremes of lines and curves. In
straight regions, N was considered to have the same direction as in its adjacent curved region. (left)
The curvature of each bend is κ = 1

2D and the azimuthal angles between the plane of curvature of each
bend are indicated in degrees. (Modified from [24].) (right) The centrelines have a fixed helical radius of
0.125D and a pitch length of 3D and 5D.

11, 12, 13, 14, 15, 16, 17, 18]) or helical tubes of constant curvature and torsion (e.g. [14, 19, 20,
21, 22]). In particular regimes, researchers in the applied-mathematics community have reduced
the data to a handful of parameters by constructing asymptotic solutions ([7, 8, 19, 14, 16]).
However, without full knowledge of the details of the flow, the validity of the assumptions of
these flows is unknown. And even less well understood are the mechanisms responsible for the
complex flow phenomena observed in the sequences of non-planar bends with varying curvature
and torsion found in the arterial vasculature [17, 23, 24]. In these cases, the complexity of the
equations for the physiologically relevant range of parameters renders theoretical analysis rather
intractable.

Current numerical models and anatomical reconstruction techniques allow us to accurately
simulate haemodynamics in three-dimensional (3-D) patient-specific geometries. These simula-
tions are usually performed in localised areas of the arterial system (e.g. [25, 26, 27]), although
more recently within larger arterial networks [28]. Such simulations provide insight into clini-
cally relevant fluid dynamics, but unfortunately they often produce such large quantities of data
that they are unlikely to be of practical use in a clinical setting.

The aim of this work is to reduce the amount of data whilst retaining the important flow
features in order to investigate the effect of vascular geometry on the forces that govern the
generation and evolution of primary and secondary (in-plane) flows in curved vessels and their
association with axial velocity profiles, vortical structures and WSS distributions. For a given
vascular geometry, we express the Navier–Stokes and continuity equations in a centreline (local)
coordinate system. This allows us to decompose the effects of the geometry on the blood flow into
components: inertia (centrifugal, torsional and Coriolis), pressure and viscous forces and local
accelerations. Taking cross-sectional averages of these local quantities reduces the dynamics of
the system onto the vessel centreline.

We will first use this technique to investigate flow patterns in the idealised planar and non-
planar bends shown in Figure 1 (left), which loosely model, neglecting branches, the aortic arch
(135◦ case), the intracranial segment of the internal carotid artery (180◦ case), and a bypass
graft in a peripheral vessel with the proximal branch of the host vessel occluded (all the cases).
The small amplitude helical tubes in Figure 1 (right) will also be considered, since they have
been recently investigated for potential application as vascular protheses due to their favorable
in-plane mixing properties [4, 22]. All these geometries retain the dominant features of flow
structures while significantly reducing the number of parameters that define the problem [29].
The knowledge gained from these studies will then be applied to analyse the flow patterns in
the anatomically-correct carotid syphon shown in Figure 2.
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∂s . Therefore,
the evolution of VN with s is mainly governed by CFN , PGN and VFN at Re ∈ [50, 500].

Although the Poiseuille inflow is first forced to turn by the wall at s = 2D, Figure 5 shows, at
different Re, that a centripetal (in the direction of N and toward the centre of curvature) PGN

gradually develops about s = D to anticipate the opposition to the discontinuous appearance
of CFN at s = 2D. Moreover, PGN starts vanishing before the end of the bend at s = 8.3D
to anticipate the discontinuous disappearance of CFN . For any s, VFN is centrifugal (in the
direction of N and away from the centre of curvature) and approximately 20% of −PGN at
Re = 50, 16% at Re = 125, 13% at Re = 250, 11% at Re = 375, and 10% at Re = 500. Using
the asymptotic model developed in [16] we obtained zero VN and CAN , and PGN = CFN +VFN

(Table 1) when the flow is fully developed and driven by a steady pressure gradient in an
uniformly curved pipe with the same Re and De numbers as in our single bend.

The results shown in Figures 4a, and 5 and Table 1 suggest that CAN and VN play the role
of the acceleration and velocity, respectively, of an under-damped oscillator around the fully-
developed state, with CFN the driving force, PGN the restoring force, and VFN a dissipative
force opposing PGN . With increasing Re the opposition of VFN decreases, but CFN becomes
stronger. As a result, CAN and VN oscillate with greater amplitudes around the fully-developed
state, so that it takes a longer distance for PGN to dump the oscillations of CAN and achieve
the equilibrium fully-developed state in the bend.

According to Yao and Berger [36], the entry length for a steady flow with a uniformly
distributed velocity at the entrance of a uniformly curved pipe is e1Re1/2(κD/2)−1/40.5D. For
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Although the Poiseuille inflow is first forced to turn by the wall at s = 2D, Figure 5 shows, at
different Re, that a centripetal (in the direction of N and toward the centre of curvature) PGN

gradually develops about s = D to anticipate the opposition to the discontinuous appearance
of CFN at s = 2D. Moreover, PGN starts vanishing before the end of the bend at s = 8.3D
to anticipate the discontinuous disappearance of CFN . For any s, VFN is centrifugal (in the
direction of N and away from the centre of curvature) and approximately 20% of −PGN at
Re = 50, 16% at Re = 125, 13% at Re = 250, 11% at Re = 375, and 10% at Re = 500. Using
the asymptotic model developed in [16] we obtained zero VN and CAN , and PGN = CFN +VFN

(Table 1) when the flow is fully developed and driven by a steady pressure gradient in an
uniformly curved pipe with the same Re and De numbers as in our single bend.

The results shown in Figures 4a, and 5 and Table 1 suggest that CAN and VN play the role
of the acceleration and velocity, respectively, of an under-damped oscillator around the fully-
developed state, with CFN the driving force, PGN the restoring force, and VFN a dissipative
force opposing PGN . With increasing Re the opposition of VFN decreases, but CFN becomes
stronger. As a result, CAN and VN oscillate with greater amplitudes around the fully-developed
state, so that it takes a longer distance for PGN to dump the oscillations of CAN and achieve
the equilibrium fully-developed state in the bend.

According to Yao and Berger [36], the entry length for a steady flow with a uniformly
distributed velocity at the entrance of a uniformly curved pipe is e1Re1/2(κD/2)−1/40.5D. For
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Figure 1: Single and double bends (left) and helical bends (right) studied, with a constant circular
cross-section, a diameter D, and centrelines highlighted in dashed lines. The local versor N is depicted
at some locations and the value of the arc length s is shown at the extremes of lines and curves. In
straight regions, N was considered to have the same direction as in its adjacent curved region. (left)
The curvature of each bend is κ = 1

2D and the azimuthal angles between the plane of curvature of each
bend are indicated in degrees. (Modified from [24].) (right) The centrelines have a fixed helical radius of
0.125D and a pitch length of 3D and 5D.

11, 12, 13, 14, 15, 16, 17, 18]) or helical tubes of constant curvature and torsion (e.g. [14, 19, 20,
21, 22]). In particular regimes, researchers in the applied-mathematics community have reduced
the data to a handful of parameters by constructing asymptotic solutions ([7, 8, 19, 14, 16]).
However, without full knowledge of the details of the flow, the validity of the assumptions of
these flows is unknown. And even less well understood are the mechanisms responsible for the
complex flow phenomena observed in the sequences of non-planar bends with varying curvature
and torsion found in the arterial vasculature [17, 23, 24]. In these cases, the complexity of the
equations for the physiologically relevant range of parameters renders theoretical analysis rather
intractable.

Current numerical models and anatomical reconstruction techniques allow us to accurately
simulate haemodynamics in three-dimensional (3-D) patient-specific geometries. These simula-
tions are usually performed in localised areas of the arterial system (e.g. [25, 26, 27]), although
more recently within larger arterial networks [28]. Such simulations provide insight into clini-
cally relevant fluid dynamics, but unfortunately they often produce such large quantities of data
that they are unlikely to be of practical use in a clinical setting.

The aim of this work is to reduce the amount of data whilst retaining the important flow
features in order to investigate the effect of vascular geometry on the forces that govern the
generation and evolution of primary and secondary (in-plane) flows in curved vessels and their
association with axial velocity profiles, vortical structures and WSS distributions. For a given
vascular geometry, we express the Navier–Stokes and continuity equations in a centreline (local)
coordinate system. This allows us to decompose the effects of the geometry on the blood flow into
components: inertia (centrifugal, torsional and Coriolis), pressure and viscous forces and local
accelerations. Taking cross-sectional averages of these local quantities reduces the dynamics of
the system onto the vessel centreline.

We will first use this technique to investigate flow patterns in the idealised planar and non-
planar bends shown in Figure 1 (left), which loosely model, neglecting branches, the aortic arch
(135◦ case), the intracranial segment of the internal carotid artery (180◦ case), and a bypass
graft in a peripheral vessel with the proximal branch of the host vessel occluded (all the cases).
The small amplitude helical tubes in Figure 1 (right) will also be considered, since they have
been recently investigated for potential application as vascular protheses due to their favorable
in-plane mixing properties [4, 22]. All these geometries retain the dominant features of flow
structures while significantly reducing the number of parameters that define the problem [29].
The knowledge gained from these studies will then be applied to analyse the flow patterns in
the anatomically-correct carotid syphon shown in Figure 2.
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N , −CFN , PGN , VFN and VN along the centreline of the

single bend in Figure 1 (left) at (a) Re = 125, (b) 250 and (c) 500. The dashed vertical lines indicate the
start and end of the curved region.
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Although the Poiseuille inflow is first forced to turn by the wall at s = 2D, Figure 5 shows, at
different Re, that a centripetal (in the direction of N and toward the centre of curvature) PGN

gradually develops about s = D to anticipate the opposition to the discontinuous appearance
of CFN at s = 2D. Moreover, PGN starts vanishing before the end of the bend at s = 8.3D
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direction of N and away from the centre of curvature) and approximately 20% of −PGN at
Re = 50, 16% at Re = 125, 13% at Re = 250, 11% at Re = 375, and 10% at Re = 500. Using
the asymptotic model developed in [16] we obtained zero VN and CAN , and PGN = CFN +VFN

(Table 1) when the flow is fully developed and driven by a steady pressure gradient in an
uniformly curved pipe with the same Re and De numbers as in our single bend.

The results shown in Figures 4a, and 5 and Table 1 suggest that CAN and VN play the role
of the acceleration and velocity, respectively, of an under-damped oscillator around the fully-
developed state, with CFN the driving force, PGN the restoring force, and VFN a dissipative
force opposing PGN . With increasing Re the opposition of VFN decreases, but CFN becomes
stronger. As a result, CAN and VN oscillate with greater amplitudes around the fully-developed
state, so that it takes a longer distance for PGN to dump the oscillations of CAN and achieve
the equilibrium fully-developed state in the bend.

According to Yao and Berger [36], the entry length for a steady flow with a uniformly
distributed velocity at the entrance of a uniformly curved pipe is e1Re1/2(κD/2)−1/40.5D. For
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! The 3-D computational simulation of the flows was performed using an incompressible

Navier-Stokes solver called Nektar which is basis on a spectral/hp element method.
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centreline of (a) the single bend, (b) double bend with a 90◦ azimuthal angle, and (c) helical bend with a
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N , −CFN , PGN , VFN and VN along the centreline of the

single bend in Figure 1 (left) at (a) Re = 125, (b) 250 and (c) 500. The dashed vertical lines indicate the
start and end of the curved region.
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∂s is approximately proportional to ∂VN

∂s . Therefore,
the evolution of VN with s is mainly governed by CFN , PGN and VFN at Re ∈ [50, 500].

Although the Poiseuille inflow is first forced to turn by the wall at s = 2D, Figure 5 shows, at
different Re, that a centripetal (in the direction of N and toward the centre of curvature) PGN

gradually develops about s = D to anticipate the opposition to the discontinuous appearance
of CFN at s = 2D. Moreover, PGN starts vanishing before the end of the bend at s = 8.3D
to anticipate the discontinuous disappearance of CFN . For any s, VFN is centrifugal (in the
direction of N and away from the centre of curvature) and approximately 20% of −PGN at
Re = 50, 16% at Re = 125, 13% at Re = 250, 11% at Re = 375, and 10% at Re = 500. Using
the asymptotic model developed in [16] we obtained zero VN and CAN , and PGN = CFN +VFN

(Table 1) when the flow is fully developed and driven by a steady pressure gradient in an
uniformly curved pipe with the same Re and De numbers as in our single bend.

The results shown in Figures 4a, and 5 and Table 1 suggest that CAN and VN play the role
of the acceleration and velocity, respectively, of an under-damped oscillator around the fully-
developed state, with CFN the driving force, PGN the restoring force, and VFN a dissipative
force opposing PGN . With increasing Re the opposition of VFN decreases, but CFN becomes
stronger. As a result, CAN and VN oscillate with greater amplitudes around the fully-developed
state, so that it takes a longer distance for PGN to dump the oscillations of CAN and achieve
the equilibrium fully-developed state in the bend.

According to Yao and Berger [36], the entry length for a steady flow with a uniformly
distributed velocity at the entrance of a uniformly curved pipe is e1Re1/2(κD/2)−1/40.5D. For
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negligible compared to u
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∂VN
∂s and (ii) u

h
∂VN
∂s is approximately proportional to ∂VN

∂s . Therefore,
the evolution of VN with s is mainly governed by CFN , PGN and VFN at Re ∈ [50, 500].

Although the Poiseuille inflow is first forced to turn by the wall at s = 2D, Figure 5 shows, at
different Re, that a centripetal (in the direction of N and toward the centre of curvature) PGN

gradually develops about s = D to anticipate the opposition to the discontinuous appearance
of CFN at s = 2D. Moreover, PGN starts vanishing before the end of the bend at s = 8.3D
to anticipate the discontinuous disappearance of CFN . For any s, VFN is centrifugal (in the
direction of N and away from the centre of curvature) and approximately 20% of −PGN at
Re = 50, 16% at Re = 125, 13% at Re = 250, 11% at Re = 375, and 10% at Re = 500. Using
the asymptotic model developed in [16] we obtained zero VN and CAN , and PGN = CFN +VFN

(Table 1) when the flow is fully developed and driven by a steady pressure gradient in an
uniformly curved pipe with the same Re and De numbers as in our single bend.

The results shown in Figures 4a, and 5 and Table 1 suggest that CAN and VN play the role
of the acceleration and velocity, respectively, of an under-damped oscillator around the fully-
developed state, with CFN the driving force, PGN the restoring force, and VFN a dissipative
force opposing PGN . With increasing Re the opposition of VFN decreases, but CFN becomes
stronger. As a result, CAN and VN oscillate with greater amplitudes around the fully-developed
state, so that it takes a longer distance for PGN to dump the oscillations of CAN and achieve
the equilibrium fully-developed state in the bend.

According to Yao and Berger [36], the entry length for a steady flow with a uniformly
distributed velocity at the entrance of a uniformly curved pipe is e1Re1/2(κD/2)−1/40.5D. For
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! The 3-D computational simulation of the flows was performed using an incompressible

Navier-Stokes solver called Nektar which is basis on a spectral/hp element method.
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Figure 1: Single and double bends (left) and helical bends (right) studied, with a constant circular
cross-section, a diameter D, and centrelines highlighted in dashed lines. The local versor N is depicted
at some locations and the value of the arc length s is shown at the extremes of lines and curves. In
straight regions, N was considered to have the same direction as in its adjacent curved region. (left)
The curvature of each bend is κ = 1

2D and the azimuthal angles between the plane of curvature of each
bend are indicated in degrees. (Modified from [24].) (right) The centrelines have a fixed helical radius of
0.125D and a pitch length of 3D and 5D.

11, 12, 13, 14, 15, 16, 17, 18]) or helical tubes of constant curvature and torsion (e.g. [14, 19, 20,
21, 22]). In particular regimes, researchers in the applied-mathematics community have reduced
the data to a handful of parameters by constructing asymptotic solutions ([7, 8, 19, 14, 16]).
However, without full knowledge of the details of the flow, the validity of the assumptions of
these flows is unknown. And even less well understood are the mechanisms responsible for the
complex flow phenomena observed in the sequences of non-planar bends with varying curvature
and torsion found in the arterial vasculature [17, 23, 24]. In these cases, the complexity of the
equations for the physiologically relevant range of parameters renders theoretical analysis rather
intractable.

Current numerical models and anatomical reconstruction techniques allow us to accurately
simulate haemodynamics in three-dimensional (3-D) patient-specific geometries. These simula-
tions are usually performed in localised areas of the arterial system (e.g. [25, 26, 27]), although
more recently within larger arterial networks [28]. Such simulations provide insight into clini-
cally relevant fluid dynamics, but unfortunately they often produce such large quantities of data
that they are unlikely to be of practical use in a clinical setting.

The aim of this work is to reduce the amount of data whilst retaining the important flow
features in order to investigate the effect of vascular geometry on the forces that govern the
generation and evolution of primary and secondary (in-plane) flows in curved vessels and their
association with axial velocity profiles, vortical structures and WSS distributions. For a given
vascular geometry, we express the Navier–Stokes and continuity equations in a centreline (local)
coordinate system. This allows us to decompose the effects of the geometry on the blood flow into
components: inertia (centrifugal, torsional and Coriolis), pressure and viscous forces and local
accelerations. Taking cross-sectional averages of these local quantities reduces the dynamics of
the system onto the vessel centreline.

We will first use this technique to investigate flow patterns in the idealised planar and non-
planar bends shown in Figure 1 (left), which loosely model, neglecting branches, the aortic arch
(135◦ case), the intracranial segment of the internal carotid artery (180◦ case), and a bypass
graft in a peripheral vessel with the proximal branch of the host vessel occluded (all the cases).
The small amplitude helical tubes in Figure 1 (right) will also be considered, since they have
been recently investigated for potential application as vascular protheses due to their favorable
in-plane mixing properties [4, 22]. All these geometries retain the dominant features of flow
structures while significantly reducing the number of parameters that define the problem [29].
The knowledge gained from these studies will then be applied to analyse the flow patterns in
the anatomically-correct carotid syphon shown in Figure 2.
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Figure 5: Cross-sectional averages CAN = CA′
N , −CFN , PGN , VFN and VN along the centreline of the

single bend in Figure 1 (left) at (a) Re = 125, (b) 250 and (c) 500. The dashed vertical lines indicate the
start and end of the curved region.

negligible compared to u
h

∂VN
∂s and (ii) u

h
∂VN
∂s is approximately proportional to ∂VN

∂s . Therefore,
the evolution of VN with s is mainly governed by CFN , PGN and VFN at Re ∈ [50, 500].

Although the Poiseuille inflow is first forced to turn by the wall at s = 2D, Figure 5 shows, at
different Re, that a centripetal (in the direction of N and toward the centre of curvature) PGN

gradually develops about s = D to anticipate the opposition to the discontinuous appearance
of CFN at s = 2D. Moreover, PGN starts vanishing before the end of the bend at s = 8.3D
to anticipate the discontinuous disappearance of CFN . For any s, VFN is centrifugal (in the
direction of N and away from the centre of curvature) and approximately 20% of −PGN at
Re = 50, 16% at Re = 125, 13% at Re = 250, 11% at Re = 375, and 10% at Re = 500. Using
the asymptotic model developed in [16] we obtained zero VN and CAN , and PGN = CFN +VFN

(Table 1) when the flow is fully developed and driven by a steady pressure gradient in an
uniformly curved pipe with the same Re and De numbers as in our single bend.

The results shown in Figures 4a, and 5 and Table 1 suggest that CAN and VN play the role
of the acceleration and velocity, respectively, of an under-damped oscillator around the fully-
developed state, with CFN the driving force, PGN the restoring force, and VFN a dissipative
force opposing PGN . With increasing Re the opposition of VFN decreases, but CFN becomes
stronger. As a result, CAN and VN oscillate with greater amplitudes around the fully-developed
state, so that it takes a longer distance for PGN to dump the oscillations of CAN and achieve
the equilibrium fully-developed state in the bend.

According to Yao and Berger [36], the entry length for a steady flow with a uniformly
distributed velocity at the entrance of a uniformly curved pipe is e1Re1/2(κD/2)−1/40.5D. For
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start and end of the curved region.
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∂s and (ii) u
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∂VN
∂s is approximately proportional to ∂VN

∂s . Therefore,
the evolution of VN with s is mainly governed by CFN , PGN and VFN at Re ∈ [50, 500].

Although the Poiseuille inflow is first forced to turn by the wall at s = 2D, Figure 5 shows, at
different Re, that a centripetal (in the direction of N and toward the centre of curvature) PGN

gradually develops about s = D to anticipate the opposition to the discontinuous appearance
of CFN at s = 2D. Moreover, PGN starts vanishing before the end of the bend at s = 8.3D
to anticipate the discontinuous disappearance of CFN . For any s, VFN is centrifugal (in the
direction of N and away from the centre of curvature) and approximately 20% of −PGN at
Re = 50, 16% at Re = 125, 13% at Re = 250, 11% at Re = 375, and 10% at Re = 500. Using
the asymptotic model developed in [16] we obtained zero VN and CAN , and PGN = CFN +VFN

(Table 1) when the flow is fully developed and driven by a steady pressure gradient in an
uniformly curved pipe with the same Re and De numbers as in our single bend.

The results shown in Figures 4a, and 5 and Table 1 suggest that CAN and VN play the role
of the acceleration and velocity, respectively, of an under-damped oscillator around the fully-
developed state, with CFN the driving force, PGN the restoring force, and VFN a dissipative
force opposing PGN . With increasing Re the opposition of VFN decreases, but CFN becomes
stronger. As a result, CAN and VN oscillate with greater amplitudes around the fully-developed
state, so that it takes a longer distance for PGN to dump the oscillations of CAN and achieve
the equilibrium fully-developed state in the bend.

According to Yao and Berger [36], the entry length for a steady flow with a uniformly
distributed velocity at the entrance of a uniformly curved pipe is e1Re1/2(κD/2)−1/40.5D. For
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Figure 1: Single and double bends (left) and helical bends (right) studied, with a constant circular
cross-section, a diameter D, and centrelines highlighted in dashed lines. The local versor N is depicted
at some locations and the value of the arc length s is shown at the extremes of lines and curves. In
straight regions, N was considered to have the same direction as in its adjacent curved region. (left)
The curvature of each bend is κ = 1

2D and the azimuthal angles between the plane of curvature of each
bend are indicated in degrees. (Modified from [24].) (right) The centrelines have a fixed helical radius of
0.125D and a pitch length of 3D and 5D.

11, 12, 13, 14, 15, 16, 17, 18]) or helical tubes of constant curvature and torsion (e.g. [14, 19, 20,
21, 22]). In particular regimes, researchers in the applied-mathematics community have reduced
the data to a handful of parameters by constructing asymptotic solutions ([7, 8, 19, 14, 16]).
However, without full knowledge of the details of the flow, the validity of the assumptions of
these flows is unknown. And even less well understood are the mechanisms responsible for the
complex flow phenomena observed in the sequences of non-planar bends with varying curvature
and torsion found in the arterial vasculature [17, 23, 24]. In these cases, the complexity of the
equations for the physiologically relevant range of parameters renders theoretical analysis rather
intractable.

Current numerical models and anatomical reconstruction techniques allow us to accurately
simulate haemodynamics in three-dimensional (3-D) patient-specific geometries. These simula-
tions are usually performed in localised areas of the arterial system (e.g. [25, 26, 27]), although
more recently within larger arterial networks [28]. Such simulations provide insight into clini-
cally relevant fluid dynamics, but unfortunately they often produce such large quantities of data
that they are unlikely to be of practical use in a clinical setting.

The aim of this work is to reduce the amount of data whilst retaining the important flow
features in order to investigate the effect of vascular geometry on the forces that govern the
generation and evolution of primary and secondary (in-plane) flows in curved vessels and their
association with axial velocity profiles, vortical structures and WSS distributions. For a given
vascular geometry, we express the Navier–Stokes and continuity equations in a centreline (local)
coordinate system. This allows us to decompose the effects of the geometry on the blood flow into
components: inertia (centrifugal, torsional and Coriolis), pressure and viscous forces and local
accelerations. Taking cross-sectional averages of these local quantities reduces the dynamics of
the system onto the vessel centreline.

We will first use this technique to investigate flow patterns in the idealised planar and non-
planar bends shown in Figure 1 (left), which loosely model, neglecting branches, the aortic arch
(135◦ case), the intracranial segment of the internal carotid artery (180◦ case), and a bypass
graft in a peripheral vessel with the proximal branch of the host vessel occluded (all the cases).
The small amplitude helical tubes in Figure 1 (right) will also be considered, since they have
been recently investigated for potential application as vascular protheses due to their favorable
in-plane mixing properties [4, 22]. All these geometries retain the dominant features of flow
structures while significantly reducing the number of parameters that define the problem [29].
The knowledge gained from these studies will then be applied to analyse the flow patterns in
the anatomically-correct carotid syphon shown in Figure 2.
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!  A curvature conforming, high order mesh generation was applied to accurately represent

the geometry.

! The 3-D computational simulation of the flows was performed using an incompressible

Navier-Stokes solver called Nektar which is basis on a spectral/hp element method.
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Figure 4: Cross-sectional averages CA′
N , CA′

B (dashed lines), ∂VN
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∂s (solid lines) along the
centreline of (a) the single bend, (b) double bend with a 90◦ azimuthal angle, and (c) helical bend with a
pitch length of 5D in Figure 1 at Re = 125. They were nondimensionalised by their maximum values and
are shown in black in the N–direction and in red in the B–direction. The dashed vertical lines indicate
the start and end of the curved regions.
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Figure 5: Cross-sectional averages CAN = CA′
N , −CFN , PGN , VFN and VN along the centreline of the

single bend in Figure 1 (left) at (a) Re = 125, (b) 250 and (c) 500. The dashed vertical lines indicate the
start and end of the curved region.

negligible compared to u
h

∂VN
∂s and (ii) u

h
∂VN
∂s is approximately proportional to ∂VN

∂s . Therefore,
the evolution of VN with s is mainly governed by CFN , PGN and VFN at Re ∈ [50, 500].

Although the Poiseuille inflow is first forced to turn by the wall at s = 2D, Figure 5 shows, at
different Re, that a centripetal (in the direction of N and toward the centre of curvature) PGN

gradually develops about s = D to anticipate the opposition to the discontinuous appearance
of CFN at s = 2D. Moreover, PGN starts vanishing before the end of the bend at s = 8.3D
to anticipate the discontinuous disappearance of CFN . For any s, VFN is centrifugal (in the
direction of N and away from the centre of curvature) and approximately 20% of −PGN at
Re = 50, 16% at Re = 125, 13% at Re = 250, 11% at Re = 375, and 10% at Re = 500. Using
the asymptotic model developed in [16] we obtained zero VN and CAN , and PGN = CFN +VFN

(Table 1) when the flow is fully developed and driven by a steady pressure gradient in an
uniformly curved pipe with the same Re and De numbers as in our single bend.

The results shown in Figures 4a, and 5 and Table 1 suggest that CAN and VN play the role
of the acceleration and velocity, respectively, of an under-damped oscillator around the fully-
developed state, with CFN the driving force, PGN the restoring force, and VFN a dissipative
force opposing PGN . With increasing Re the opposition of VFN decreases, but CFN becomes
stronger. As a result, CAN and VN oscillate with greater amplitudes around the fully-developed
state, so that it takes a longer distance for PGN to dump the oscillations of CAN and achieve
the equilibrium fully-developed state in the bend.

According to Yao and Berger [36], the entry length for a steady flow with a uniformly
distributed velocity at the entrance of a uniformly curved pipe is e1Re1/2(κD/2)−1/40.5D. For
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negligible compared to u
h

∂VN
∂s and (ii) u

h
∂VN
∂s is approximately proportional to ∂VN

∂s . Therefore,
the evolution of VN with s is mainly governed by CFN , PGN and VFN at Re ∈ [50, 500].

Although the Poiseuille inflow is first forced to turn by the wall at s = 2D, Figure 5 shows, at
different Re, that a centripetal (in the direction of N and toward the centre of curvature) PGN

gradually develops about s = D to anticipate the opposition to the discontinuous appearance
of CFN at s = 2D. Moreover, PGN starts vanishing before the end of the bend at s = 8.3D
to anticipate the discontinuous disappearance of CFN . For any s, VFN is centrifugal (in the
direction of N and away from the centre of curvature) and approximately 20% of −PGN at
Re = 50, 16% at Re = 125, 13% at Re = 250, 11% at Re = 375, and 10% at Re = 500. Using
the asymptotic model developed in [16] we obtained zero VN and CAN , and PGN = CFN +VFN

(Table 1) when the flow is fully developed and driven by a steady pressure gradient in an
uniformly curved pipe with the same Re and De numbers as in our single bend.

The results shown in Figures 4a, and 5 and Table 1 suggest that CAN and VN play the role
of the acceleration and velocity, respectively, of an under-damped oscillator around the fully-
developed state, with CFN the driving force, PGN the restoring force, and VFN a dissipative
force opposing PGN . With increasing Re the opposition of VFN decreases, but CFN becomes
stronger. As a result, CAN and VN oscillate with greater amplitudes around the fully-developed
state, so that it takes a longer distance for PGN to dump the oscillations of CAN and achieve
the equilibrium fully-developed state in the bend.

According to Yao and Berger [36], the entry length for a steady flow with a uniformly
distributed velocity at the entrance of a uniformly curved pipe is e1Re1/2(κD/2)−1/40.5D. For
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! The 3-D computational simulation of the flows was performed using an incompressible

Navier-Stokes solver called Nektar which is basis on a spectral/hp element method.
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Figure 1: Single and double bends (left) and helical bends (right) studied, with a constant circular
cross-section, a diameter D, and centrelines highlighted in dashed lines. The local versor N is depicted
at some locations and the value of the arc length s is shown at the extremes of lines and curves. In
straight regions, N was considered to have the same direction as in its adjacent curved region. (left)
The curvature of each bend is κ = 1

2D and the azimuthal angles between the plane of curvature of each
bend are indicated in degrees. (Modified from [24].) (right) The centrelines have a fixed helical radius of
0.125D and a pitch length of 3D and 5D.

11, 12, 13, 14, 15, 16, 17, 18]) or helical tubes of constant curvature and torsion (e.g. [14, 19, 20,
21, 22]). In particular regimes, researchers in the applied-mathematics community have reduced
the data to a handful of parameters by constructing asymptotic solutions ([7, 8, 19, 14, 16]).
However, without full knowledge of the details of the flow, the validity of the assumptions of
these flows is unknown. And even less well understood are the mechanisms responsible for the
complex flow phenomena observed in the sequences of non-planar bends with varying curvature
and torsion found in the arterial vasculature [17, 23, 24]. In these cases, the complexity of the
equations for the physiologically relevant range of parameters renders theoretical analysis rather
intractable.

Current numerical models and anatomical reconstruction techniques allow us to accurately
simulate haemodynamics in three-dimensional (3-D) patient-specific geometries. These simula-
tions are usually performed in localised areas of the arterial system (e.g. [25, 26, 27]), although
more recently within larger arterial networks [28]. Such simulations provide insight into clini-
cally relevant fluid dynamics, but unfortunately they often produce such large quantities of data
that they are unlikely to be of practical use in a clinical setting.

The aim of this work is to reduce the amount of data whilst retaining the important flow
features in order to investigate the effect of vascular geometry on the forces that govern the
generation and evolution of primary and secondary (in-plane) flows in curved vessels and their
association with axial velocity profiles, vortical structures and WSS distributions. For a given
vascular geometry, we express the Navier–Stokes and continuity equations in a centreline (local)
coordinate system. This allows us to decompose the effects of the geometry on the blood flow into
components: inertia (centrifugal, torsional and Coriolis), pressure and viscous forces and local
accelerations. Taking cross-sectional averages of these local quantities reduces the dynamics of
the system onto the vessel centreline.

We will first use this technique to investigate flow patterns in the idealised planar and non-
planar bends shown in Figure 1 (left), which loosely model, neglecting branches, the aortic arch
(135◦ case), the intracranial segment of the internal carotid artery (180◦ case), and a bypass
graft in a peripheral vessel with the proximal branch of the host vessel occluded (all the cases).
The small amplitude helical tubes in Figure 1 (right) will also be considered, since they have
been recently investigated for potential application as vascular protheses due to their favorable
in-plane mixing properties [4, 22]. All these geometries retain the dominant features of flow
structures while significantly reducing the number of parameters that define the problem [29].
The knowledge gained from these studies will then be applied to analyse the flow patterns in
the anatomically-correct carotid syphon shown in Figure 2.
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!  A curvature conforming, high order mesh generation was applied to accurately represent

the geometry.

! The 3-D computational simulation of the flows was performed using an incompressible

Navier-Stokes solver called Nektar which is basis on a spectral/hp element method.

0 model

45

90135

180

s=0
2D (2+!)D

(8+2!)D

s=8+2! s=8+2!

(2+2!)D

(8+2!)D

(8+2!)D

(8+2!)D

(8+2!)D
N

N
N

N

N

N N

CAN ∼ ∂VN

∂s
CAB ∼

∂VB

∂s

mainly governed by

Text

! " # $ %&

!&

!%

!

%

s
! " # $ %&

!%

!

%

s! " # $ %&

!%

!

%

s

no
rm

 C
A

N
 &

 d
V

N
/d

s

ss

Single bend, 0(a) (b) Double bend, 90
oo

Helix, 5D(c)

s

_

Figure 4: Cross-sectional averages CA′
N , CA′

B (dashed lines), ∂VN
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pitch length of 5D in Figure 1 at Re = 125. They were nondimensionalised by their maximum values and
are shown in black in the N–direction and in red in the B–direction. The dashed vertical lines indicate
the start and end of the curved regions.
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Figure 5: Cross-sectional averages CAN = CA′
N , −CFN , PGN , VFN and VN along the centreline of the

single bend in Figure 1 (left) at (a) Re = 125, (b) 250 and (c) 500. The dashed vertical lines indicate the
start and end of the curved region.

negligible compared to u
h

∂VN
∂s and (ii) u

h
∂VN
∂s is approximately proportional to ∂VN

∂s . Therefore,
the evolution of VN with s is mainly governed by CFN , PGN and VFN at Re ∈ [50, 500].

Although the Poiseuille inflow is first forced to turn by the wall at s = 2D, Figure 5 shows, at
different Re, that a centripetal (in the direction of N and toward the centre of curvature) PGN

gradually develops about s = D to anticipate the opposition to the discontinuous appearance
of CFN at s = 2D. Moreover, PGN starts vanishing before the end of the bend at s = 8.3D
to anticipate the discontinuous disappearance of CFN . For any s, VFN is centrifugal (in the
direction of N and away from the centre of curvature) and approximately 20% of −PGN at
Re = 50, 16% at Re = 125, 13% at Re = 250, 11% at Re = 375, and 10% at Re = 500. Using
the asymptotic model developed in [16] we obtained zero VN and CAN , and PGN = CFN +VFN

(Table 1) when the flow is fully developed and driven by a steady pressure gradient in an
uniformly curved pipe with the same Re and De numbers as in our single bend.

The results shown in Figures 4a, and 5 and Table 1 suggest that CAN and VN play the role
of the acceleration and velocity, respectively, of an under-damped oscillator around the fully-
developed state, with CFN the driving force, PGN the restoring force, and VFN a dissipative
force opposing PGN . With increasing Re the opposition of VFN decreases, but CFN becomes
stronger. As a result, CAN and VN oscillate with greater amplitudes around the fully-developed
state, so that it takes a longer distance for PGN to dump the oscillations of CAN and achieve
the equilibrium fully-developed state in the bend.

According to Yao and Berger [36], the entry length for a steady flow with a uniformly
distributed velocity at the entrance of a uniformly curved pipe is e1Re1/2(κD/2)−1/40.5D. For
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!  A curvature conforming, high order mesh generation was applied to accurately represent

the geometry.

! The 3-D computational simulation of the flows was performed using an incompressible

Navier-Stokes solver called Nektar which is basis on a spectral/hp element method.
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Figure 4: Cross-sectional averages CA′
N , CA′

B (dashed lines), ∂VN
∂s and ∂VB

∂s (solid lines) along the
centreline of (a) the single bend, (b) double bend with a 90◦ azimuthal angle, and (c) helical bend with a
pitch length of 5D in Figure 1 at Re = 125. They were nondimensionalised by their maximum values and
are shown in black in the N–direction and in red in the B–direction. The dashed vertical lines indicate
the start and end of the curved regions.
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Figure 5: Cross-sectional averages CAN = CA′
N , −CFN , PGN , VFN and VN along the centreline of the

single bend in Figure 1 (left) at (a) Re = 125, (b) 250 and (c) 500. The dashed vertical lines indicate the
start and end of the curved region.

negligible compared to u
h

∂VN
∂s and (ii) u

h
∂VN
∂s is approximately proportional to ∂VN

∂s . Therefore,
the evolution of VN with s is mainly governed by CFN , PGN and VFN at Re ∈ [50, 500].

Although the Poiseuille inflow is first forced to turn by the wall at s = 2D, Figure 5 shows, at
different Re, that a centripetal (in the direction of N and toward the centre of curvature) PGN

gradually develops about s = D to anticipate the opposition to the discontinuous appearance
of CFN at s = 2D. Moreover, PGN starts vanishing before the end of the bend at s = 8.3D
to anticipate the discontinuous disappearance of CFN . For any s, VFN is centrifugal (in the
direction of N and away from the centre of curvature) and approximately 20% of −PGN at
Re = 50, 16% at Re = 125, 13% at Re = 250, 11% at Re = 375, and 10% at Re = 500. Using
the asymptotic model developed in [16] we obtained zero VN and CAN , and PGN = CFN +VFN

(Table 1) when the flow is fully developed and driven by a steady pressure gradient in an
uniformly curved pipe with the same Re and De numbers as in our single bend.

The results shown in Figures 4a, and 5 and Table 1 suggest that CAN and VN play the role
of the acceleration and velocity, respectively, of an under-damped oscillator around the fully-
developed state, with CFN the driving force, PGN the restoring force, and VFN a dissipative
force opposing PGN . With increasing Re the opposition of VFN decreases, but CFN becomes
stronger. As a result, CAN and VN oscillate with greater amplitudes around the fully-developed
state, so that it takes a longer distance for PGN to dump the oscillations of CAN and achieve
the equilibrium fully-developed state in the bend.

According to Yao and Berger [36], the entry length for a steady flow with a uniformly
distributed velocity at the entrance of a uniformly curved pipe is e1Re1/2(κD/2)−1/40.5D. For
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∂s (solid lines) along the
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pitch length of 5D in Figure 1 at Re = 125. They were nondimensionalised by their maximum values and
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the start and end of the curved regions.
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N , −CFN , PGN , VFN and VN along the centreline of the

single bend in Figure 1 (left) at (a) Re = 125, (b) 250 and (c) 500. The dashed vertical lines indicate the
start and end of the curved region.

negligible compared to u
h

∂VN
∂s and (ii) u

h
∂VN
∂s is approximately proportional to ∂VN

∂s . Therefore,
the evolution of VN with s is mainly governed by CFN , PGN and VFN at Re ∈ [50, 500].

Although the Poiseuille inflow is first forced to turn by the wall at s = 2D, Figure 5 shows, at
different Re, that a centripetal (in the direction of N and toward the centre of curvature) PGN

gradually develops about s = D to anticipate the opposition to the discontinuous appearance
of CFN at s = 2D. Moreover, PGN starts vanishing before the end of the bend at s = 8.3D
to anticipate the discontinuous disappearance of CFN . For any s, VFN is centrifugal (in the
direction of N and away from the centre of curvature) and approximately 20% of −PGN at
Re = 50, 16% at Re = 125, 13% at Re = 250, 11% at Re = 375, and 10% at Re = 500. Using
the asymptotic model developed in [16] we obtained zero VN and CAN , and PGN = CFN +VFN

(Table 1) when the flow is fully developed and driven by a steady pressure gradient in an
uniformly curved pipe with the same Re and De numbers as in our single bend.

The results shown in Figures 4a, and 5 and Table 1 suggest that CAN and VN play the role
of the acceleration and velocity, respectively, of an under-damped oscillator around the fully-
developed state, with CFN the driving force, PGN the restoring force, and VFN a dissipative
force opposing PGN . With increasing Re the opposition of VFN decreases, but CFN becomes
stronger. As a result, CAN and VN oscillate with greater amplitudes around the fully-developed
state, so that it takes a longer distance for PGN to dump the oscillations of CAN and achieve
the equilibrium fully-developed state in the bend.

According to Yao and Berger [36], the entry length for a steady flow with a uniformly
distributed velocity at the entrance of a uniformly curved pipe is e1Re1/2(κD/2)−1/40.5D. For

8

Higher Reynolds numbers
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11.1DTorsional force

(8) and (9) satisfies ΩVNT = −Ω ×VN, VN = VNN. If we chose Ω = uκh−1 then û = 0 (i.e.
the rotating frame is moving with the local axial velocity u at a particular (s, r, θ)) and

CAs(u) = −ΩVN +
u2

h

∂

∂s
(lnh− lnκ) +

h

κ
DΩ, (10)

Co(u) = ΩVN . (11)
Equation (11) shows that CoT = −Ω×VN; i.e. Co is half of the usual Coriolis force per unit
of mass arising from κ, VN and u. The other half arises from CAs according to Equation (10).

If τ = 0 and κ is constant, Equations (4) to (7) reduce to the Navier–Stokes and continuity
equations in toroidal coordinates. If also κ = 0, they reduce to the Navier–Stokes and continuity
equations in cylindrical coordinates.

3.2 Forces and accelerations in the direction of T, N and B

We will analyse the flow dynamics by looking at the forces, accelerations and velocities in the
direction of T, N and B. The forces per unit of mass and acceleration in Equation (4) have
the direction of T, since as = T. To obtain these quantities in the direction of N (CAN , CFN ,
PGN and VFN ) and B (CAB, CFB, PGB and VFB) we need to project the terms in Equations
(5) and (6) onto N and B; i.e.

ξN = −ξr sin (θ + φ)− ξθ cos (θ + φ),

ξB = ξr cos (θ + φ)− ξθ sin (θ + φ),
with ξ = CA, CF, PG or VF. These projections lead to

CAN =
u

h

(
∂VN

∂s
− τVB

)
+ VN

∂VN

∂n
+ VB

∂VN

∂b
, (12)

CAB =
u

h

(
∂VB

∂s
+ τVN

)
+ VB

∂VB

∂b
+ VN

∂VB

∂n
, (13)

CFN = −κu2

h
, CFB = 0, (14)

PGN = −1
ρ

∂p

∂n
, PGB = −1

ρ

∂p

∂b
, (15)

where VB = v cos (θ + φ)−w sin (θ + φ) is the component of the secondary motion in the direction
of B, n = −r sin (θ + φ) the coordinate in the direction of N, and b = r cos (θ + φ) the coordinate
in the direction of B. We now define the torsional forces TFN and TFB,

TFN =
τu

h
VB, (16)

TFB = −τu

h
VN , (17)

and the local convective accelerations CA′
N and CA′

B

CA′
N =

u
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∂VN
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+ VN

∂VN

∂n
+ VB

∂VN

∂b
, (18)

CA′
B =

u

h

∂VB

∂s
+ VB

∂VB

∂b
+ VN

∂VB

∂n
, (19)

so that we are left with the following balance of in-plane momentum

CA′
N = CFN + TFN + PGN + VFN , (20)

CA′
B = TFB + PGB + VFB. (21)

Note that direct projection of the Cartesian convective acceleration, pressure gradient force
and viscous force onto T, N and B leads to (CAs−Co, PGs, VFs), (CA′

N −CFN −TFN , PGN ,
VFN ), and (CA′

B − TFB, PGB, VFB), respectively, but it does not separate the convective
acceleration from the inertia forces Co, CFN , TFN and TFB, which depend on κ and τ explicitly.
We will use these forces to quantify the effect of κ and τ on flow patterns.
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where VB = v cos (θ + φ)−w sin (θ + φ) is the component of the secondary motion in the direction
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so that we are left with the following balance of in-plane momentum

CA′
N = CFN + TFN + PGN + VFN , (20)

CA′
B = TFB + PGB + VFB. (21)

Note that direct projection of the Cartesian convective acceleration, pressure gradient force
and viscous force onto T, N and B leads to (CAs−Co, PGs, VFs), (CA′

N −CFN −TFN , PGN ,
VFN ), and (CA′

B − TFB, PGB, VFB), respectively, but it does not separate the convective
acceleration from the inertia forces Co, CFN , TFN and TFB, which depend on κ and τ explicitly.
We will use these forces to quantify the effect of κ and τ on flow patterns.
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To understand the physical meaning of Co, which arises from κ (as do CFr and CFθ), we
transform the velocity field V = (u, v, w) at a particular R(s) to a coordinate system rotating
with angular velocity Ω = Ω(s, r, θ)B about C. The velocity components of a fluid element at
a particular (s, r, θ) with respect to this coordinate system are (û, v, w), with u = û + hκ−1Ω.
Substitution of this expression for u into CAs and Co in Eq. (5) yields

CAs(u) = CAs(û)− ΩVN +
Ω
κ

[
∂û

∂s
+ u

∂

∂s
(lnh− lnκ)

]
+

h

κ
DΩ, (8)

Co(u) = Co(û) + ΩVN , (9)

where VN = −v sin (θ + φ) − w cos (θ + φ) is the component of the secondary motion in the
direction of N with respect to both the rotating and local frames. The term ΩVN in Eqs. (8)
and (9) satisfies ΩVNT = −Ω×VN, VN = VNN. If we chose Ω = uκh−1, then û = 0 (i.e. the
rotating frame is moving with the local axial velocity u at a particular (s, r, θ)) and

CAs(u) = −ΩVN +
u2

h

∂

∂s
(lnh− lnκ) +

h

κ
DΩ, (10)

Co(u) = ΩVN . (11)

Eq. (11) shows that CoT = −Ω × VN; i.e. Co is half of the usual Coriolis force per unit of
mass arising from κ, VN and u. The other half arises from CAs according to Eq. (10).

Eqs. (4) to (7) reduce to the continuity and Navier–Stokes equations in toroidal coordinates
if τ = 0 and κ is constant, and in cylindrical coordinates if τ = 0 and κ = 0.

3.2 Forces and accelerations in the direction of T, N and B

We will analyse the forces, accelerations and velocities in the direction of T, N and B to inves-
tigate mechanisms underlying flow patterns in curved vessels. The local forces and acceleration
in Eq. (5) have the direction of T, since as = T. To obtain these quantities in the direction
of N (CAN , CFN , PGN and VFN ) and B (CAB, CFB, PGB and VFB) we need to project the
terms in Eqs. (6) and (7) onto N and B; i.e.

ξN = −ξr sin (θ + φ)− ξθ cos (θ + φ),

ξB = ξr cos (θ + φ)− ξθ sin (θ + φ),

with ξ = CA, CF, PG or VF. These projections lead to

CAN =
u

h

(
∂VN

∂s
− τVB

)
+ VN

∂VN

∂n
+ VB

∂VN
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, (12)

CAB =
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(
∂VB

∂s
+ τVN

)
+ VB

∂VB

∂b
+ VN

∂VB

∂n
, (13)

CFN = −κu2

h
, CFB = 0, (14)

PGN = −1
ρ

∂p

∂n
, PGB = −1

ρ

∂p

∂b
, (15)

where VB = v cos (θ + φ)−w sin (θ + φ) is the component of the secondary motion in the direction
of B, n = −r sin (θ + φ) a coordinate in the direction of N, and b = r cos (θ + φ) a coordinate
in the direction of B. We now define the local torsional force TF = (0,TFN ,TFB) with

TFN =
τu

h
VB, TFB = −τu

h
VN , (16)

and convective accelerations CA′
N and CA′

B,

CA′
N =

u

h

∂VN

∂s
+ VN

∂VN

∂n
+ VB

∂VN

∂b
, (17)
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Re CFN PGN VFN

50 −0.64 0.79 −0.15
125 −0.61 0.72 −0.11
250 −0.60 0.68 −0.08
375 −0.59 0.65 −0.07
500 −0.58 0.64 −0.06

Table 1: Cross-sectionally averaged centrifugal CFN , pressure gradient PGN and viscous VFN forces
per unit of mass for fully-developed flow at several Re. They were calculated using the model in [19].
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Figure 7: Contours of the centrifugal CFN , Coriolis Co and axial pressure gradient PGs forces per unit
of mass at Re = 125, for the (top) single bend at s = 6.75D and (bottom) fully-developed flow calculated
using the model in [19]. The local N and B are orientated as shown in (a).

shows good qualitative and quantitative agreements (Fig. 7). Significant discrepancies exist,
however, at larger Re; e.g. at Re = 500 there are three pairs of counter-rotating vortices at
s = 6D (Fig. 4c,g), but only one pair for the fully-developed flow (Fig. 4h). Although the
corresponding axial velocity profiles are more similar (Fig. 4c,d), the absence of a plateau in all
the averages in Fig. 6c indicates the flow is far from full development.

The results in Figs. 5a,6 and Table 1 suggest that, within a single planar bend, CAN and VN

play the role of the acceleration and velocity, respectively, of an underdamped oscillator around
the fully-developed state, with CFN the driving force, PGN the restoring force, and VFN the
frictional force opposing PGN . With the increasing Re, the development of PGN before the
bend diminishes, as does the opposition of VFN at any point. However, the peak PGN increases
to restore greater centrifugal CAN around the fully-developed state at the start of the bend
(Figs. 6). It takes a longer distance for PGN to achieve the fully-developed (equilibrium) state.

4.2 Effect of the torsional forces TFN and TFB on in-plane flow patterns

If τ is nonzero, the secondary motions VN and VB generated by CFN yield TFB and TFN , respec-
tively (Eq. (16)). Less than 0.1D inside our helical regions at Re = 125, TF = (0,TFN ,TFB)
yields a clockwise rotational acceleration of the fluid particles in the core flow (Fig. 8g) that
rotates the two vortices being developed. As we move downstream, TF yields an anticlockwise
acceleration in the lateral of B (Fig. 8h) that prevents the outer vortex from further rotating
clockwise. Moreover, TF pushes the inner vortex toward the N,B–quadrant (i.e. the quad-
rant bounded by N and B), increasing the size of the outer vortex and its ωs (Fig. 8e). This
dominates over the inner vortex (Fig. 8b), more significantly with the increasing τ and De.

Before the vessel bends and twists, in-plane PG anticipates CFN (like in planar vessels) and
TF. Wall p increases at the outer wall on the side opposite to B, so that in-plane PG accelerates
the flow toward the N,B–quadrant (Fig. 8a,i). Thus PGB is positive to counterbalance the
negative TFB at the start of the helix. Wall traction −WSθ (Fig. 8w) produces wall ωs (Fig.
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(8) and (9) satisfies ΩVNT = −Ω ×VN, VN = VNN. If we chose Ω = uκh−1 then û = 0 (i.e.
the rotating frame is moving with the local axial velocity u at a particular (s, r, θ)) and

CAs(u) = −ΩVN +
u2

h

∂

∂s
(lnh− lnκ) +

h

κ
DΩ, (10)

Co(u) = ΩVN . (11)
Equation (11) shows that CoT = −Ω×VN; i.e. Co is half of the usual Coriolis force per unit
of mass arising from κ, VN and u. The other half arises from CAs according to Equation (10).

If τ = 0 and κ is constant, Equations (4) to (7) reduce to the Navier–Stokes and continuity
equations in toroidal coordinates. If also κ = 0, they reduce to the Navier–Stokes and continuity
equations in cylindrical coordinates.

3.2 Forces and accelerations in the direction of T, N and B

We will analyse the flow dynamics by looking at the forces, accelerations and velocities in the
direction of T, N and B. The forces per unit of mass and acceleration in Equation (4) have
the direction of T, since as = T. To obtain these quantities in the direction of N (CAN , CFN ,
PGN and VFN ) and B (CAB, CFB, PGB and VFB) we need to project the terms in Equations
(5) and (6) onto N and B; i.e.

ξN = −ξr sin (θ + φ)− ξθ cos (θ + φ),

ξB = ξr cos (θ + φ)− ξθ sin (θ + φ),
with ξ = CA, CF, PG or VF. These projections lead to

CAN =
u

h

(
∂VN

∂s
− τVB

)
+ VN

∂VN

∂n
+ VB

∂VN

∂b
, (12)

CAB =
u

h

(
∂VB

∂s
+ τVN

)
+ VB

∂VB

∂b
+ VN

∂VB

∂n
, (13)

CFN = −κu2

h
, CFB = 0, (14)

PGN = −1
ρ

∂p

∂n
, PGB = −1

ρ

∂p

∂b
, (15)

where VB = v cos (θ + φ)−w sin (θ + φ) is the component of the secondary motion in the direction
of B, n = −r sin (θ + φ) the coordinate in the direction of N, and b = r cos (θ + φ) the coordinate
in the direction of B. We now define the torsional forces TFN and TFB,

TFN =
τu

h
VB, (16)

TFB = −τu

h
VN , (17)

and the local convective accelerations CA′
N and CA′

B

CA′
N =

u

h

∂VN

∂s
+ VN

∂VN

∂n
+ VB

∂VN

∂b
, (18)

CA′
B =

u

h

∂VB

∂s
+ VB

∂VB

∂b
+ VN

∂VB

∂n
, (19)

so that we are left with the following balance of in-plane momentum

CA′
N = CFN + TFN + PGN + VFN , (20)

CA′
B = TFB + PGB + VFB. (21)

Note that direct projection of the Cartesian convective acceleration, pressure gradient force
and viscous force onto T, N and B leads to (CAs−Co, PGs, VFs), (CA′

N −CFN −TFN , PGN ,
VFN ), and (CA′

B − TFB, PGB, VFB), respectively, but it does not separate the convective
acceleration from the inertia forces Co, CFN , TFN and TFB, which depend on κ and τ explicitly.
We will use these forces to quantify the effect of κ and τ on flow patterns.
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CAs(u) = −ΩVN +
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∂
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(lnh− lnκ) +

h

κ
DΩ, (10)

Co(u) = ΩVN . (11)
Equation (11) shows that CoT = −Ω×VN; i.e. Co is half of the usual Coriolis force per unit
of mass arising from κ, VN and u. The other half arises from CAs according to Equation (10).

If τ = 0 and κ is constant, Equations (4) to (7) reduce to the Navier–Stokes and continuity
equations in toroidal coordinates. If also κ = 0, they reduce to the Navier–Stokes and continuity
equations in cylindrical coordinates.

3.2 Forces and accelerations in the direction of T, N and B

We will analyse the flow dynamics by looking at the forces, accelerations and velocities in the
direction of T, N and B. The forces per unit of mass and acceleration in Equation (4) have
the direction of T, since as = T. To obtain these quantities in the direction of N (CAN , CFN ,
PGN and VFN ) and B (CAB, CFB, PGB and VFB) we need to project the terms in Equations
(5) and (6) onto N and B; i.e.

ξN = −ξr sin (θ + φ)− ξθ cos (θ + φ),

ξB = ξr cos (θ + φ)− ξθ sin (θ + φ),
with ξ = CA, CF, PG or VF. These projections lead to

CAN =
u

h

(
∂VN

∂s
− τVB

)
+ VN

∂VN

∂n
+ VB

∂VN

∂b
, (12)

CAB =
u

h

(
∂VB

∂s
+ τVN

)
+ VB

∂VB

∂b
+ VN

∂VB

∂n
, (13)

CFN = −κu2

h
, CFB = 0, (14)

PGN = −1
ρ

∂p

∂n
, PGB = −1

ρ

∂p

∂b
, (15)

where VB = v cos (θ + φ)−w sin (θ + φ) is the component of the secondary motion in the direction
of B, n = −r sin (θ + φ) the coordinate in the direction of N, and b = r cos (θ + φ) the coordinate
in the direction of B. We now define the torsional forces TFN and TFB,

TFN =
τu

h
VB, (16)

TFB = −τu

h
VN , (17)

and the local convective accelerations CA′
N and CA′

B

CA′
N =

u

h

∂VN

∂s
+ VN

∂VN

∂n
+ VB

∂VN

∂b
, (18)

CA′
B =

u

h

∂VB

∂s
+ VB

∂VB

∂b
+ VN

∂VB

∂n
, (19)

so that we are left with the following balance of in-plane momentum

CA′
N = CFN + TFN + PGN + VFN , (20)

CA′
B = TFB + PGB + VFB. (21)

Note that direct projection of the Cartesian convective acceleration, pressure gradient force
and viscous force onto T, N and B leads to (CAs−Co, PGs, VFs), (CA′

N −CFN −TFN , PGN ,
VFN ), and (CA′

B − TFB, PGB, VFB), respectively, but it does not separate the convective
acceleration from the inertia forces Co, CFN , TFN and TFB, which depend on κ and τ explicitly.
We will use these forces to quantify the effect of κ and τ on flow patterns.
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3.4 Vorticity and wall shear stress

The components of the vorticity vector ω = ∇× (u, v, w) in local coordinates are [29]

ωs = ω · T =
1
r

∂(rw)
∂r

− 1
r

∂v

∂θ
,

ωr =
1
rh

[
∂(hu)

∂θ
− r

∂w

∂s

]
,

ωθ =
1
h

[
∂v

∂s
− ∂(hu)

∂r

]
,

which reduce to (ws, wr, wθ) = (0, 0, 16Ur/D2) for Poiseuille flow.
In local coordinates, the WSS has an axial WSs and circumferential WSθ components. They

take the form
WSs = −νρ

∂u

∂r

∣∣∣∣
r=D/2

, WSθ = −νρ
∂w

∂r

∣∣∣∣
r=D/2

,

so that the tangential traction by the wall on the flow is WS = −(WSs, 0, WSθ). For the
incompressible, Newtonian fluid we are considering, WS = νρω × n is satisfied at the wall
surface (r = D/2), where n is the wall normal. This expression leads to

WSs = νρωθ|r=D/2 , WSθ = −νρωs|r=D/2 . (17)

4 Results and discussion

The centreline analysis was applied to study the steady flow fields simulated in the geometries
shown in Figures 1 and 2. We first present the results obtained in the single (Section 4.1) and
double (Section 4.2) bends, in which a step injection of κ occurs alone or combined with an
impulse injection of τ , respectively. We then present the results in the helical bends (Section
4.3), in which a step injection of both κ and τ occurs. Finally, we present the results in the
anatomically-correct geometry (Section 4.4), in which κ and τ are continuously injected.

In all the cases, the errors in the balance of momentum in Cartesian and local coordinates
were of the same order and could not be appreciated in the scales of Figures 4, 10 and 11. The
slices shown in Figures 5 to 8 are perpendicular to T (observed from downstream to upstream)
and have the in-plane vectors N and B orientated as depicted in Figure 5j.

The velocities, accelerations and forces in the idealised geometries will be compared with
the corresponding quantities calculated from the fully-developed Cartesian velocities driven by
a steady pressure gradient in a uniformly curved pipe with the same Re and De numbers,
simulated using the method described in [13].

4.1 Flow patterns in the planar single bend

Secondary flows in the planar single bend (Figure 1, left) and the local forces and accelerations
that generate and develop them are symmetrical along N, as Figures 5 to 9 show at several cross-
sections for Re = 125 and De = 353.6. Their components in the direction of B are antisymmetric
along N. Consequently, the cross-sectional averages CFN , PGN , CAN , VFN and V N are, in
general, non-zero throughout the bend, and PGB, CAB, VFB and V B are zero. Moreover, CAN

is approximately proportional to ∂V N
∂s for Re = 50, 125, 250, 375 and 500. This is in agreement

with Equation (12), since (i) τ = 0, (ii) VN
∂VN
∂n and VB

∂VN
∂b are negligible compared to u

h
∂VN
∂s

and (iii) u
h

∂VN
∂s is approximately proportional to ∂V N

∂s . Therefore, the pattern of V N is mainly
governed by CFN , PGN and VFN .

Although the Poiseuille inflow is first forced to turn by the wall at s = 2D, Figure 4 shows,
at different Re numbers, that a centripetal (in the direction of N and toward the centre of
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, in-plane
CA

CA′
B =

u

h

∂VB

∂s
+ VB

∂VB

∂b
+ VN

∂VB

∂n
, (18)

so that the balance of in-plane momentum takes the form

CA′
N = CFN + TFN + PGN + VFN , (19)

CA′
B = TFB + PGB + VFB. (20)

It is important to remark that the Cartesian convective acceleration, pressure gradient force
and viscous force yield, respectively, CAs − Co, PGs and VFs when projected onto T, CA′

N −
CFN − TFN , PGN and VFN when projected onto N, and CA′

B − TFB, PGB and VFB when
projected onto B. However, the inertial forces Co, CFN , TFN and TFB, which allow us to
quantify the effect of κ and τ on flow patterns, are not obtained explicitly.

3.3 Cross-sectional averages

Given a field ξ(s, r, θ), we define its cross-sectional average ξ at R(s) as

ξ =
1
S

∫

S
ξdA, (21)

where S(s) is the luminal area normal to the centreline at R(s) and dA = rdrdθ. Hereafter a
line over a field name will refer to its cross-sectional average.

3.4 Vorticity and wall shear stress

The components of the vorticity vector ω = ∇× (u, v, w) in local coordinates are [31]

ωs =
1
r

∂(rw)
∂r

− 1
r

∂v

∂θ
, ωr =

1
rh

[
∂(hu)

∂θ
− r

∂w

∂s

]
, ωθ =

1
h

[
∂v

∂s
− ∂(hu)

∂r

]
.

At the wall surface (r = D/2) we have

ωs|r=D/2 =
∂w

∂r

∣∣∣∣
r=D/2

. (22)

In local coordinates, the axial WSs and circumferential WSθ WSS take the form

WSs = −νρ
∂u

∂r

∣∣∣∣
r=D/2

, WSθ = −νρ
∂w

∂r

∣∣∣∣
r=D/2

,

so that the tangential traction exerted by the wall on the flow is WS = −(WSs, 0, WSθ). For
the incompressible, Newtonian fluid we are considering, WS = νρω × n is satisfied at the wall
surface (r = D/2), where n is the wall normal. This expression leads to

WSs = νρωθ|r=D/2 , WSθ = −νρωs|r=D/2 . (23)

4 Results and discussion

We will first describe and discuss the effect on secondary flows and in-plane forces, including
their averages along the centreline, of the centrifugal force alone (Section 4.1) and combined
with a continuous (Section 4.2) and impulse (Section 4.3) torsional force. We will then focus on
the effect of curvature and torsion on the axial flow (Section 4.4) and the role of the full Coriolis
force 2Co (Section 4.5) and wall stresses (Section 4.6). The cross-sectional contours in Figs. 3,4,
7, 8, 10 are normal to T and have the vectors N and B oriented as depicted in each figure.

In all our computations, the errors in the net balance of mass and momentum in Cartesian
and local coordinates are of the same order and cannot be appreciated in the scales of Figs. 5,
6, 9, 12.
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Figure 5: Cross-sectional averages CAN = CA′
N , −CFN , PGN , VFN and VN along the centreline of the

single bend in Figure 1 (left) at (a) Re = 125, (b) 250 and (c) 500. The dashed vertical lines indicate the
start and end of the curved region.

negligible compared to u
h

∂VN
∂s and (ii) u

h
∂VN
∂s is approximately proportional to ∂VN

∂s . Therefore,
the evolution of VN with s is mainly governed by CFN , PGN and VFN at Re ∈ [50, 500].

Although the Poiseuille inflow is first forced to turn by the wall at s = 2D, Figure 5 shows, at
different Re, that a centripetal (in the direction of N and toward the centre of curvature) PGN

gradually develops about s = D to anticipate the opposition to the discontinuous appearance
of CFN at s = 2D. Moreover, PGN starts vanishing before the end of the bend at s = 8.3D
to anticipate the discontinuous disappearance of CFN . For any s, VFN is centrifugal (in the
direction of N and away from the centre of curvature) and approximately 20% of −PGN at
Re = 50, 16% at Re = 125, 13% at Re = 250, 11% at Re = 375, and 10% at Re = 500. Using
the asymptotic model developed in [16] we obtained zero VN and CAN , and PGN = CFN +VFN

(Table 1) when the flow is fully developed and driven by a steady pressure gradient in an
uniformly curved pipe with the same Re and De numbers as in our single bend.

The results shown in Figures 4a, and 5 and Table 1 suggest that CAN and VN play the role
of the acceleration and velocity, respectively, of an under-damped oscillator around the fully-
developed state, with CFN the driving force, PGN the restoring force, and VFN a dissipative
force opposing PGN . With increasing Re the opposition of VFN decreases, but CFN becomes
stronger. As a result, CAN and VN oscillate with greater amplitudes around the fully-developed
state, so that it takes a longer distance for PGN to dump the oscillations of CAN and achieve
the equilibrium fully-developed state in the bend.

According to Yao and Berger [36], the entry length for a steady flow with a uniformly
distributed velocity at the entrance of a uniformly curved pipe is e1Re1/2(κD/2)−1/40.5D. For
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VB mainly governed by CAB = TFB + PGB + VFB

CAN = CFN + TFN + PGN + VFN

Average in-plane forces and CAs
CA′

B =
u

h

∂VB

∂s
+ VB

∂VB

∂b
+ VN

∂VB

∂n
, (18)

so that the balance of in-plane momentum takes the form

CA′
N = CFN + TFN + PGN + VFN , (19)

CA′
B = TFB + PGB + VFB. (20)

It is important to remark that the Cartesian convective acceleration, pressure gradient force
and viscous force yield, respectively, CAs − Co, PGs and VFs when projected onto T, CA′

N −
CFN − TFN , PGN and VFN when projected onto N, and CA′

B − TFB, PGB and VFB when
projected onto B. However, the inertial forces Co, CFN , TFN and TFB, which allow us to
quantify the effect of κ and τ on flow patterns, are not obtained explicitly.

3.3 Cross-sectional averages

Given a field ξ(s, r, θ), we define its cross-sectional average ξ at R(s) as

ξ =
1
S

∫

S
ξdA, (21)

where S(s) is the luminal area normal to the centreline at R(s) and dA = rdrdθ. Hereafter a
line over a field name will refer to its cross-sectional average.

3.4 Vorticity and wall shear stress

The components of the vorticity vector ω = ∇× (u, v, w) in local coordinates are [31]

ωs =
1
r

∂(rw)
∂r

− 1
r

∂v

∂θ
, ωr =

1
rh

[
∂(hu)

∂θ
− r

∂w

∂s

]
, ωθ =

1
h

[
∂v

∂s
− ∂(hu)

∂r

]
.

At the wall surface (r = D/2) we have

ωs|r=D/2 =
∂w

∂r

∣∣∣∣
r=D/2

. (22)

In local coordinates, the axial WSs and circumferential WSθ WSS take the form

WSs = −νρ
∂u

∂r

∣∣∣∣
r=D/2

, WSθ = −νρ
∂w

∂r

∣∣∣∣
r=D/2

,

so that the tangential traction exerted by the wall on the flow is WS = −(WSs, 0, WSθ). For
the incompressible, Newtonian fluid we are considering, WS = νρω × n is satisfied at the wall
surface (r = D/2), where n is the wall normal. This expression leads to

WSs = νρωθ|r=D/2 , WSθ = −νρωs|r=D/2 . (23)

4 Results and discussion

We will first describe and discuss the effect on secondary flows and in-plane forces, including
their averages along the centreline, of the centrifugal force alone (Section 4.1) and combined
with a continuous (Section 4.2) and impulse (Section 4.3) torsional force. We will then focus on
the effect of curvature and torsion on the axial flow (Section 4.4) and the role of the full Coriolis
force 2Co (Section 4.5) and wall stresses (Section 4.6). The cross-sectional contours in Figs. 3,4,
7, 8, 10 are normal to T and have the vectors N and B oriented as depicted in each figure.

In all our computations, the errors in the net balance of mass and momentum in Cartesian
and local coordinates are of the same order and cannot be appreciated in the scales of Figs. 5,
6, 9, 12.
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To understand the physical meaning of Co, which arises from κ (as do CFr and CFθ), we
transform the velocity field V = (u, v, w) at a particular R(s) to a coordinate system rotating
with angular velocity Ω = Ω(s, r, θ)B about C. The velocity components of a fluid element at
a particular (s, r, θ) with respect to this coordinate system are (û, v, w), with u = û + hκ−1Ω.
Substitution of this expression for u into CAs and Co in Eq. (5) yields

CAs(u) = CAs(û)− ΩVN +
Ω
κ

[
∂û

∂s
+ u

∂

∂s
(lnh− lnκ)

]
+

h

κ
DΩ, (8)

Co(u) = Co(û) + ΩVN , (9)

where VN = −v sin (θ + φ) − w cos (θ + φ) is the component of the secondary motion in the
direction of N with respect to both the rotating and local frames. The term ΩVN in Eqs. (8)
and (9) satisfies ΩVNT = −Ω×VN, VN = VNN. If we chose Ω = uκh−1, then û = 0 (i.e. the
rotating frame is moving with the local axial velocity u at a particular (s, r, θ)) and

CAs(u) = −ΩVN +
u2

h

∂

∂s
(lnh− lnκ) +

h

κ
DΩ, (10)

Co(u) = ΩVN . (11)

Eq. (11) shows that CoT = −Ω × VN; i.e. Co is half of the usual Coriolis force per unit of
mass arising from κ, VN and u. The other half arises from CAs according to Eq. (10).

Eqs. (4) to (7) reduce to the continuity and Navier–Stokes equations in toroidal coordinates
if τ = 0 and κ is constant, and in cylindrical coordinates if τ = 0 and κ = 0.

3.2 Forces and accelerations in the direction of T, N and B

We will analyse the forces, accelerations and velocities in the direction of T, N and B to inves-
tigate mechanisms underlying flow patterns in curved vessels. The local forces and acceleration
in Eq. (5) have the direction of T, since as = T. To obtain these quantities in the direction
of N (CAN , CFN , PGN and VFN ) and B (CAB, CFB, PGB and VFB) we need to project the
terms in Eqs. (6) and (7) onto N and B; i.e.

ξN = −ξr sin (θ + φ)− ξθ cos (θ + φ),

ξB = ξr cos (θ + φ)− ξθ sin (θ + φ),

with ξ = CA, CF, PG or VF. These projections lead to

CAN =
u

h

(
∂VN

∂s
− τVB

)
+ VN

∂VN

∂n
+ VB

∂VN

∂b
, (12)

CAB =
u

h

(
∂VB

∂s
+ τVN

)
+ VB

∂VB

∂b
+ VN

∂VB

∂n
, (13)

CFN = −κu2

h
, CFB = 0, (14)

PGN = −1
ρ

∂p

∂n
, PGB = −1

ρ

∂p

∂b
, (15)

where VB = v cos (θ + φ)−w sin (θ + φ) is the component of the secondary motion in the direction
of B, n = −r sin (θ + φ) a coordinate in the direction of N, and b = r cos (θ + φ) a coordinate
in the direction of B. We now define the local torsional force TF = (0,TFN ,TFB) with

TFN =
τu

h
VB, TFB = −τu

h
VN , (16)

and convective accelerations CA′
N and CA′

B,

CA′
N =

u

h

∂VN

∂s
+ VN

∂VN

∂n
+ VB

∂VN

∂b
, (17)
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Within less than 0.1D inside our helices, CFN is able to direct the secondary-flow streamlines
in the core toward the −N,B–quadrant (Fig. 8b); they adopt this direction for the remaining
of helix. The patterns of secondary velocities, ωs, and in-plane CA, TF, PG and VF shown
in Fig. 8 at s = 4D are similar to the patterns obtained in most of the helix, except for the
inlet and outlet regions. In-plane PG (Fig. 8j) yields a centripetal PGN to oppose CFN rather
than the centripetal TFN , since −CFN is greater than TFN (Fig. 9a,b), despite τ > κ in our
helices (κ = 0.51 and τ = 1.96 for the 3D pitch length; κ = 0.19 and τ = 1.23 for the 5D pitch
length). This is because TFN (unlike CFN ) depends explicitly on secondary velocities, which
are an order of magnitude smaller than axial velocities. This result is in line with the asymptotic
analysis in [22], which shows that the effects of κ and τ on the flow in a helical pipe are of first
and second order, respectively, for κ and τ of the same order and small compared to D. As τ
increases, TFN grows relative to CFN , lessening PGN relative to CFN (Fig. 9a,b).

In the binormal direction PGB opposes the only driving force TFB (Fig. 9d,e). Before the
helix starts, PGB anticipates the discontinuous appearance of the negative TFB at s = 2D.
As we approach the helix end, PGN drops to anticipate the cessation of CFN . The flow is
accelerated centrifugally by CFN (Fig. 9a,b), so that VN drops increasing TFB (Eq. (16)).
PGB opposes this increase, preventing a greater change in CA′

B (Fig. 9d,e).
The directions of in-plane VF (Fig. 8m,n) oppose the streamlines of secondary flows (Fig.

8b,c) until the secondary motion vanishes outside the helix. Increasing τ and De produces
greater inertial forces that lead to greater ωs and deviations of the secondary-flow streamlines
in the core from the N–direction.

After 3D in the 5D-pitch length helix, the plateaus in the cross-sectionally averages in the
directions of N and B at Re = 125 (Fig. 9b,e) indicate that the flow is close to fully development:
CAN and CAB approach zero, but not VN and VB due to the asymmetry introduced by TF.

4.2.1 Analogy with two coupled underdamped oscillators

In our helical and double bends, CA′
N is approximately proportional to ∂VN/∂s (like in our

planar single bend) and CA′
B to ∂VB/∂s (Fig. 5b,c), since (i) the last two terms on the right

of Eqs. (17) and (18) are negligible compared to the first term when cross-sectionally averaged,
(ii) u/h ∂VN/∂s is approximately proportional to ∂VN/∂s, and (iii) u/h ∂VB/∂s to ∂VB/∂s.
Therefore, the pattern of VN with s is mainly governed by CFN , TFN , PGN and VFN , and that
of VB mainly by TFB, PGB, and VFB.

The dynamics of in-plane motions can be understood using the analogy of two underdamped
oscillators, one for the normal direction and one for the binormal. They are coupled through
TFN and TFB, which are proportional to VB and VN , respectively (Eq. (16)). In the normal
direction, the centrifugal CFN and centripetal TFN are the driving forces, PGN is the restoring
force, and VFN is the frictional force opposing PGN (Fig. 9a,b). In the binormal direction,
TFB is the driving force, PGB is the restoring force and VFB is the frictional force opposing
PGB (Fig. 9d,e). Indeed, VFN is approximately proportional to −PGN and VFB to −PGB.

4.3 In-plane flow patterns in double bends

The mechanisms described above for helices are also valid for double bends, if we consider an
impulse injection of τ at s = 5.14D, where the plane of curvature changes. Indeed, the patterns
of CAB, PGB and VFB in non-planar double bends follow those observed before the start of our
helical regions and after their end, as Fig. 9d–f shows at Re = 125 using the 90◦ double bend.

Before the second bend starts, the core flow is accelerated toward the −N,B–quadrant (Fig.
10a,f). This is due to a drop in PGN (Fig. 9c) to anticipate the impulse injection of centripetal
(according to Eq. (16) since VB > 0 around s = 5.14D) TFN , and to an increase in PGB to
anticipate the impulse TFB. Thus, CA′

N drops and CA′
B increases.

Once in the second bend, the flow develops up to 1D before the bend end, as is indicated by
CAN , CAB, VN and VB approaching zero (Fig. 9c,f). PGN grows to oppose CFN , and PGB is
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direction of N with respect to both the rotating and local frames. The term ΩVN in Eqs. (8)
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rotating frame is moving with the local axial velocity u at a particular (s, r, θ)) and
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Eq. (11) shows that CoT = −Ω × VN; i.e. Co is half of the usual Coriolis force per unit of
mass arising from κ, VN and u. The other half arises from CAs according to Eq. (10).

Eqs. (4) to (7) reduce to the continuity and Navier–Stokes equations in toroidal coordinates
if τ = 0 and κ is constant, and in cylindrical coordinates if τ = 0 and κ = 0.

3.2 Forces and accelerations in the direction of T, N and B

We will analyse the forces, accelerations and velocities in the direction of T, N and B to inves-
tigate mechanisms underlying flow patterns in curved vessels. The local forces and acceleration
in Eq. (5) have the direction of T, since as = T. To obtain these quantities in the direction
of N (CAN , CFN , PGN and VFN ) and B (CAB, CFB, PGB and VFB) we need to project the
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∂p
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rotating frame is moving with the local axial velocity u at a particular (s, r, θ)) and

CAs(u) = −ΩVN +
u2

h

∂

∂s
(lnh− lnκ) +

h

κ
DΩ, (10)

Co(u) = ΩVN . (11)

Eq. (11) shows that CoT = −Ω × VN; i.e. Co is half of the usual Coriolis force per unit of
mass arising from κ, VN and u. The other half arises from CAs according to Eq. (10).

Eqs. (4) to (7) reduce to the continuity and Navier–Stokes equations in toroidal coordinates
if τ = 0 and κ is constant, and in cylindrical coordinates if τ = 0 and κ = 0.

3.2 Forces and accelerations in the direction of T, N and B

We will analyse the forces, accelerations and velocities in the direction of T, N and B to inves-
tigate mechanisms underlying flow patterns in curved vessels. The local forces and acceleration
in Eq. (5) have the direction of T, since as = T. To obtain these quantities in the direction
of N (CAN , CFN , PGN and VFN ) and B (CAB, CFB, PGB and VFB) we need to project the
terms in Eqs. (6) and (7) onto N and B; i.e.

ξN = −ξr sin (θ + φ)− ξθ cos (θ + φ),

ξB = ξr cos (θ + φ)− ξθ sin (θ + φ),

with ξ = CA, CF, PG or VF. These projections lead to

CAN =
u

h

(
∂VN

∂s
− τVB

)
+ VN

∂VN

∂n
+ VB

∂VN

∂b
, (12)

CAB =
u

h

(
∂VB

∂s
+ τVN

)
+ VB

∂VB

∂b
+ VN

∂VB

∂n
, (13)

CFN = −κu2

h
, CFB = 0, (14)

PGN = −1
ρ

∂p

∂n
, PGB = −1

ρ

∂p

∂b
, (15)
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∂s
+ VB

∂VB

∂b
+ VN

∂VB

∂n
, (18)

so that the balance of in-plane momentum takes the form

CA′
N = CFN + TFN + PGN + VFN , (19)

CA′
B = TFB + PGB + VFB. (20)

It is important to remark that the Cartesian convective acceleration, pressure gradient force
and viscous force yield, respectively, CAs − Co, PGs and VFs when projected onto T, CA′

N −
CFN − TFN , PGN and VFN when projected onto N, and CA′

B − TFB, PGB and VFB when
projected onto B. However, the inertial forces Co, CFN , TFN and TFB, which allow us to
quantify the effect of κ and τ on flow patterns, are not obtained explicitly.

3.3 Cross-sectional averages

Given a field ξ(s, r, θ), we define its cross-sectional average ξ at R(s) as

ξ =
1
S

∫

S
ξdA, (21)

where S(s) is the luminal area normal to the centreline at R(s) and dA = rdrdθ. Hereafter a
line over a field name will refer to its cross-sectional average.

3.4 Vorticity and wall shear stress

The components of the vorticity vector ω = ∇× (u, v, w) in local coordinates are [31]

ωs =
1
r

∂(rw)
∂r

− 1
r

∂v

∂θ
, ωr =

1
rh

[
∂(hu)

∂θ
− r

∂w

∂s

]
, ωθ =

1
h

[
∂v

∂s
− ∂(hu)

∂r

]
.

At the wall surface (r = D/2) we have

ωs|r=D/2 =
∂w

∂r

∣∣∣∣
r=D/2

. (22)

In local coordinates, the axial WSs and circumferential WSθ WSS take the form

WSs = −νρ
∂u

∂r

∣∣∣∣
r=D/2

, WSθ = −νρ
∂w

∂r

∣∣∣∣
r=D/2

,

so that the tangential traction exerted by the wall on the flow is WS = −(WSs, 0, WSθ). For
the incompressible, Newtonian fluid we are considering, WS = νρω × n is satisfied at the wall
surface (r = D/2), where n is the wall normal. This expression leads to

WSs = νρωθ|r=D/2 , WSθ = −νρωs|r=D/2 . (23)

4 Results and discussion

We will first describe and discuss the effect on secondary flows and in-plane forces, including
their averages along the centreline, of the centrifugal force alone (Section 4.1) and combined
with a continuous (Section 4.2) and impulse (Section 4.3) torsional force. We will then focus on
the effect of curvature and torsion on the axial flow (Section 4.4) and the role of the full Coriolis
force 2Co (Section 4.5) and wall stresses (Section 4.6). The cross-sectional contours in Figs. 3,4,
7, 8, 10 are normal to T and have the vectors N and B oriented as depicted in each figure.

In all our computations, the errors in the net balance of mass and momentum in Cartesian
and local coordinates are of the same order and cannot be appreciated in the scales of Figs. 5,
6, 9, 12.
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Figure 4: Cross-sectional averages CA′
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Figure 5: Cross-sectional averages CAN = CA′
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single bend in Figure 1 (left) at (a) Re = 125, (b) 250 and (c) 500. The dashed vertical lines indicate the
start and end of the curved region.

negligible compared to u
h

∂VN
∂s and (ii) u

h
∂VN
∂s is approximately proportional to ∂VN

∂s . Therefore,
the evolution of VN with s is mainly governed by CFN , PGN and VFN at Re ∈ [50, 500].

Although the Poiseuille inflow is first forced to turn by the wall at s = 2D, Figure 5 shows, at
different Re, that a centripetal (in the direction of N and toward the centre of curvature) PGN

gradually develops about s = D to anticipate the opposition to the discontinuous appearance
of CFN at s = 2D. Moreover, PGN starts vanishing before the end of the bend at s = 8.3D
to anticipate the discontinuous disappearance of CFN . For any s, VFN is centrifugal (in the
direction of N and away from the centre of curvature) and approximately 20% of −PGN at
Re = 50, 16% at Re = 125, 13% at Re = 250, 11% at Re = 375, and 10% at Re = 500. Using
the asymptotic model developed in [16] we obtained zero VN and CAN , and PGN = CFN +VFN

(Table 1) when the flow is fully developed and driven by a steady pressure gradient in an
uniformly curved pipe with the same Re and De numbers as in our single bend.

The results shown in Figures 4a, and 5 and Table 1 suggest that CAN and VN play the role
of the acceleration and velocity, respectively, of an under-damped oscillator around the fully-
developed state, with CFN the driving force, PGN the restoring force, and VFN a dissipative
force opposing PGN . With increasing Re the opposition of VFN decreases, but CFN becomes
stronger. As a result, CAN and VN oscillate with greater amplitudes around the fully-developed
state, so that it takes a longer distance for PGN to dump the oscillations of CAN and achieve
the equilibrium fully-developed state in the bend.

According to Yao and Berger [36], the entry length for a steady flow with a uniformly
distributed velocity at the entrance of a uniformly curved pipe is e1Re1/2(κD/2)−1/40.5D. For

8

VB mainly governed by CAB = TFB + PGB + VFB

CAN = CFN + TFN + PGN + VFN

CA′
B =

u

h

∂VB

∂s
+ VB

∂VB

∂b
+ VN

∂VB

∂n
, (18)

so that the balance of in-plane momentum takes the form

CA′
N = CFN + TFN + PGN + VFN , (19)

CA′
B = TFB + PGB + VFB. (20)

It is important to remark that the Cartesian convective acceleration, pressure gradient force
and viscous force yield, respectively, CAs − Co, PGs and VFs when projected onto T, CA′

N −
CFN − TFN , PGN and VFN when projected onto N, and CA′

B − TFB, PGB and VFB when
projected onto B. However, the inertial forces Co, CFN , TFN and TFB, which allow us to
quantify the effect of κ and τ on flow patterns, are not obtained explicitly.

3.3 Cross-sectional averages

Given a field ξ(s, r, θ), we define its cross-sectional average ξ at R(s) as

ξ =
1
S

∫

S
ξdA, (21)

where S(s) is the luminal area normal to the centreline at R(s) and dA = rdrdθ. Hereafter a
line over a field name will refer to its cross-sectional average.

3.4 Vorticity and wall shear stress

The components of the vorticity vector ω = ∇× (u, v, w) in local coordinates are [31]

ωs =
1
r

∂(rw)
∂r

− 1
r

∂v

∂θ
, ωr =

1
rh

[
∂(hu)

∂θ
− r

∂w

∂s

]
, ωθ =

1
h

[
∂v

∂s
− ∂(hu)

∂r

]
.

At the wall surface (r = D/2) we have

ωs|r=D/2 =
∂w

∂r

∣∣∣∣
r=D/2

. (22)

In local coordinates, the axial WSs and circumferential WSθ WSS take the form

WSs = −νρ
∂u

∂r

∣∣∣∣
r=D/2

, WSθ = −νρ
∂w

∂r

∣∣∣∣
r=D/2

,

so that the tangential traction exerted by the wall on the flow is WS = −(WSs, 0, WSθ). For
the incompressible, Newtonian fluid we are considering, WS = νρω × n is satisfied at the wall
surface (r = D/2), where n is the wall normal. This expression leads to

WSs = νρωθ|r=D/2 , WSθ = −νρωs|r=D/2 . (23)

4 Results and discussion

We will first describe and discuss the effect on secondary flows and in-plane forces, including
their averages along the centreline, of the centrifugal force alone (Section 4.1) and combined
with a continuous (Section 4.2) and impulse (Section 4.3) torsional force. We will then focus on
the effect of curvature and torsion on the axial flow (Section 4.4) and the role of the full Coriolis
force 2Co (Section 4.5) and wall stresses (Section 4.6). The cross-sectional contours in Figs. 3,4,
7, 8, 10 are normal to T and have the vectors N and B oriented as depicted in each figure.

In all our computations, the errors in the net balance of mass and momentum in Cartesian
and local coordinates are of the same order and cannot be appreciated in the scales of Figs. 5,
6, 9, 12.
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CAs = Co + PGs + VFs, (5)

CAr = CFr + PGr + VFr, (6)

CAθ = CFθ + PGθ + VFθ, (7)

with

CAs = Du, Co = −κu

h
[v sin (θ + φ) + w cos (θ + φ)] , PGs = − 1
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,
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,

CAr = Dv − w2

r
, CFr =

κ

h
u2 sin (θ + φ), PGr = −1

ρ
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,

VFr = ν
{ 1
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,

CAθ = Dw +
vw

r
, CFθ =

κ
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u2 cos (θ + φ), PGθ = − 1
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∂p

∂θ
,

VFθ = ν
{ 1
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− dκ

ds
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cos (θ + φ)− τκ
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.

The variables u(s, r, θ), v(s, r, θ) and w(s, r, θ) are the velocities in the direction of as, ar and
aθ, respectively, p(s, r, θ) is the fluid kinematic pressure, ρ the blood density, and hκ−1 (h =
1 + κr sin (θ + φ)) the distance from the centre of curvature of the vessel centreline, C, to the
projection onto the plane spanned by T and N of a general point (s, r, θ). The operator D is

D =
u

h

∂

∂s
+ v

∂

∂r
+

w

r

∂

∂θ
,

and

∂h

∂s
=

dκ

ds
r sin (θ + φ)− τκr cos (θ + φ),

∂h

∂r
= κ sin (θ + φ),

∂h

∂θ
= κr cos (θ + φ).

The terms CA, CF, PG and VF are the convective acceleration and the centrifugal, pressure
gradient and viscous forces per unit of mass, respectively, along the axial, radial and circum-
ferential directions, which are indicated by the subindexes s, r and θ, respectively. Eqs. (4) to
(7) are valid for r ≤ 1/κ. Otherwise, the description of any point in the system is not unique.
Appendix 1 shows how to transform the velocity, its first and second derivatives, and pressure
gradient in Eqs. (4) to (7) from Cartesian (x, y, z) to local (s, r, θ) coordinates.
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The variables u(s, r, θ), v(s, r, θ) and w(s, r, θ) are the velocities in the direction of as, ar and
aθ, respectively, p(s, r, θ) is the fluid kinematic pressure, ρ the blood density, and hκ−1 (h =
1 + κr sin (θ + φ)) the distance from the centre of curvature of the vessel centreline, C, to the
projection onto the plane spanned by T and N of a general point (s, r, θ). The operator D is

D =
u

h

∂

∂s
+ v

∂

∂r
+

w

r

∂

∂θ
,

and

∂h
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=

dκ

ds
r sin (θ + φ)− τκr cos (θ + φ),

∂h

∂r
= κ sin (θ + φ),

∂h

∂θ
= κr cos (θ + φ).

The terms CA, CF, PG and VF are the convective acceleration and the centrifugal, pressure
gradient and viscous forces per unit of mass, respectively, along the axial, radial and circum-
ferential directions, which are indicated by the subindexes s, r and θ, respectively. Eqs. (4) to
(7) are valid for r ≤ 1/κ. Otherwise, the description of any point in the system is not unique.
Appendix 1 shows how to transform the velocity, its first and second derivatives, and pressure
gradient in Eqs. (4) to (7) from Cartesian (x, y, z) to local (s, r, θ) coordinates.
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The variables u(s, r, θ), v(s, r, θ) and w(s, r, θ) are the velocities in the direction of as, ar and
aθ, respectively, p(s, r, θ) is the fluid kinematic pressure, ρ the blood density, and hκ−1 (h =
1 + κr sin (θ + φ)) the distance from the centre of curvature of the vessel centreline, C, to the
projection onto the plane spanned by T and N of a general point (s, r, θ). The operator D is

D =
u

h

∂

∂s
+ v

∂
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+
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,

and
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=

dκ

ds
r sin (θ + φ)− τκr cos (θ + φ),
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= κ sin (θ + φ),

∂h

∂θ
= κr cos (θ + φ).

The terms CA, CF, PG and VF are the convective acceleration and the centrifugal, pressure
gradient and viscous forces per unit of mass, respectively, along the axial, radial and circum-
ferential directions, which are indicated by the subindexes s, r and θ, respectively. Eqs. (4) to
(7) are valid for r ≤ 1/κ. Otherwise, the description of any point in the system is not unique.
Appendix 1 shows how to transform the velocity, its first and second derivatives, and pressure
gradient in Eqs. (4) to (7) from Cartesian (x, y, z) to local (s, r, θ) coordinates.
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The variables u(s, r, θ), v(s, r, θ) and w(s, r, θ) are the velocities in the direction of as, ar and
aθ, respectively, p(s, r, θ) is the fluid kinematic pressure, ρ the blood density, and hκ−1 (h =
1 + κr sin (θ + φ)) the distance from the centre of curvature of the vessel centreline, C, to the
projection onto the plane spanned by T and N of a general point (s, r, θ). The operator D is
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The terms CA, CF, PG and VF are the convective acceleration and the centrifugal, pressure
gradient and viscous forces per unit of mass, respectively, along the axial, radial and circum-
ferential directions, which are indicated by the subindexes s, r and θ, respectively. Eqs. (4) to
(7) are valid for r ≤ 1/κ. Otherwise, the description of any point in the system is not unique.
Appendix 1 shows how to transform the velocity, its first and second derivatives, and pressure
gradient in Eqs. (4) to (7) from Cartesian (x, y, z) to local (s, r, θ) coordinates.
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The variables u(s, r, θ), v(s, r, θ) and w(s, r, θ) are the velocities in the direction of as, ar and
aθ, respectively, p(s, r, θ) is the fluid kinematic pressure, ρ the blood density, and hκ−1 (h =
1 + κr sin (θ + φ)) the distance from the centre of curvature of the vessel centreline, C, to the
projection onto the plane spanned by T and N of a general point (s, r, θ). The operator D is
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r sin (θ + φ)− τκr cos (θ + φ),
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The terms CA, CF, PG and VF are the convective acceleration and the centrifugal, pressure
gradient and viscous forces per unit of mass, respectively, along the axial, radial and circum-
ferential directions, which are indicated by the subindexes s, r and θ, respectively. Eqs. (4) to
(7) are valid for r ≤ 1/κ. Otherwise, the description of any point in the system is not unique.
Appendix 1 shows how to transform the velocity, its first and second derivatives, and pressure
gradient in Eqs. (4) to (7) from Cartesian (x, y, z) to local (s, r, θ) coordinates.
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STEADY FLOW IN NON-PLANAR DOUBLE BENDS 521

(a)

(d) (e) (f)

(b) (c)

Figure 1. (a) 180◦ model; (b) all five models; (c) 0◦ model; (d) 135◦ model;
(e) 90◦ model; and (f) 45◦ model.

to correspond to physiologically realistic vessels, particularly the right coronary artery. The CFD
model consists of a straight inflow region, a double bend of two consecutive reverse quarters
toroidal bends. In non-planar models, the second consecutive toroidal bend has the same radius of
curvature but lies out of the plane of curvature of the original bend with azimuthal angles ! = 45◦,
!= 90◦ and ! = 135◦ as shown in Figures 1(f), (e) and (d) respectively. The straight outlet region
is of length 8D. In addition, we consider two other models which lie in the same plane; the second
bend of the 0◦ model, as shown in Figure 1(c), has opposite curvature to the original bend in a
single plane and the other planar model is a single U-bend which we refer to as the 180◦ model,
as shown in Figure 1(a). By comparing flows in the three non-planar models against flows in the
standard planar double bends, we will identify the effect of non-planarity. Steady flow in a curved
tube is characterized by both the Reynolds number and the Dean number (4

√
D/RRe). In these

five models, steady flow was studied at Reynolds number 125 and 500 (Dean number D = 354 and
1414), which correspond to the Reynolds number in medium sized human arteries based on the
mean and peak velocity numerical models [40]. We make the following assumptions: Newtonian
blood flow and negligible effect of distensibility of the arterial walls. The boundary conditions
are: no-slip on the pipe wall, zero velocity gradients and zero pressure at the outlet and Poiseuille
velocity profile at the inflow.

3. NUMERICAL METHODOLOGY

The mesh generation was accomplished with an advancing front method [41]. A modified advancing
layers method was employed near the pipe wall to generate a prismatic boundary layer mesh and

Copyright � 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:519–529
DOI: 10.1002/fld
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Figure 1. (a) 180◦ model; (b) all five models; (c) 0◦ model; (d) 135◦ model;
(e) 90◦ model; and (f) 45◦ model.

to correspond to physiologically realistic vessels, particularly the right coronary artery. The CFD
model consists of a straight inflow region, a double bend of two consecutive reverse quarters
toroidal bends. In non-planar models, the second consecutive toroidal bend has the same radius of
curvature but lies out of the plane of curvature of the original bend with azimuthal angles ! = 45◦,
!= 90◦ and ! = 135◦ as shown in Figures 1(f), (e) and (d) respectively. The straight outlet region
is of length 8D. In addition, we consider two other models which lie in the same plane; the second
bend of the 0◦ model, as shown in Figure 1(c), has opposite curvature to the original bend in a
single plane and the other planar model is a single U-bend which we refer to as the 180◦ model,
as shown in Figure 1(a). By comparing flows in the three non-planar models against flows in the
standard planar double bends, we will identify the effect of non-planarity. Steady flow in a curved
tube is characterized by both the Reynolds number and the Dean number (4

√
D/RRe). In these

five models, steady flow was studied at Reynolds number 125 and 500 (Dean number D = 354 and
1414), which correspond to the Reynolds number in medium sized human arteries based on the
mean and peak velocity numerical models [40]. We make the following assumptions: Newtonian
blood flow and negligible effect of distensibility of the arterial walls. The boundary conditions
are: no-slip on the pipe wall, zero velocity gradients and zero pressure at the outlet and Poiseuille
velocity profile at the inflow.

3. NUMERICAL METHODOLOGY

The mesh generation was accomplished with an advancing front method [41]. A modified advancing
layers method was employed near the pipe wall to generate a prismatic boundary layer mesh and

Copyright � 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:519–529
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!  A curvature conforming, high order mesh generation was applied to accurately represent

the geometry.

! The 3-D computational simulation of the flows was performed using an incompressible

Navier-Stokes solver called Nektar which is basis on a spectral/hp element method.
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VFN ), and (CAB + CFB, PGB, VFB), respectively. However, this approach does not provide
the Coriolis and centrifugal forces, which are necessary for quantifying the effect of the vessel
geometry on the fluid dynamics at each cross section along the centerline. The explicit evaluation
of these local forces requires the calculation in the local coordinates (s, r, θ) of the velocity and
pressure gradient fields, and the spatial derivatives of velocity that appear in Equations (10) to
(12). These calculations are shown in Appendix 1.

3.3 Vorticity and wall shear stress

In incompressible flow, the vorticity ω = ∇×v, v = (u, v, w), in the region of the wall boundaries
is closely related to WSS through

WSS = −νρω × n, (20)

where n is the wall-normal vector. In this work we will express WSS normalised against the
level of shear in a straight pipe at the same Re. The local components of ω are

ωs = ω · T =
1
r

∂(rw)
∂r

− 1
r
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∂θ
, (21)
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h
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u
]
, (22)

ωθ =
1
h

[
∂v

∂s
− h

∂u

∂r
− ∂h

∂r
u
]
. (23)

For Poiseuille flow, we have ws = 0, wr = 0, and wθ = 16Ur/D2. We see that ωs is related to
the advection of the secondary motion and it is therefore an indication of the level of in-plane
stirring of the flow.

4 Results

We now study the qualitative and quantitative features of the numerical results obtained in the
geometries of Figures 1 and 2 from a local balance of momentum perspective and focusing on
the role played by the geometry. We study the effect on the prescribed Poiseuille flow of a step
injection of curvature κ and an impulse injection of torsion τ (Section 4.1), a step injection of
both κ and τ (Section 4.2), and an anatomically-correct continuous injection of κ and τ (Section
4.3). In all the models, the errors in the local balances of momentum are of the same order
as the errors in the balance of the Cartesian Navier–Stokes equations. These errors cannot be
appreciated in the scale of Figures ?? to ??.

4.1 Flow patterns in non-planar double bends

The flow patterns developed near the inflow of the first bend (from s = 0 to approximately
s = 4D) are quantitatively the same for the five double bend configurations studied. When the
prescribed Poiseuille flow is forced to turn by the vessel wall of the first bend at s = 2D, each
fluid element experiences a centrifugal force CFN whose magnitude, according to Equation (19),
is larger for the faster moving elements in the core than for the slower moving elements near
the wall, where the no-slip condition must be satisfied (Figure ??a). The wall resists to the
displacement of fluid by CFN by exerting normal and shear stresses on the fluid. The combined
effect of these stresses yields PGN and PGB acting on the fluid (Figure ??b and c). Figure ??
shows that PGN approximately balances CFN near the wall but it is about a quarter of CFN in
the core, and PGB reaches its maximum and minimum values near the wall at azimuthal angles
θ + φ equal to 45, 135, 225 and 315 degrees. The convective accelerations resulting from CFN ,
PGN and PGB yield to the secondary (or transverse) components of velocity shown in Figure

6
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Figure 5: Forces involved in the generation and evolution of the secondary motion in the single
bend. (a) CAs contours (b) The dashed vertical lines indicate he location of the outer (θ + φ =
90◦) and inner parts (θ + φ = 270◦) of the bend.

4 Results

We now study the qualitative and quantitative features of the numerical results obtained in the
geometries of Figures 1 and 2 from a local balance of momentum perspective and focusing on
the role played by the geometry. We first study the effect on the prescribed Poiseuille flow of a
step injection of curvature κ alone (Section 4.1) or combined with an impulse injection of torsion
τ (Section 4.2), then a step injection of both κ and τ (Section 4.3), and finally an anatomically-
correct continuous injection of κ and τ (Section 4.4). In all the models, the errors in the local
balances of momentum are of the same order as the errors in the Cartesian balance, and they
cannot be appreciated in the scale of Figures ?? to 7 and 8. The slices shown in Figures 4 and
5 are orientated perpendicular to T and with the in-plane vectors N and B located as depicted
in Figure 4f.

4.1 Flow patterns in a single double bend

Figure 4 shows the axial and secondary (or transverse) velocities, and the axial vorticity at
several cross-sections along the centerline of the 180◦ configuration in Figure 1 (left). We start
by describing the forces in the direction of N (toward the center of curvature) involved in the
generation of these flow patterns at s = 2D (where the prescribed Poiseuille flow is first forced
to turn by the vessel wall). The centrifugal force CFN (Figure 5a) discontinuously arises due
to the step injection of κ. Its magnitude, according to Equation (19), is larger for the faster
moving elements in the core than for the slower moving elements near the wall (Figure 4a),
where the no-slip condition must be satisfied. The wall resists to the displacement of fluid by
CFN by exerting pressure p and azimuthal shear stress τθ on the fluid (Figure 5m,o). Wall p
is symmetric along N, reaching its maximum and minimum in the outer (θ = 90◦) and inner
(θ = 180◦) parts of the bend, respectively. τθ is maximum at θ = 180◦ and minimum at θ = 0◦

(hereafter referred to as the ‘laterals’ of the bend), being both equal in absolute value. The
combined effect of these stresses yields PGN and PGB acting on the fluid (Figures 5b,c); PGN

approximately balances CFN near the wall but it is about a quarter of CFN in the core, and
PGB reaches its maximum and minimum values on the wall and at θ = 45◦, 135◦, 225◦ and 315◦.
According to Equation (24), τθ also generates the axial vorticity ωs on the wall shown in Figure
4f.

The force field resulting from CFN , PGN and PGB convectively accelerates the fluid elements
producing in-plane (or secondary) motion. From approximately s = 2.1D to s = 12.2D, fluid
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VFN ), and (CAB + CFB, PGB, VFB), respectively. However, this approach does not provide
the Coriolis and centrifugal forces, which are necessary for quantifying the effect of the vessel
geometry on the fluid dynamics at each cross section along the centerline. The explicit evaluation
of these local forces requires the calculation in the local coordinates (s, r, θ) of the velocity and
pressure gradient fields, and the spatial derivatives of velocity that appear in Equations (10) to
(12). These calculations are shown in Appendix 1.

3.3 Vorticity and wall shear stress

In incompressible flow, the vorticity ω = ∇×v, v = (u, v, w), in the region of the wall boundaries
is closely related to WSS through

WSS = −νρω × n, (20)

where n is the wall-normal vector. In this work we will express WSS normalised against the
level of shear in a straight pipe at the same Re. The local components of ω are

ωs = ω · T =
1
r

∂(rw)
∂r

− 1
r

∂v

∂θ
, (21)

ωr =
1
rh

[
h

∂u

∂θ
− r

∂w

∂s
+

∂h

∂θ
u
]
, (22)

ωθ =
1
h

[
∂v

∂s
− h

∂u

∂r
− ∂h

∂r
u
]
. (23)

For Poiseuille flow, we have ws = 0, wr = 0, and wθ = 16Ur/D2. We see that ωs is related to
the advection of the secondary motion and it is therefore an indication of the level of in-plane
stirring of the flow.

4 Results

We now study the qualitative and quantitative features of the numerical results obtained in the
geometries of Figures 1 and 2 from a local balance of momentum perspective and focusing on
the role played by the geometry. We study the effect on the prescribed Poiseuille flow of a step
injection of curvature κ and an impulse injection of torsion τ (Section 4.1), a step injection of
both κ and τ (Section 4.2), and an anatomically-correct continuous injection of κ and τ (Section
4.3). In all the models, the errors in the local balances of momentum are of the same order
as the errors in the balance of the Cartesian Navier–Stokes equations. These errors cannot be
appreciated in the scale of Figures ?? to ??.

4.1 Flow patterns in non-planar double bends

The flow patterns developed near the inflow of the first bend (from s = 0 to approximately
s = 4D) are quantitatively the same for the five double bend configurations studied. When the
prescribed Poiseuille flow is forced to turn by the vessel wall of the first bend at s = 2D, each
fluid element experiences a centrifugal force CFN whose magnitude, according to Equation (19),
is larger for the faster moving elements in the core than for the slower moving elements near
the wall, where the no-slip condition must be satisfied (Figure ??a). The wall resists to the
displacement of fluid by CFN by exerting normal and shear stresses on the fluid. The combined
effect of these stresses yields PGN and PGB acting on the fluid (Figure ??b and c). Figure ??
shows that PGN approximately balances CFN near the wall but it is about a quarter of CFN in
the core, and PGB reaches its maximum and minimum values near the wall at azimuthal angles
θ + φ equal to 45, 135, 225 and 315 degrees. The convective accelerations resulting from CFN ,
PGN and PGB yield to the secondary (or transverse) components of velocity shown in Figure

6

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 5: Forces involved in the generation and evolution of the secondary motion in the single
bend. (a) CAs contours (b) The dashed vertical lines indicate he location of the outer (θ + φ =
90◦) and inner parts (θ + φ = 270◦) of the bend.

4 Results

We now study the qualitative and quantitative features of the numerical results obtained in the
geometries of Figures 1 and 2 from a local balance of momentum perspective and focusing on
the role played by the geometry. We first study the effect on the prescribed Poiseuille flow of a
step injection of curvature κ alone (Section 4.1) or combined with an impulse injection of torsion
τ (Section 4.2), then a step injection of both κ and τ (Section 4.3), and finally an anatomically-
correct continuous injection of κ and τ (Section 4.4). In all the models, the errors in the local
balances of momentum are of the same order as the errors in the Cartesian balance, and they
cannot be appreciated in the scale of Figures ?? to 7 and 8. The slices shown in Figures 4 and
5 are orientated perpendicular to T and with the in-plane vectors N and B located as depicted
in Figure 4f.

4.1 Flow patterns in a single double bend

Figure 4 shows the axial and secondary (or transverse) velocities, and the axial vorticity at
several cross-sections along the centerline of the 180◦ configuration in Figure 1 (left). We start
by describing the forces in the direction of N (toward the center of curvature) involved in the
generation of these flow patterns at s = 2D (where the prescribed Poiseuille flow is first forced
to turn by the vessel wall). The centrifugal force CFN (Figure 5a) discontinuously arises due
to the step injection of κ. Its magnitude, according to Equation (19), is larger for the faster
moving elements in the core than for the slower moving elements near the wall (Figure 4a),
where the no-slip condition must be satisfied. The wall resists to the displacement of fluid by
CFN by exerting pressure p and azimuthal shear stress τθ on the fluid (Figure 5m,o). Wall p
is symmetric along N, reaching its maximum and minimum in the outer (θ = 90◦) and inner
(θ = 180◦) parts of the bend, respectively. τθ is maximum at θ = 180◦ and minimum at θ = 0◦

(hereafter referred to as the ‘laterals’ of the bend), being both equal in absolute value. The
combined effect of these stresses yields PGN and PGB acting on the fluid (Figures 5b,c); PGN

approximately balances CFN near the wall but it is about a quarter of CFN in the core, and
PGB reaches its maximum and minimum values on the wall and at θ = 45◦, 135◦, 225◦ and 315◦.
According to Equation (24), τθ also generates the axial vorticity ωs on the wall shown in Figure
4f.

The force field resulting from CFN , PGN and PGB convectively accelerates the fluid elements
producing in-plane (or secondary) motion. From approximately s = 2.1D to s = 12.2D, fluid
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VFN ), and (CAB + CFB, PGB, VFB), respectively. However, this approach does not provide
the Coriolis and centrifugal forces, which are necessary for quantifying the effect of the vessel
geometry on the fluid dynamics at each cross section along the centerline. The explicit evaluation
of these local forces requires the calculation in the local coordinates (s, r, θ) of the velocity and
pressure gradient fields, and the spatial derivatives of velocity that appear in Equations (10) to
(12). These calculations are shown in Appendix 1.

3.3 Vorticity and wall shear stress

In incompressible flow, the vorticity ω = ∇×v, v = (u, v, w), in the region of the wall boundaries
is closely related to WSS through

WSS = −νρω × n, (20)

where n is the wall-normal vector. In this work we will express WSS normalised against the
level of shear in a straight pipe at the same Re. The local components of ω are
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For Poiseuille flow, we have ws = 0, wr = 0, and wθ = 16Ur/D2. We see that ωs is related to
the advection of the secondary motion and it is therefore an indication of the level of in-plane
stirring of the flow.

4 Results

We now study the qualitative and quantitative features of the numerical results obtained in the
geometries of Figures 1 and 2 from a local balance of momentum perspective and focusing on
the role played by the geometry. We study the effect on the prescribed Poiseuille flow of a step
injection of curvature κ and an impulse injection of torsion τ (Section 4.1), a step injection of
both κ and τ (Section 4.2), and an anatomically-correct continuous injection of κ and τ (Section
4.3). In all the models, the errors in the local balances of momentum are of the same order
as the errors in the balance of the Cartesian Navier–Stokes equations. These errors cannot be
appreciated in the scale of Figures ?? to ??.

4.1 Flow patterns in non-planar double bends

The flow patterns developed near the inflow of the first bend (from s = 0 to approximately
s = 4D) are quantitatively the same for the five double bend configurations studied. When the
prescribed Poiseuille flow is forced to turn by the vessel wall of the first bend at s = 2D, each
fluid element experiences a centrifugal force CFN whose magnitude, according to Equation (19),
is larger for the faster moving elements in the core than for the slower moving elements near
the wall, where the no-slip condition must be satisfied (Figure ??a). The wall resists to the
displacement of fluid by CFN by exerting normal and shear stresses on the fluid. The combined
effect of these stresses yields PGN and PGB acting on the fluid (Figure ??b and c). Figure ??
shows that PGN approximately balances CFN near the wall but it is about a quarter of CFN in
the core, and PGB reaches its maximum and minimum values near the wall at azimuthal angles
θ + φ equal to 45, 135, 225 and 315 degrees. The convective accelerations resulting from CFN ,
PGN and PGB yield to the secondary (or transverse) components of velocity shown in Figure
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Figure 5: Forces involved in the generation and evolution of the secondary motion in the single
bend. (a) CAs contours (b) The dashed vertical lines indicate he location of the outer (θ + φ =
90◦) and inner parts (θ + φ = 270◦) of the bend.

4 Results

We now study the qualitative and quantitative features of the numerical results obtained in the
geometries of Figures 1 and 2 from a local balance of momentum perspective and focusing on
the role played by the geometry. We first study the effect on the prescribed Poiseuille flow of a
step injection of curvature κ alone (Section 4.1) or combined with an impulse injection of torsion
τ (Section 4.2), then a step injection of both κ and τ (Section 4.3), and finally an anatomically-
correct continuous injection of κ and τ (Section 4.4). In all the models, the errors in the local
balances of momentum are of the same order as the errors in the Cartesian balance, and they
cannot be appreciated in the scale of Figures ?? to 7 and 8. The slices shown in Figures 4 and
5 are orientated perpendicular to T and with the in-plane vectors N and B located as depicted
in Figure 4f.

4.1 Flow patterns in a single double bend

Figure 4 shows the axial and secondary (or transverse) velocities, and the axial vorticity at
several cross-sections along the centerline of the 180◦ configuration in Figure 1 (left). We start
by describing the forces in the direction of N (toward the center of curvature) involved in the
generation of these flow patterns at s = 2D (where the prescribed Poiseuille flow is first forced
to turn by the vessel wall). The centrifugal force CFN (Figure 5a) discontinuously arises due
to the step injection of κ. Its magnitude, according to Equation (19), is larger for the faster
moving elements in the core than for the slower moving elements near the wall (Figure 4a),
where the no-slip condition must be satisfied. The wall resists to the displacement of fluid by
CFN by exerting pressure p and azimuthal shear stress τθ on the fluid (Figure 5m,o). Wall p
is symmetric along N, reaching its maximum and minimum in the outer (θ = 90◦) and inner
(θ = 180◦) parts of the bend, respectively. τθ is maximum at θ = 180◦ and minimum at θ = 0◦

(hereafter referred to as the ‘laterals’ of the bend), being both equal in absolute value. The
combined effect of these stresses yields PGN and PGB acting on the fluid (Figures 5b,c); PGN

approximately balances CFN near the wall but it is about a quarter of CFN in the core, and
PGB reaches its maximum and minimum values on the wall and at θ = 45◦, 135◦, 225◦ and 315◦.
According to Equation (24), τθ also generates the axial vorticity ωs on the wall shown in Figure
4f.

The force field resulting from CFN , PGN and PGB convectively accelerates the fluid elements
producing in-plane (or secondary) motion. From approximately s = 2.1D to s = 12.2D, fluid
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Figure 12: (top) Modulus |PGN,B | =
√

(PGN)2
+(PGB)2 of the average normal and binormal pressure

gradients and maximum circumferential WSS, WSθ, with s in the (a) single bend, (b) double bend with
a 90◦ azimuthal angle, and (c) helical bend with a pitch length of 5D (Fig. 1). (bottom) Radial offset
d of the peak axial velocity, measured from the vessel centre, and maximum axial WSS, WSs, with s in
the (d) single bend, (e) double bends with 0◦ and 90◦ azimuthal angles, and (f) helical bends with pitch
lengths of 3D (H3) and 5D (H5). Wall stresses and PGN at Re = 125 and non-dimensionalised by their
corresponding peak values. Offsets d non-dimensionalised by D, shown in red lines if the peak u is in the
inner core, and calculated at Re = 125 unless indicated by the labels. Maximum WSs at the inner wall
are shown in red lines. The dashed vertical lines indicate the start and end of the curved regions.

by augmenting the extremes of WSs and WSθ, respectively, relative to Poiseuille’s WSs. The
presence of τ , however, decreases WSθ, since the centripetal TFN supports a smaller PGN to
counteract CFN (e.g. compare the extreme values of WSθ for the single bend with κ = 0.5 and
those for the helical bend with a 3D pitch length and κ = 0.51; Figs. 3x, 8w). Increases in d
with De were reported in theoretical and numerical studies for steady [19] and unsteady [37]
fully-developed flow in planar bends. Moreover, the peak WSs and WSθ along the centreline
become more similar with Re, in line with the fully-developed results in [19].

Once the inertial forces have disappeared, PGs is the only driving force that the wall has to
oppose. Wall stresses can then evolve toward the zero WSθ and uniform p and WSs of Poiseuille
flow; the first two quicker with s than does WSs (e.g. compare Fig. 3w–y at s = 10D).
Combination of PGs and VFs (Figs. 3k,n 8s,v) with their in-plane counterparts (Figs. 3k,n
8k,n) gradually restores Poiseuille flow. In-plane VF annihilates secondary motions and, hence,
ωs, which generation at the wall gradually vanishes following the decrease in WSθ (Fig. 3f, 8f).

5 Conclusions and physiological implications

We have proposed a method to study the effect of vessel curvature and torsion on blood flow
patterns and wall stresses, from a local linear momentum perspective. It allows us to reduce and
simplify the vast amount of data generated in 3-D simulations of blood flow, whilst retaining
the important mechanisms underlying the complex and often non-intuitive dynamics of the flow.
Our analysis is valid for Newtonian fluids and rigid walls, which are assumptions that replicate
the dominant features of large-artery flows [38, 39, 40]. Indeed, while wall distensibility is key in
the propagation of the pulse wave and generation of local pressure gradients, it is less important
in determining flow patterns, since the pressure wavelength is large compared with arterial
lengths and the axial velocities of the bulk of the flow are small compared with wave speeds.

By calculating forces and accelerations in an orthogonal coordinate system following the
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Figure 1: Single and double bends (left) and helical bends (right) studied, with a constant circular
cross-section, a diameter D, and centrelines highlighted in dashed lines. The local versor N is depicted
at some locations and the value of the arc length s is shown at the extremes of lines and curves. In
straight regions, N was considered to have the same direction as in its adjacent curved region. (left)
The curvature of each bend is κ = 1

2D and the azimuthal angles between the plane of curvature of each
bend are indicated in degrees. (Modified from [24].) (right) The centrelines have a fixed helical radius of
0.125D and a pitch length of 3D and 5D.

11, 12, 13, 14, 15, 16, 17, 18]) or helical tubes of constant curvature and torsion (e.g. [14, 19, 20,
21, 22]). In particular regimes, researchers in the applied-mathematics community have reduced
the data to a handful of parameters by constructing asymptotic solutions ([7, 8, 19, 14, 16]).
However, without full knowledge of the details of the flow, the validity of the assumptions of
these flows is unknown. And even less well understood are the mechanisms responsible for the
complex flow phenomena observed in the sequences of non-planar bends with varying curvature
and torsion found in the arterial vasculature [17, 23, 24]. In these cases, the complexity of the
equations for the physiologically relevant range of parameters renders theoretical analysis rather
intractable.

Current numerical models and anatomical reconstruction techniques allow us to accurately
simulate haemodynamics in three-dimensional (3-D) patient-specific geometries. These simula-
tions are usually performed in localised areas of the arterial system (e.g. [25, 26, 27]), although
more recently within larger arterial networks [28]. Such simulations provide insight into clini-
cally relevant fluid dynamics, but unfortunately they often produce such large quantities of data
that they are unlikely to be of practical use in a clinical setting.

The aim of this work is to reduce the amount of data whilst retaining the important flow
features in order to investigate the effect of vascular geometry on the forces that govern the
generation and evolution of primary and secondary (in-plane) flows in curved vessels and their
association with axial velocity profiles, vortical structures and WSS distributions. For a given
vascular geometry, we express the Navier–Stokes and continuity equations in a centreline (local)
coordinate system. This allows us to decompose the effects of the geometry on the blood flow into
components: inertia (centrifugal, torsional and Coriolis), pressure and viscous forces and local
accelerations. Taking cross-sectional averages of these local quantities reduces the dynamics of
the system onto the vessel centreline.

We will first use this technique to investigate flow patterns in the idealised planar and non-
planar bends shown in Figure 1 (left), which loosely model, neglecting branches, the aortic arch
(135◦ case), the intracranial segment of the internal carotid artery (180◦ case), and a bypass
graft in a peripheral vessel with the proximal branch of the host vessel occluded (all the cases).
The small amplitude helical tubes in Figure 1 (right) will also be considered, since they have
been recently investigated for potential application as vascular protheses due to their favorable
in-plane mixing properties [4, 22]. All these geometries retain the dominant features of flow
structures while significantly reducing the number of parameters that define the problem [29].
The knowledge gained from these studies will then be applied to analyse the flow patterns in
the anatomically-correct carotid syphon shown in Figure 2.

2

outflow

Poiseuille
inflow

Azimuthal wall stresses and PG forces

Single bend

outflow

Double bend 90o Helix

start of the second bend, the impulse TF has displaced the bulk of the flow circumferentially
(Fig. 10a,b), further clockwise with the decreasing azimuthal angle. Indeed, all the bulk is in
the inner core at the start of the second bend with a 0◦ angle. The closer the bulk is to the
centre of curvature, the greater the magnitude of CFN is in the bulk, producing greater peak
−CFN (Fig. 11c) that lead to larger centrifugal CAN at the inlet of the second bend (Fig. 11b).

Toward the end of our curves, the wall anticipates the sudden disappearance of CFN through
a greater rate of decrease in outer wall p with s (e.g. going from s = 8D to s = 10D in Fig. 3w)
to gradually uniform wall p outside the curve. This results in a greater PGs in the outer core
(Figs. 3s, 8s) and in a drop in PGN , which allows CFN to decrease CA′

N (Figs. 6, 9a–c). The
resulting axial and in-plane CA displace the bulk of the flow centrifugally (Fig. 12d–f).

The dissipative VFs (Figs. 3t,u, 8t,u) and WSs are non-uniform in curved centrelines (Sec-
tion 4.6), with their extremes coinciding at the wall. The full Coriolis force 2Co enhances or
opposes the bulk of the flow depending on secondary motions (Section 4.5).

4.5 The role of the full Coriolis force 2Co

According to Eq. (11), 2Co accelerates fluid particles downstream if VN > 0 (centripetal) and
vice versa (Ω > 0 for any s since u does not reverse). Thus, 2Co accelerates the bulk of u at the
start of our curves (Figs. 3o, 8o) for as long as VN is predominantly centripetal (i.e. VN > 0).
This contributes to retain the peak u in the inner core (Fig. 12d–f). Within less than 1D in the
second bend of our double bends, VN > 0 and, hence, 2Co contributes to enhance the velocity
profile inherited from the first bend by accelerating the bulk of u (Fig. 10l).

As we move downstream, the secondary flows developed by CFN and TF lead to profound
changes in 2Co, as is suggested by the change of VN from centripetal to centrifugal (Figs. 6, 9a–
c). The jet-like secondary motion that develops in the core yields a decelerating 2Co, whereas
the opposite near wall flows yield an accelerating 2Co (Figs. 3p, 8p, 10m–o). This pattern
of 2Co, whose extremes increase with De and τ , slows the bulk of the flow and stretches its
profile circumferentially. Thus, the bulk is circular at the start of our curves and evolves toward
crescent shapes with the increasing s, De and τ (Figs. 3a–c, 4a–c, 8a–c). In double bends, 2Co
helps restore the flow axisymmetry in the second bend as the flow develops (Fig. 10m–o).

4.6 Wall stresses

Our results show a good correlation between |PGN,B| =
√

(PGN)2
+(PGB)2 and the peak WSθ

(and hence wall ωs) along all centrelines, as Fig. 12a–c shows for some cases and Re. Indeed, a
greater in-plane PG drives near-wall fluid particles faster, leading to greater WSθ.

Moreover, the radial offset d of the peak u, measured from the vessel centre, correlates well
with the maximum WSs with s (Fig. 12d–f). The circumferential angles θ of the peak u and
WSs are also similar. Indeed, nonzero d causes non-uniform velocity gradients ∂u

∂r at the wall.
Greater gradients yield greater axial tractions on the flow −WSs (Fig. 3y, 8x) that, together
with VFs (Fig. 3u, 8u), maintain the bulk of the flow off the wall. WSs is always positive
(unlike WSθ), since u does not reverse, but the maximum WSs alternates between the inner
(highlighted in red in Fig. 12d–f) and outer sides with s, at about the same points as does d.

Thus, the extremes of WSs swap from the inner to the outer wall at the entrance of our
planar bends (Fig. 3y), closer to the bend inlet with the increasing Re. This phenomenon was
reported experimentally in [35, 36], but we do not observe it in our helical vessels (Fig. 8x), since
TF maintains the bulk of the flow in the inner core (Fig. 12f). In double bends, the cross-over
occurs further downstream in the second bend as the azimuthal angle decreases, since it takes
longer to move the bulk of the flow toward the outer core. In fact, the peak WSs at the start of
the second bend increases with the decreasing azimuthal angle, which indicates a stronger wall
reaction to maintain the bulk of the flow off the inner wall.

At each cross section, the extremes of WSθ are approximately diametrically opposed (Figs.
3x, 8w), and so are the extremes of WSs (Figs. 3y, 8x). Along the centreline, the oscillations
of d (Fig. 12d–f) and PGN (Figs. 6, 9a,b) grow in amplitude with De and τ . The wall reacts
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correlates well with

CA′
B =

u

h

∂VB

∂s
+ VB

∂VB

∂b
+ VN

∂VB

∂n
, (18)

so that the balance of in-plane momentum takes the form

CA′
N = CFN + TFN + PGN + VFN , (19)

CA′
B = TFB + PGB + VFB. (20)

It is important to remark that the Cartesian convective acceleration, pressure gradient force
and viscous force yield, respectively, CAs − Co, PGs and VFs when projected onto T, CA′

N −
CFN − TFN , PGN and VFN when projected onto N, and CA′

B − TFB, PGB and VFB when
projected onto B. However, the inertial forces Co, CFN , TFN and TFB, which allow us to
quantify the effect of κ and τ on flow patterns, are not obtained explicitly.

3.3 Cross-sectional averages

Given a field ξ(s, r, θ), we define its cross-sectional average ξ at R(s) as

ξ =
1
S

∫

S
ξdA, (21)

where S(s) is the luminal area normal to the centreline at R(s) and dA = rdrdθ. Hereafter a
line over a field name will refer to its cross-sectional average.

3.4 Vorticity and wall shear stress

The components of the vorticity vector ω = ∇× (u, v, w) in local coordinates are [31]

ωs =
1
r

∂(rw)
∂r

− 1
r

∂v

∂θ
, ωr =

1
rh

[
∂(hu)

∂θ
− r

∂w

∂s

]
, ωθ =

1
h

[
∂v

∂s
− ∂(hu)

∂r

]
.

At the wall surface (r = D/2) we have

ωs|r=D/2 =
∂w

∂r

∣∣∣∣
r=D/2

. (22)

In local coordinates, the axial WSs and circumferential WSθ WSS take the form

WSs = −νρ
∂u

∂r

∣∣∣∣
r=D/2

, WSθ = −νρ
∂w

∂r

∣∣∣∣
r=D/2

,

so that the tangential traction exerted by the wall on the flow is WS = −(WSs, 0, WSθ). For
the incompressible, Newtonian fluid we are considering, WS = νρω × n is satisfied at the wall
surface (r = D/2), where n is the wall normal. This expression leads to

WSs = νρωθ|r=D/2 , WSθ = −νρωs|r=D/2 . (23)

4 Results and discussion

We will first describe and discuss the effect on secondary flows and in-plane forces, including
their averages along the centreline, of the centrifugal force alone (Section 4.1) and combined
with a continuous (Section 4.2) and impulse (Section 4.3) torsional force. We will then focus on
the effect of curvature and torsion on the axial flow (Section 4.4) and the role of the full Coriolis
force 2Co (Section 4.5) and wall stresses (Section 4.6). The cross-sectional contours in Figs. 3,4,
7, 8, 10 are normal to T and have the vectors N and B oriented as depicted in each figure.

In all our computations, the errors in the net balance of mass and momentum in Cartesian
and local coordinates are of the same order and cannot be appreciated in the scales of Figs. 5,
6, 9, 12.

6
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Numerical model & methodologyNumerical model & methodology

!  A curvature conforming, high order mesh generation was applied to accurately represent

the geometry.

! The 3-D computational simulation of the flows was performed using an incompressible

Navier-Stokes solver called Nektar which is basis on a spectral/hp element method.
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Figure 1: Single and double bends (left) and helical bends (right) studied, with a constant circular
cross-section, a diameter D, and centrelines highlighted in dashed lines. The local versor N is depicted
at some locations and the value of the arc length s is shown at the extremes of lines and curves. In
straight regions, N was considered to have the same direction as in its adjacent curved region. (left)
The curvature of each bend is κ = 1

2D and the azimuthal angles between the plane of curvature of each
bend are indicated in degrees. (Modified from [24].) (right) The centrelines have a fixed helical radius of
0.125D and a pitch length of 3D and 5D.

11, 12, 13, 14, 15, 16, 17, 18]) or helical tubes of constant curvature and torsion (e.g. [14, 19, 20,
21, 22]). In particular regimes, researchers in the applied-mathematics community have reduced
the data to a handful of parameters by constructing asymptotic solutions ([7, 8, 19, 14, 16]).
However, without full knowledge of the details of the flow, the validity of the assumptions of
these flows is unknown. And even less well understood are the mechanisms responsible for the
complex flow phenomena observed in the sequences of non-planar bends with varying curvature
and torsion found in the arterial vasculature [17, 23, 24]. In these cases, the complexity of the
equations for the physiologically relevant range of parameters renders theoretical analysis rather
intractable.

Current numerical models and anatomical reconstruction techniques allow us to accurately
simulate haemodynamics in three-dimensional (3-D) patient-specific geometries. These simula-
tions are usually performed in localised areas of the arterial system (e.g. [25, 26, 27]), although
more recently within larger arterial networks [28]. Such simulations provide insight into clini-
cally relevant fluid dynamics, but unfortunately they often produce such large quantities of data
that they are unlikely to be of practical use in a clinical setting.

The aim of this work is to reduce the amount of data whilst retaining the important flow
features in order to investigate the effect of vascular geometry on the forces that govern the
generation and evolution of primary and secondary (in-plane) flows in curved vessels and their
association with axial velocity profiles, vortical structures and WSS distributions. For a given
vascular geometry, we express the Navier–Stokes and continuity equations in a centreline (local)
coordinate system. This allows us to decompose the effects of the geometry on the blood flow into
components: inertia (centrifugal, torsional and Coriolis), pressure and viscous forces and local
accelerations. Taking cross-sectional averages of these local quantities reduces the dynamics of
the system onto the vessel centreline.

We will first use this technique to investigate flow patterns in the idealised planar and non-
planar bends shown in Figure 1 (left), which loosely model, neglecting branches, the aortic arch
(135◦ case), the intracranial segment of the internal carotid artery (180◦ case), and a bypass
graft in a peripheral vessel with the proximal branch of the host vessel occluded (all the cases).
The small amplitude helical tubes in Figure 1 (right) will also be considered, since they have
been recently investigated for potential application as vascular protheses due to their favorable
in-plane mixing properties [4, 22]. All these geometries retain the dominant features of flow
structures while significantly reducing the number of parameters that define the problem [29].
The knowledge gained from these studies will then be applied to analyse the flow patterns in
the anatomically-correct carotid syphon shown in Figure 2.
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!  A curvature conforming, high order mesh generation was applied to accurately represent

the geometry.

! The 3-D computational simulation of the flows was performed using an incompressible

Navier-Stokes solver called Nektar which is basis on a spectral/hp element method.
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Figure 12: (top) Modulus |PGN,B | =
√

(PGN)2
+(PGB)2 of the average normal and binormal pressure

gradients and maximum circumferential WSS, WSθ, with s in the (a) single bend, (b) double bend with
a 90◦ azimuthal angle, and (c) helical bend with a pitch length of 5D (Fig. 1). (bottom) Radial offset
d of the peak axial velocity, measured from the vessel centre, and maximum axial WSS, WSs, with s in
the (d) single bend, (e) double bends with 0◦ and 90◦ azimuthal angles, and (f) helical bends with pitch
lengths of 3D (H3) and 5D (H5). Wall stresses and PGN at Re = 125 and non-dimensionalised by their
corresponding peak values. Offsets d non-dimensionalised by D, shown in red lines if the peak u is in the
inner core, and calculated at Re = 125 unless indicated by the labels. Maximum WSs at the inner wall
are shown in red lines. The dashed vertical lines indicate the start and end of the curved regions.

by augmenting the extremes of WSs and WSθ, respectively, relative to Poiseuille’s WSs. The
presence of τ , however, decreases WSθ, since the centripetal TFN supports a smaller PGN to
counteract CFN (e.g. compare the extreme values of WSθ for the single bend with κ = 0.5 and
those for the helical bend with a 3D pitch length and κ = 0.51; Figs. 3x, 8w). Increases in d
with De were reported in theoretical and numerical studies for steady [19] and unsteady [37]
fully-developed flow in planar bends. Moreover, the peak WSs and WSθ along the centreline
become more similar with Re, in line with the fully-developed results in [19].

Once the inertial forces have disappeared, PGs is the only driving force that the wall has to
oppose. Wall stresses can then evolve toward the zero WSθ and uniform p and WSs of Poiseuille
flow; the first two quicker with s than does WSs (e.g. compare Fig. 3w–y at s = 10D).
Combination of PGs and VFs (Figs. 3k,n 8s,v) with their in-plane counterparts (Figs. 3k,n
8k,n) gradually restores Poiseuille flow. In-plane VF annihilates secondary motions and, hence,
ωs, which generation at the wall gradually vanishes following the decrease in WSθ (Fig. 3f, 8f).

5 Conclusions and physiological implications

We have proposed a method to study the effect of vessel curvature and torsion on blood flow
patterns and wall stresses, from a local linear momentum perspective. It allows us to reduce and
simplify the vast amount of data generated in 3-D simulations of blood flow, whilst retaining
the important mechanisms underlying the complex and often non-intuitive dynamics of the flow.
Our analysis is valid for Newtonian fluids and rigid walls, which are assumptions that replicate
the dominant features of large-artery flows [38, 39, 40]. Indeed, while wall distensibility is key in
the propagation of the pulse wave and generation of local pressure gradients, it is less important
in determining flow patterns, since the pressure wavelength is large compared with arterial
lengths and the axial velocities of the bulk of the flow are small compared with wave speeds.

By calculating forces and accelerations in an orthogonal coordinate system following the

16

CA′
B =

u

h

∂VB

∂s
+ VB

∂VB

∂b
+ VN

∂VB

∂n
, (18)

so that the balance of in-plane momentum takes the form

CA′
N = CFN + TFN + PGN + VFN , (19)

CA′
B = TFB + PGB + VFB. (20)

It is important to remark that the Cartesian convective acceleration, pressure gradient force
and viscous force yield, respectively, CAs − Co, PGs and VFs when projected onto T, CA′

N −
CFN − TFN , PGN and VFN when projected onto N, and CA′

B − TFB, PGB and VFB when
projected onto B. However, the inertial forces Co, CFN , TFN and TFB, which allow us to
quantify the effect of κ and τ on flow patterns, are not obtained explicitly.

3.3 Cross-sectional averages

Given a field ξ(s, r, θ), we define its cross-sectional average ξ at R(s) as

ξ =
1
S

∫

S
ξdA, (21)

where S(s) is the luminal area normal to the centreline at R(s) and dA = rdrdθ. Hereafter a
line over a field name will refer to its cross-sectional average.

3.4 Vorticity and wall shear stress

The components of the vorticity vector ω = ∇× (u, v, w) in local coordinates are [31]

ωs =
1
r

∂(rw)
∂r

− 1
r

∂v

∂θ
, ωr =

1
rh

[
∂(hu)

∂θ
− r

∂w

∂s

]
, ωθ =

1
h

[
∂v

∂s
− ∂(hu)

∂r

]
.

At the wall surface (r = D/2) we have

ωs|r=D/2 =
∂w

∂r

∣∣∣∣
r=D/2

. (22)

In local coordinates, the axial WSs and circumferential WSθ WSS take the form

WSs = −νρ
∂u

∂r

∣∣∣∣
r=D/2

, WSθ = −νρ
∂w

∂r

∣∣∣∣
r=D/2

,

so that the tangential traction exerted by the wall on the flow is WS = −(WSs, 0, WSθ). For
the incompressible, Newtonian fluid we are considering, WS = νρω × n is satisfied at the wall
surface (r = D/2), where n is the wall normal. This expression leads to

WSs = νρωθ|r=D/2 , WSθ = −νρωs|r=D/2 . (23)

4 Results and discussion

We will first describe and discuss the effect on secondary flows and in-plane forces, including
their averages along the centreline, of the centrifugal force alone (Section 4.1) and combined
with a continuous (Section 4.2) and impulse (Section 4.3) torsional force. We will then focus on
the effect of curvature and torsion on the axial flow (Section 4.4) and the role of the full Coriolis
force 2Co (Section 4.5) and wall stresses (Section 4.6). The cross-sectional contours in Figs. 3,4,
7, 8, 10 are normal to T and have the vectors N and B oriented as depicted in each figure.

In all our computations, the errors in the net balance of mass and momentum in Cartesian
and local coordinates are of the same order and cannot be appreciated in the scales of Figs. 5,
6, 9, 12.
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Conclusions

•Effect of vessel curvature and torsion on blood flow from a 
local linear momentum perspective

•Roles assigned to in-plane forces and accelerations based on 
the physics of underdamped oscillations

•The centrifugal force generates normal motions

•The torsional force couples normal and binormal motions, 
enhancing in-plane mixing and reducing azimuthal WSS

•The Coriolis force links normal motions to axial accelerations 
that shape the velocity profile

•Quantification of the level of flow development and flow 
coupling across different bends


