Conductivity imaging in the presence of perfectly conducting and insulating inclusions from one interior measurement

Amir Moradifam
University of Toronto
amir@math.toronto.edu

June 20, 2011

The problem: conductivity imaging

Let $\Omega \subset \mathbb{R}^{n}, n \geq 2$, be a bounded open set with connected Lipschitz boundary. The goal is to determine

- isotropic conductivity σ
- the shape and location of the perfectly conducting and insulating inclusions
from one measurement of the magnitude of the current density field $|J|$ generated inside Ω while imposing the voltage f at $\partial \Omega$.

Mathematical Model

Let U, V be open subsets of Ω with $\bar{U} \subset \Omega, \bar{V} \subset \Omega, \bar{U} \cap \bar{V}=\emptyset$, and the boundaries $\partial U, \partial V$ are piecewise $C^{1, \alpha}$. Also let $\sigma_{1} \in L^{\infty}(U)$, and $\sigma \in L^{\infty}(\Omega \backslash \overline{U \cup V})$ be bounded away from zero. For $k>0$ consider the conductivity problem

$$
\left\{\begin{array}{l}
\nabla \cdot\left[\left(\chi u\left(k \sigma_{1}-\sigma\right)+\sigma\right) \nabla u\right]=0, \text { in } \Omega \backslash \bar{V} \\
\frac{\partial u}{\partial \nu}=0 \text { on } \partial V \tag{1}\\
\left.u\right|_{\partial \Omega}=f .
\end{array}\right.
$$

The perfectly conducting inclusions occur in the limiting case $k \rightarrow \infty$.

The limiting equation

The limiting solution is the unique solution to the problem:

$$
\begin{cases}\nabla \cdot \sigma \nabla u_{0}=0, & \text { in } \Omega \backslash \overline{U \cup V}, \tag{2}\\ \nabla u_{0}=0, & \text { in } U, \\ \left.u_{0}\right|_{+}=\left.u_{0}\right|_{-}, & \text {on } \partial(U \cup V) \\ \left.\int_{\partial U_{j}} \sigma \frac{\partial u_{0}}{\partial \nu}\right|_{+} d s=0, & j=1,2, \ldots \\ \left.\frac{\partial u_{0}}{\partial \nu}\right|_{+}=0, & \text { on } \partial V \\ \left.u_{0}\right|_{\partial \Omega}=f, & \end{cases}
$$

where $U=\cup_{j=1}^{\infty} U_{j}$ is the partition in open connected components.

The Inverse Problem

Is it possible to uniquely determine the open sets U and V and the conductivity σ on $\Omega \backslash \overline{U \cup V}$ from the knowledge of $(f,|J|)$?

We prove that the answer is yes, under some mild assumptions. Indeed we will indentify u_{σ} as the unique minimizer of the functional

$$
F(u)=\int_{\Omega}|J||\nabla u|,
$$

over

$$
A=\left\{u \in W^{1,1}(\Omega): \quad u=f \text { on } \partial \Omega\right\} .
$$

Singular Inclusions and failure of the Ohm's low

- For $\sigma \in C^{\alpha}$ with $\alpha<1$ the non-trivial solutions of the elliptic equation

$$
\nabla \cdot(\sigma \nabla u)=0 \text { in } \Omega \backslash \overline{U \cup V}
$$

may be constant on an open set $W \subset \Omega \backslash \overline{U \cup V}$ and consequently $|J| \equiv 0$ in W. We call such regions W singular inclusions.

- Ohm's law is not valid inside perfectly conducting inclusions. In particular the current inside perfectly conducting inclusions U is not necessarily zero while $\nabla u \equiv 0$ in U.

The limiting equation

The limiting solution is the unique solution to the problem:

$$
\begin{cases}\nabla \cdot \sigma \nabla u_{0}=0, & \text { in } \Omega \backslash \overline{U \cup V}, \tag{3}\\ \nabla u_{0}=0, & \text { in } U, \\ \left.u_{0}\right|_{+}=\left.u_{0}\right|_{-}, & \text {on } \partial(U \cup V), \\ \left.\int_{\partial U_{j}} \sigma \frac{\partial u_{0}}{\partial \nu}\right|_{+} d s=0, & j=1,2, \ldots, \\ \left.\frac{\partial u_{0}}{\partial \nu}\right|_{+}=0, & \text { on } \partial V \\ \left.u_{0}\right|_{\partial \Omega}=f, & \end{cases}
$$

where $U=\cup_{j=1}^{\infty} U_{j}$ is the partition in open connected components.

Admissibility ...

Definition 1 A pair of functions $(f, a) \in H^{1 / 2}(\partial \Omega) \times L^{2}(\Omega)$ is called admissible if the following conditions hold:
(i) There exist two disjoint open sets $U, V \subset \Omega$ (possibly empty) and a function $\sigma \in L^{\infty}(\Omega \backslash(U \cup V))$ bounded away from zero such that $\Omega \backslash(\overline{U \cup V})$ is connected and

$$
\left\{\begin{array}{l}
a=\left|\sigma \nabla u_{\sigma}\right| \text { in } \Omega \backslash(\overline{U \cup V}), \\
a=0 \text { in } V
\end{array}\right.
$$

where $u_{\sigma} \in H^{1}(\Omega)$ is the weak solution of (3).
(ii) The following holds

$$
\begin{equation*}
\inf _{u \in W^{1,1}(U)}\left(\int_{U} a|\nabla u|-\left.\int_{\partial U} \sigma \frac{\partial u_{\sigma}}{\partial \nu}\right|_{+} u\right)=0 \tag{4}
\end{equation*}
$$

where ν is the unit normal vector field on ∂U pointing outside U.
(iii) The set of zeroes of the function a outside \bar{U} can be partitioned as follows

$$
\begin{equation*}
\{x \in \Omega: a(x)=0\} \cap(\Omega \backslash \bar{U})=V \cup \bar{W} \cup \Gamma \tag{5}
\end{equation*}
$$

where W is an open set (possibly empty), Γ is a Lebesgue-negligible set, and $\bar{\Gamma}$ has empty interior.
We call σ a generating conductivity and u_{σ} the corresponding potential.

Physical data $(f,|J|)$ is admissible

Proposition 1:

Let $a \in L^{\infty}(\Omega)$ and U be an open subset of Ω. Then

- If $a \geq|J|$ in U for some J with $\nabla \cdot J \equiv 0$ in U and $J_{-}=\left.\sigma \frac{\partial u_{\sigma}}{\partial \nu}\right|_{+}$on ∂U, then the condition (4) in Definition 1 holds.
- If the the condition (4) in Definition 1 holds, then

$$
\int_{U} \sigma \frac{\partial u_{\sigma}}{\partial \nu}=0
$$

Unique determination ...

Theorem 1: Let $\Omega \subset R^{n}, n \geq 2$ be a domain with connected Lipschitz boundary and let $(f,|J|) \in C^{1, \alpha}(\partial \Omega) \times L^{2}(\Omega)$ be an admissible pair generated by some unknown $\sigma \in C^{\alpha}(\Omega \backslash(\overline{U \cup V}))$ conductivity, where U and V are open sets as described in Definition 1. Then the potential u_{σ} is a minimizer of the problem

$$
\begin{equation*}
u=\operatorname{argmin}\left\{\int_{\Omega}|J||\nabla v|: v \in W^{1,1}(\Omega),\left.\quad v\right|_{\partial \Omega}=f\right\} \tag{6}
\end{equation*}
$$

and if u is another minimizer of the above problem, then $u=u_{\sigma}$ in

$$
\Omega \backslash\{x \in \Omega: \quad|J|=0\} .
$$

... unique determination

Moreover the set of zeros of $|J|$ and $\left|\nabla u_{\sigma}\right|$ can be decomposed as follows

$$
\{x \in \Omega: \quad|J|=0\} \cup\left\{x \in \Omega: \quad \nabla u_{\sigma}=0\right\}=: Z \cup \Gamma,
$$

where Z is an open set and Γ has measure zero and

$$
Z=U \cup V \cup W
$$

Consequently $\sigma=\frac{|J|}{\left|\nabla u_{\sigma}\right|} \in L^{\infty}(\Omega \backslash \bar{Z})$ is the unique
$C^{\alpha}(\Omega \backslash \bar{Z})$-conductivity outside Z for which $|J|$ is the magnitude of the current density while maintaining the voltage f at the boundary.

Determining type of the inclusions

Theorem 1 allows us to identify the potential $u=u_{\sigma}$ and the conductivity σ outside the open set $Z=U \cup V \cup W$.

- If $\nabla u \equiv 0$ in O and $|J|(x) \neq 0$ for some $x \in O$, then O is a perfectly conducting inclusion.
- If $|J| \equiv 0$ in O and $u \not \equiv$ constant on ∂O, then O is an insulating inclusion.
- If $J \equiv 0$ in $O, u=$ constant on ∂O, and $|J|$ is not C^{α} at x for some $x \in O$, then O is either an insulating inclusion or a perfectly conducting inclusion.
- If $J \equiv 0, u=$ constant on ∂O, and $|J| \in C^{\alpha}(\partial O)$, then the knowledge of the magnitude of the current $|J|$ (and even the full vector field J) is not enough to determine the type of the inclusion O.

A connection to weighted least gradient problems

Theorem 1 can also be applied independently to prove uniqueness of the minimizers of the weighted least gradient problem

$$
\begin{equation*}
u_{0}=\operatorname{argmin}\left\{\int_{\Omega} a|\nabla u|, \quad u \in W^{1,1}(\Omega), \quad \text { and }\left.\quad u\right|_{\partial \Omega}=f\right\}, \tag{7}
\end{equation*}
$$

$$
a \in L^{\infty}(\Omega)
$$

Sternberg-Ziemer example ...

Let $D=\left\{x \in R^{2}: x^{2}+y^{2}<1\right\}$ be the unit disk and $f(x, y)=x^{2}-y^{2}$. Consider the problem

$$
\begin{equation*}
u_{0}=\operatorname{argmin}\left\{\int_{D}|\nabla u|, \quad u \in W^{1,1}(D), \quad \text { and }\left.\quad u\right|_{\partial D}=f\right\} \tag{8}
\end{equation*}
$$

which corresponds to $a \equiv|J| \equiv 1$ in D. We show that $\left(1, x^{2}-y^{2}\right)$ is an admissible pair.

... Sternberg-Ziemer example

let $U=\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \times\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ and $V=\emptyset$. Define

$$
\sigma=\left\{\begin{array}{lll}
\frac{1}{4|x|}, & \text { if } \quad|x| \geq \frac{1}{\sqrt{2}}, & |y| \leq \frac{1}{\sqrt{2}} \\
\frac{1}{4|y|}, & \text { if } \quad|x| \leq \frac{1}{\sqrt{2}}, & |y| \geq \frac{1}{\sqrt{2}},
\end{array}\right.
$$

and

$$
u_{\sigma}= \begin{cases}2 x^{2}-1, & \text { if }|x| \geq \frac{1}{\sqrt{2}}, \quad|y| \leq \frac{1}{\sqrt{2}} \\ 0, & \text { if }(x, y) \in U \\ 1-2 y^{2}, & \text { if }|x| \leq \frac{1}{\sqrt{2}}, \quad|y| \geq \frac{1}{\sqrt{2}}\end{cases}
$$

... Sternberg-Ziemer example

Define the vector field $J(x, y)$ in U as follows

$$
J(x, y)= \begin{cases}-j, & \text { if } \quad y \geq|x| \\ j, & \text { if } \quad-y \geq|x|, \\ i, & \text { if } \quad x>|y|, \\ -i, & \text { if } \quad-x>|y|,\end{cases}
$$

Current density vector field for Sternberg -Ziemer example :

... Sternberg-Ziemer example

Let

$$
U_{0}=\left\{(x, y) \in U|\quad| x|\neq|y|\}=T_{1} \cup T_{2} \cup T_{3} \cup T_{4},\right.
$$

where $T_{i}, 1 \leq i \leq 4$, are the four disjoint triangles in the above figure. Then $|J|=1$ in $U, J \in C^{\infty}\left(U_{0}\right)$ and we have

$$
\begin{aligned}
\int_{U}|\nabla u|-\int_{\partial U} \sigma \frac{\partial u_{\sigma}}{\partial \nu} u & \geq \int_{U_{0}}|J||\nabla u|-\int_{\partial U} \sigma \frac{\partial u_{\sigma}}{\partial \nu} u \\
& \geq \int_{U_{0}} J \cdot \nabla u-\int_{\partial U} \sigma \frac{\partial u_{\sigma}}{\partial \nu} u \\
& =\sum_{i=1}^{4} \int_{T_{i}} J \cdot \nabla u-\int_{\partial U} \sigma \frac{\partial u_{\sigma}}{\partial \nu} u \\
& =\int_{\partial U} J \cdot \nu u-\int_{\partial U} \sigma \frac{\partial u_{\sigma}}{\partial \nu} u \\
& =0,
\end{aligned}
$$

since $J \cdot \nu \equiv \sigma \frac{\partial u_{\sigma}}{\partial \nu}$ on ∂U. Thus and $\left(1, x^{2}-y^{2}\right)$ is admissible.

A proposition

Let $\Omega \subset R^{n}, n \geq 2$ be a domain and $(f,|J|) \in H^{1 / 2}(\partial \Omega) \times L^{2}(\Omega)$. Then
(1) Assume $(f,|J|)$ is admissible, say generated by some conductivity $\sigma \in L^{\infty}(\Omega \backslash(\overline{U \cup V}))$ where U and V is described in Definition 1 and u_{0} is the corresponding voltage potential. Then u_{0} is a minimizer for $\int_{\Omega} a|\nabla u|$
over

$$
\begin{equation*}
A:=\left\{u \in W^{1,1}(\Omega):\left.u\right|_{\Omega}=f\right\} . \tag{9}
\end{equation*}
$$

(2) Assume that the set of zeros of $a=|J|$ can be decomposed as follows

$$
\{x \in \Omega: \quad a(x)=0\}=V \cup \Gamma_{1},
$$

where V is an open set and Γ_{1} has measure zero. Suppose u_{0} is a minimizer for $\int_{\Omega} a|\nabla u|$ in over A and the set of zeroes of $\left|\nabla u_{0}\right|$ can be decomposed as follows

$$
\left\{x \in \Omega \backslash V:\left|\nabla u_{0}\right|=0\right\}=\bar{U} \cup \Gamma_{2},
$$

where U is an open set and $\overline{U \cup V} \subset \Omega$, and Γ_{2} has measure zero. If $U \cap V=\emptyset$ and $|J| /\left|\nabla u_{0}\right| \in L^{\infty}(\Omega \backslash(\overline{U \cup V}))$, then $(f,|J|)$ is admissible.

Sketch of the uniqueness proof ...

- By our assumptions $|J|>0$ a.e. in $\Omega \backslash \overline{U \cup V \cup W}$ which yields $\left|\nabla u_{0}\right|>0$ a.e. on $\Omega \backslash \overline{U \cup V \cup W}$. Since $U \cup W$ is a disjoint union of countably many connected open sets and u_{0} is constant on every connected open subset of $U \cup W$, the set

$$
\Theta:=\left\{u_{0}(x): \quad x \in \overline{U \cup W}\right\}
$$

is countable.

- Without loss of generality we can assume $u_{0} \geq 0$ in $\bar{\Omega}$. Then

$$
\begin{aligned}
F\left(u_{1}\right) & =\int_{\Omega \backslash \overline{U \cup V \cup W}} \sigma\left|\nabla u_{0}\right| \cdot\left|\nabla u_{1}\right| d x \geq \int_{\Omega \backslash \overline{U \cup V \cup W}} \sigma\left|\nabla u_{0} \cdot \nabla u_{1}\right| d x \\
& \geq \int_{\Omega \backslash \overline{U \cup V \cup W}} \sigma \nabla u_{0} \cdot \nabla u_{1}=\int_{\partial \Omega} \sigma_{0} \frac{\partial u_{0}}{\partial \nu} u_{1} d s=\int_{\partial \Omega} \sigma_{0} \frac{\partial u_{0}}{\partial \nu} f d s \\
& =F\left(u_{0}\right),
\end{aligned}
$$

where ν is the outer normal to the boundary of Ω.

...sketch of the uniqueness proof ...

- Consequently

$$
\begin{equation*}
\frac{\nabla u_{0}(x)}{\left|\nabla u_{0}(x)\right|}=\frac{\nabla u_{1}(x)}{\left|\nabla u_{1}(x)\right|} \tag{10}
\end{equation*}
$$

a.e. on

$$
(\Omega \backslash \overline{U \cup V \cup W}) \cap\left\{x \in \Omega:\left|\nabla u_{1}\right| \neq 0\right\} .
$$

- Let $E_{t}=\left\{x \in \Omega \backslash \overline{U \cup V \cup W}: u_{0}(x)>t\right\}$. Since Θ is countable, for a.e. $t>0, \partial E_{t} \cap(U \cup W)=\emptyset$ (otherwise u_{0} must be a constant). By the regularity result of De Giorgi we conclude that $\partial E_{t} \cap \Omega \backslash \bar{V}$ is a C^{1}-hypersurface for almost all $t>0$.

...sketch of the uniqueness proof ...

- By (10) we can show u_{1} is constant on every C^{1} connected component of $\partial E_{t} \cap(\Omega \backslash \bar{V})$.
- Finally we show that every connected component Σ_{t} of ∂E_{t} intersects $\partial \Omega$ and therefore $u_{1}=u_{2}$.

Thank You

