Predicting Treatment Efficacy via quantitative MRI: A Bayesian Joint Model

Timothy D. Johnson
Department of Biostatistics
University of Michigan

Outline

(9) Introduction
(2) Joint Model
(3) Results

4 Conclusion
(5) Acknowledgements

Use qMRI to predict treatment response early

- High-grade Gliomas
- 1 year median survival after diagnosis
- treatment lasts ≈ 3 months
- another 2 months before radiological response measured
- Complete Response - no visible sign of tumor
- Partial Response - > 25\% volume reduction
- Stable disease - $<25 \%$ reduction and $<25 \%$ volume increase
- Progressive disease ->25\% volume increase
- Second line therapies may then be given (usually too late to have any effect)
- Goal: predict response within 2-3 weeks of treatment initiation

qMRI Biomarkers for Treatment Response

- Diffusion - measure of Brownian motion of water molecules
- Apparent Diffusion Coefficient (ADC)
- Magnitude of the diffusion tensor

- high cellular density = low diffusion
- Cytotoxic drugs/Radiation kill cells which then lyse
- low cellular density $=$ high diffusion

qMRI Biomarkers for Treatment Response

- Perfusion - measure of blood flow or blood volume

- low blood volume $=$ less nutrients $=$ retarded growth

Early Human Trial

Hypothesis

quantitative MRI can predict treatment efficacy early

Early Results

Human study (Glioma tumors) appeared futile

- no significance change in mean ADC due to treatment
- mean ADC could not predict outcome (radiological response)
- Colleagues did not give up -
- An entire program project grant was funded based on early animal models
- They noted that regions of tumors had large changes in ADC
- Noticed changes in the tails of the tumor histogram

New summary statistic

- Moffat et al. (2005) developed a new summary statistic
- functional diffusion map - FDM (and FPM)
- group means significantly different
- ($\mathrm{SD}+\mathrm{PR}+\mathrm{CR}$) vs. PD

Baseline qMRI

New summary statistic

- Moffat et al. (2005) developed a new summary statistic
- functional diffusion map - FDM (and FPM)
- group means significantly different
- (SD + PR + CR) vs. PD

Baseline qMRI

New summary statistic

- Moffat et al. (2005) developed a new summary statistic
- functional diffusion map - FDM (and FPM)
- group means significantly different
- (SD + PR + CR) vs. PD

New summary statistic

- Moffat et al. (2005) developed a new summary statistic
- functional diffusion map - FDM (and FPM)
- group means significantly different
- ($\mathrm{SD}+\mathrm{PR}+\mathrm{CR}$) vs. PD
- I was still skeptical
- showing a difference in means does not imply predictive power
- After obtaining the data
- tried using FDM and FPM to predict one-year survival status
- leave-one-out CV: 63\% correct classification (Logistic classifier)
- I had to try harder
- a large chunk of my salary comes from the P01!

Sample Images

Baseline, T2-Weighted, Gd-Enhanced

Week 3, T2-Weighted, Gd-Enhanced

Baseline ADC

Week 3 ADC

Baseline CBF

Week 3 CBF

Two-Stage Joint Model

Stage I: Multivariate spatio-temporal pairwise difference prior ${ }^{1}$

- \mathcal{Y} will denote the set of all images over all M subjects
- Ω_{1} denotes the stage I parameters
- Summary statistics derived in stage I denoted by \mathcal{X}
- functionals of $\Omega_{1}: \mathcal{X}=F\left(\Omega_{1}\right)$

[^0]
Two-Stage Joint Model

Stage I: Multivariate spatio-temporal pairwise difference prior ${ }^{1}$

- \mathcal{Y} will denote the set of all images over all M subjects
- Ω_{1} denotes the stage I parameters
- Summary statistics derived in stage I denoted by \mathcal{X}
- functionals of $\Omega_{1}: \mathcal{X}=F\left(\Omega_{1}\right)$

Sampling distribution

$$
\left[\mathbf{Y}_{i} \mid \boldsymbol{\mu}_{i}, \Sigma\right] \sim N\left(\boldsymbol{\mu}_{i}, \Sigma\right), \quad \forall \text { tumor voxels } i
$$

[^1]
Two-Stage Joint Model

Stage I: Multivariate spatio-temporal pairwise difference prior ${ }^{1}$

- \mathcal{Y} will denote the set of all images over all M subjects
- Ω_{1} denotes the stage I parameters
- Summary statistics derived in stage I denoted by \mathcal{X}
- functionals of $\Omega_{1}: \mathcal{X}=F\left(\Omega_{1}\right)$

Sampling distribution

$$
\left[\mathbf{Y}_{i} \mid \boldsymbol{\mu}_{i}, \Sigma\right] \sim N\left(\boldsymbol{\mu}_{i}, \Sigma\right), \quad \forall \text { tumor voxels } i
$$

Prior distribution (pairwise-difference prior)

$$
\pi(\boldsymbol{\mu}) \propto \exp \left[-\sum_{i \sim j}\left(\boldsymbol{\mu}_{i}-\boldsymbol{\mu}_{j}\right)^{\mathrm{T}} \Psi^{-1}\left(\boldsymbol{\mu}_{i}-\boldsymbol{\mu}_{j}\right)\right]
$$

[^2]
Two-Stage Joint Model

Stage II: Generalized non-linear model ${ }^{2}$

- Z will denote the M-vector of 1-year survival statuses
- Probit link, MARS ${ }^{3}$ basis
- Ω_{2} denotes the stage II parameters
- Stages linked via summary statistics

[^3]
Two-Stage Joint Model

Stage II: Generalized non-linear model ${ }^{2}$

- Z will denote the M-vector of 1-year survival statuses
- Probit link, MARS ${ }^{3}$ basis
- Ω_{2} denotes the stage II parameters
- Stages linked via summary statistics

GNLM-BMARS

$$
\begin{aligned}
\operatorname{Pr}\left(Z_{j}=1 \mid \mathbf{X}_{j}, \Omega_{2}\right) & =\Phi\left(\eta_{j}\right), \quad \eta_{j}=\sum_{k=0}^{K} \beta_{k} B_{k}\left(\mathbf{X}_{j}\right), \\
B_{k}\left(\mathbf{X}_{j}\right) & = \begin{cases}1, & k=0, \\
\prod_{\ell=1}^{L_{k}}\left[s_{\ell k}\left(X_{j w_{\ell k}}-t_{\ell k}\right)\right]_{+}, & k=1,2, \ldots, K\end{cases}
\end{aligned}
$$

[^4]
Two-Stage Joint Model

Stage II: Generalized non-linear model ${ }^{2}$

- Z will denote the M-vector of 1 -year survival statuses
- Probit link, MARS ${ }^{3}$ basis
- Ω_{2} denotes the stage II parameters
- Stages linked via summary statistics

GNLM-BMARS

$$
\begin{aligned}
\operatorname{Pr}\left(Z_{j}=1 \mid \mathbf{X}_{j}, \Omega_{2}\right) & =\Phi\left(\eta_{j}\right), \quad \eta_{j}=\sum_{k=0}^{K} \beta_{k} B_{k}\left(\mathbf{X}_{j}\right), \\
B_{k}\left(\mathbf{X}_{j}\right) & = \begin{cases}1, & k=0, \\
\prod_{\ell=1}^{L_{k}}\left[s_{\ell k}\left(X_{j w_{\ell k}}-t_{\ell k}\right)\right]_{+}, & k=1,2, \ldots, K\end{cases}
\end{aligned}
$$

Posterior factorization

$$
\pi\left(\Omega_{1}, \Omega_{2} \mid \mathcal{Y}, \mathrm{Z}\right)=\pi\left(\Omega_{2} \mid \mathrm{Z}, F\left(\Omega_{1}\right)\right) \times \pi\left(\Omega_{1} \mid \mathcal{Y}\right)
$$

[^5]
Prediction

- Ultimately interested in predicting a new patient's survival status given his/her imaging data

Posterior Predictive Expectation

$$
\mathrm{E}\left(Z_{\text {new }} \mid \mathcal{Y}_{\text {new }}, \mathbf{Z}, \mathcal{Y}\right)=\int \pi\left(Z_{\text {new }}=1 \mid \mathcal{Y}_{\text {new }}, \Omega\right) \pi(\Omega \mid \mathcal{Y}, \mathbf{Z}) d \Omega
$$

- $\Omega=\left\{\Omega_{1}, \Omega_{2}\right\}$
- We will use cross-validation to assess model

Prediction of tumor response in the contralateral hemisphere

- Would like to compare tumor response under treatment vs. under no treatment
- impossible

Prediction of tumor response in the contralateral hemisphere

- Would like to compare tumor response under treatment vs. under no treatment
- impossible
- Next best: compare tumor response under treatment vs. tumor response as though it responds similar to healthy tissue in the contralateral hemisphere of the brain
- Since this is not observed, we predict it

Prediction of tumor response in the contralateral hemisphere

- Would like to compare tumor response under treatment vs. under no treatment
- impossible
- Next best: compare tumor response under treatment vs. tumor response as though it responds similar to healthy tissue in the contralateral hemisphere of the brain
- Since this is not observed, we predict it

Prediction of tumor response in the contralateral hemisphere

- Would like to compare tumor response under treatment vs. under no treatment
- impossible
- Next best: compare tumor response under treatment vs. tumor response as though it responds similar to healthy tissue in the contralateral hemisphere of the brain
- Since this is not observed, we predict it

Summary Statistics

- Kullback-Leibler Divergence between
- estimated change in tumor means (FDM or FPM) and predicted change in contralateral hemisphere
- Conditional diffusion (perfusion) statistic:
- conditional distribution given spatial information
- prop. of week 3 tumor voxel means >0.975 (diffusion) or <0.025 (perfusion) quantile of the conditional predictive mean distr. in contralateral hemisphere

Algorithm Highlights

- Latent variable representation ${ }^{4}$
- transforms probit model into a (marginally) equivalent linear model
- RJMCMC ${ }^{5}$
- number of MARS basis is unknown and random
- integrate regression coefficients out of joint likelihood
- Importance sampling for c.v. ${ }^{6}$
- only run algo. once with full data
- run algorithm for 100 K iterations, burnin of 50 K
- oversample stage II 10:1
- roughly 20 hours on a 3.0 GHz Mac Xserve server
- vast majority of computation spent in stage I

[^6]
Comparison with Simpler Models

$$
\text { If } \operatorname{Pr}\left(Z_{j}=1 \mid Z_{-j}, \mathcal{Y}\right)>0.5, \text { then predict } Z_{j}=1
$$

- Using all summary statistics

Model	${ }^{1} \mathrm{CCR}_{\mathrm{CV}}$
Bayesian joint model	0.79
Separate models (stage I + GLM)	0.62
fDM/fPM + GLM	0.63

${ }^{1}$ Correct cross-validated classification rate.

- Only using the Kullback-Leibler statistics

Model	$\mathrm{CCR}_{\mathrm{CV}}$
Bayesian joint model	0.72
Single model (Obs. data + GNLM)	0.64

Marginal Decision Boundaries: $\operatorname{Pr}\left(Z_{\text {new }}=1 \mid \mathbf{Z}, \mathcal{Y}, \mathbf{X}_{\text {new.i. }}\right)=0.5$

Remarks

- Manuscript to appear:
- Wu and Johnson (2011), Predicting treatment efficacy via Quantitative MRI: a Bayesian joint model, JRSSC (in press).
- currently available at

```
http://www.bepress.com/umichbiostat/paper86
```

- Accounting for spatial correlation and complex decision boundary increases prediction rates over simpler models
- Summary statistics may not be ideal-more work is needed with collaborators to define better summaries
- currently reducing a large amount of data to a few summary values
- perhaps a larger vector would afford better prediction
- Currently small trials under way to determine if qMRI can be used in other tumors
- breast cancer
- prostate cancer bone metastases
- sarcomas

Acknowledgements

- Jincao Wu, NCI
- Brian D. Ross, Department of Radiology
- Charles R. Meyer, Department of Radiology
- Thomas L. Chenevert, Department of Radiology
- Craig J. Galbán, Department of Radiology
- Christina Tsien, Department of Radiation Oncology
- Daniel A. Hamstra, Department of Radiation Oncology
- The Center for Molecular Imaging, UofM

[^0]: ${ }^{1}$ Besag (1993), Towards Bayesian Image Analysis, Journal of Applied Statistics (20) 107-119.

[^1]: ${ }^{1}$ Besag (1993), Towards Bayesian Image Analysis, Journal of Applied Statistics (20) 107-119.

[^2]: ${ }^{1}$ Besag (1993), Towards Bayesian Image Analysis, Journal of Applied Statistics (20) 107-119.

[^3]: ${ }^{2}$ Holmes and Denison (2003), Classification with Bayesian MARS, Machine Learning (50) 159-173.
 ${ }^{3}$ Friedman (1991), Multivariate adaptive regression splines, The Annals of Statistics (19) 1-61.

[^4]: ${ }^{2}$ Holmes and Denison (2003), Classification with Bayesian MARS, Machine Learning (50) 159-173.
 ${ }^{3}$ Friedman (1991), Multivariate adaptive regression splines, The Annals of Statistics (19) 1-61.

[^5]: ${ }^{2}$ Holmes and Denison (2003), Classification with Bayesian MARS, Machine Learning (50) 159-173.
 ${ }^{3}$ Friedman (1991), Multivariate adaptive regression splines, The Annals of Statistics (19) 1-61.

[^6]: ${ }^{4}$ Albert and Chib (1993), Bayesian analysis of binary and polychotomous response data, JASA (88) 669-679.
 ${ }^{5}$ Green (1995), Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , Biometrika (82) 711-732.
 ${ }^{6}$ Gelfand, Dey, Chang (1992), Model determination using preditive distributions with implementation via sample-based methods, Bayesian Statistics 4, 147-167.

