INADEQUATE

Christopher Anand
(with Alex Bain, Sean Watson, Anuroop Sharma)

Small Molecules

- biological products
- possible medical applications
- want to know structure
- look at C-C bonds, double-quantum structure

Single Quantum

- Single Quantum = Bloch Equations
- Complex Form

$$
\frac{d}{d t}\left(\begin{array}{c}
\rho_{+1} \\
\rho_{0} \\
\rho_{-1} \\
\rho_{e q}
\end{array}\right)=-\left(\begin{array}{cccc}
i \omega+R_{2} & i \frac{\gamma B_{1}}{\sqrt{2}} & 0 & 0 \\
i \frac{\gamma B_{1}}{\sqrt{2}} & R_{1} & i \frac{\gamma B_{1}}{\sqrt{2}} & -R_{1} \\
0 & i \frac{\gamma B_{1}}{\sqrt{2}} & -i \omega+R_{2} & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
\rho_{+1} \\
\rho_{0} \\
\rho_{-1} \\
\rho_{e q}
\end{array}\right)
$$

Step I

- measure C spectrum

Double Quantum

- two nuclei, arrange by coherence level

Measure 2Quantum

- create 2 Q spin
- let it evolve (delay I)
- put it back into IQ
- measure (readout 2)

Isolated Signal

Isolated Signal

readout $=$ directly acquired

Isolated Signal

 readout $=$ directly acquired

Problem: Noise

Box the Signal $\mathcal{S}_{i j}$

$$
\begin{array}{ll}
\min & \|m-\mathcal{S}\|^{2} \\
& +\lambda_{1}\left\|\delta_{x} \mathcal{S}\right\|^{2} \\
& +\lambda_{2} \sum_{i j}\left(1-p_{i j}\right)^{2}\left\|\mathcal{S}_{i j}+\mathcal{S}_{j i}\right\|^{2} \\
& +\lambda_{3} \sum_{i j}\left(\left\|\mathcal{S}_{i j}\right\|^{2}-\left\|\mathcal{S}_{j i}\right\|^{2}\right)^{2} \\
& +\mu_{1} \sum_{i}\left(2-\sum_{j \neq i} p_{i j}\right)^{4} \\
& +\mu_{2} \sum_{i j} p_{i j} \\
\text { s.t. } p_{i j} \geq 0 \tag{9}\\
& p_{i j} \leq 1
\end{array}
$$

Too Hard

- Non-quadratic + bi-quadratic terms
- takes to long to solve
- solve alternately for S and p (Gauss-Seidel)

Solve for S

$$
\begin{aligned}
& \min _{\mathcal{S}}\|m-\mathcal{S}\|^{2}+\lambda_{1}\left\|\delta_{x} \mathcal{S}\right\|^{2}+\lambda_{2} \sum_{i j}\left(1-p_{i j}\right)^{2}\left\|\mathcal{S}_{i j}+\mathcal{S}_{j i}\right\|^{2} \\
& \quad+\lambda_{3} \sum_{i j}\left(\left\|\mathcal{S}_{i j}\right\|^{2}-\left\|\mathcal{S}_{j i}\right\|^{2}\right)^{2}
\end{aligned}
$$

Solve for P

$$
\begin{aligned}
\min _{p_{i j}} & \sum_{i j}\left(1-p_{i j}\right)^{2}\left\|\mathcal{S}_{i j}+\mathcal{S}_{j i}\right\|^{2}+\mu_{1} \sum_{i}\left(2-\sum_{j \neq i} p_{i j}\right)^{4} \\
& +\mu_{2} \sum_{i j} p_{i j}
\end{aligned}
$$

$$
\text { s.t. } p_{i j} \geq 0
$$

$$
p_{i j} \leq 1
$$

Result

Without Regularization

Results

- $\mathbf{>} \mathbf{4 X}$ reduction in scan time
- compared to skilled interpretation

Problems

- Can't see past O, N, etc.
- Still takes too long

Solutions

- Can't see past O, N, etc.
- go Multi-Nuclear
- Still takes too long

Solutions

- Can't see past O, N, etc.
- go Multi-Nuclear
- Still takes too long
- Optimize delay times (k-space sampling)

Protein NMR

- Know DNA Sequences
- Defines Strings of Amino Acids
- Missing Info:
- Protein Structure
- only works if folded
- Protein Function
- interaction = wiggling

2-d NMR

- pulse @ 2 frequencies
- transfer spin state $\mathrm{H}-\mathrm{N}-\mathrm{H}$
- phase variation proportional to delay (indirect)

2-d C-H

Linear Forward Problem

Linear Forward Problem
 $$
\tilde{f}\left(k_{i}\right)=\sum_{j=1}^{m} f\left(x_{j}\right) e^{v-1 /\left(k, x_{i} x_{j}\right)}
$$

Linear Forward Problem
 $$
\tilde{f}\left(k_{i}\right)=\sum_{j=1}^{m} f\left(x_{j}\right) e^{v-1 /\left(k, x_{i}\right)}
$$

$$
\left(\begin{array}{c}
\tilde{f}\left(k_{1}\right) \\
\vdots \\
\tilde{f}\left(k_{n}\right)
\end{array}\right)=S\left(\begin{array}{c}
f\left(x_{1}\right) \\
\vdots \\
f\left(x_{m}\right)
\end{array}\right)+\left(\begin{array}{c}
\epsilon_{1} \\
\vdots \\
\epsilon_{n}
\end{array}\right)
$$

Linear Forward Problem

$$
\begin{gathered}
\tilde{f}\left(k_{i}\right)=\sum_{j=1}^{m} f\left(x_{j}\right) e^{\sqrt{-1}\left\langle k_{i}, x_{j}\right\rangle} \\
\left(\begin{array}{c}
\tilde{f}\left(k_{1}\right) \\
\vdots \\
\tilde{f}\left(k_{n}\right)
\end{array}\right)=S\left(\begin{array}{c}
f\left(x_{1}\right) \\
\vdots \\
f\left(x_{m}\right)
\end{array}\right)+\left(\begin{array}{c}
\epsilon_{1} \\
\vdots \\
\epsilon_{n}
\end{array}\right) \\
S_{i, j}=e^{\sqrt{-1}\left\langle k_{i}, x_{j}\right\rangle}
\end{gathered}
$$

Linear Forward Problem

$$
\begin{gathered}
\tilde{f}\left(k_{i}\right)=\sum_{j=1}^{m} f\left(x_{j}\right) e^{\sqrt{-1}\left\langle k_{i}, x_{j}\right\rangle} \\
\left(\begin{array}{c}
\tilde{f}\left(k_{1}\right) \\
\vdots \\
\tilde{f}\left(k_{n}\right)
\end{array}\right)=S\left(\begin{array}{c}
f\left(x_{1}\right) \\
\vdots \\
f\left(x_{m}\right)
\end{array}\right)+\left(\begin{array}{c}
\epsilon_{1} \\
\vdots \\
\epsilon_{n}
\end{array}\right) \\
S_{i, j}=e^{\sqrt{-1}\left\langle k_{i}, x_{j}\right\rangle \quad \text { is linear }}
\end{gathered}
$$

Moore-Penrose Inverse

$$
\left(\begin{array}{c}
f\left(x_{1}\right) \\
\vdots \\
f\left(x_{m}\right)
\end{array}\right)=\left(S^{*} S\right)^{-1} S^{*}\left(\begin{array}{c}
\tilde{f}\left(k_{1}\right) \\
\vdots \\
\tilde{f}\left(k_{n}\right)
\end{array}\right)
$$

Moore-Penrose Inverse

$$
\left(\begin{array}{c}
f\left(x_{1}\right) \\
\vdots \\
f\left(x_{m}\right)
\end{array}\right)=\left(S^{*} S\right)^{-1} S^{*}\left(\begin{array}{c}
\tilde{f}\left(k_{1}\right) \\
\vdots \\
\tilde{f}\left(k_{n}\right)
\end{array}\right)
$$

- can invert with M-P pseudo-inverse

Moore-Penrose Inverse

$$
\left(\begin{array}{c}
f\left(x_{1}\right) \\
\vdots \\
f\left(x_{m}\right)
\end{array}\right)=\left(S^{*} S\right)^{-1} S^{*}\left(\begin{array}{c}
\tilde{f}\left(k_{1}\right) \\
\vdots \\
\tilde{f}\left(k_{n}\right)
\end{array}\right)
$$

- can invert with M-P pseudo-inverse
- optimize $\{\mathrm{k}\}$ for M-P

Worst-Case Noise \sim Conditioning of

$$
\left(S^{*} S\right)_{i, j}=\sum_{l=1}^{n} e^{\sqrt{-1}\left\langle k_{l}, x_{j}-x_{i}\right\rangle}
$$

Worst-Case Noise

 \sim Conditioning of$$
\left(S^{*} S\right)_{i, j}=\sum_{l=1}^{n} e^{\sqrt{-1}\left\langle k_{l}, x_{j}-x_{i}\right\rangle}
$$

- expected maximum error
~ 1 / minimal eigenvalue

Worst-Case Noise

 \sim Conditioning of$$
\left(S^{*} S\right)_{i, j}=\sum_{l=1}^{n} e^{\sqrt{-1}\left\langle k_{l}, x_{j}-x_{i}\right\rangle}
$$

- expected maximum error
~ 1 / minimal eigenvalue
- constraining eigenvalues
= Semi-Definite Programming (SDP)

Real SDP

$$
\begin{aligned}
& \min _{\left\{k_{i}\right\}} \quad-\lambda \\
& \text { subject to } \quad A-\lambda I \succeq 0 \\
& A_{2 i-1,2 j-1}=\sum_{l=1}^{n} \cos \left\langle k_{l}, x_{j}-x_{i}\right\rangle \\
& A_{2 i, 2 j}=\sum_{l=1}^{n} \cos \left\langle k_{l}, x_{j}-x_{i}\right\rangle \\
& A_{2 i, 2 j-1}=\sum_{l=1}^{n} \sin \left\langle k_{l}, x_{j}-x_{i}\right\rangle \\
& A_{2 i-1,2 j}=-\sum_{l=1}^{n} \sin \left\langle k_{l}, x_{j}-x_{i}\right\rangle
\end{aligned}
$$

Trust Region + SDP Step

$$
\min _{k}-\lambda
$$

subject to $\left.A\right|_{\tilde{k}}+\left.\sum_{\substack{\alpha=1 \ldots n \\ \beta=1 \ldots r}}\left(k_{\alpha, \beta}-\tilde{k}_{\alpha, \beta}\right) \frac{\partial A}{\partial k_{\alpha, \beta}}\right|_{\tilde{k}}-\lambda I \succeq 0$

$$
\frac{\partial A_{2 i-1,2 j-1}}{\partial k_{\alpha, \beta}}=-\left(\sin \left\langle k_{\alpha}, x_{j}-x_{i}\right\rangle\right)\left(x_{j, \beta}-x_{i, \beta}\right)
$$

$$
\frac{\partial A_{2 i, 2 j}}{\partial k_{\alpha, \beta}}=-\left(\sin \left\langle k_{\alpha}, x_{j}-x_{i}\right\rangle\right)\left(x_{j, \beta}-x_{i, \beta}\right)
$$

$$
\frac{\partial A_{2 i, 2 j-1}}{\partial k_{\alpha, \beta}}=\quad\left(\cos \left\langle k_{\alpha}, x_{j}-x_{i}\right\rangle\right)\left(x_{j, \beta}-x_{i, \beta}\right)
$$

$$
\frac{\partial A_{2 i-1,2 j}}{\partial k_{\alpha, \beta}}=-\left(\cos \left\langle k_{\alpha}, x_{j}-x_{i}\right\rangle\right)\left(x_{j, \beta}-x_{i, \beta}\right)
$$

$$
\left|k_{\alpha, \beta}-\tilde{k}_{\alpha, \beta}\right| \leq \frac{\pi / 2}{\max \left|x_{j, \beta}-x_{i, \beta}\right|}
$$

Works
 well

 in 3D!

- SDP optimization $=\mathbf{1 0 0} \%$ efficient
- greedy random $<80 \%$ efficient
- $2 x$ more samples with greedy random

- $\quad 17$ peaks with full frequency information
- Efficiency increases with dimension (34 samples)
- fewer samples required in higher dimensions

To Do

- Celebrate 4X faster experiments
- Design mixed C-O-N experiments
- Make delay optimization numerically robust

Thanks to

- Adrian, Dhavide, Hongmei for the invitation
- MITACS and Field's the conference
- NSERC and IBM for funding
- my students for their hard work

