INADEQUATE

Christopher Anand (with Alex Bain, Sean Watson, Anuroop Sharma)

Small Molecules

- biological products
- possible medical applications
- want to know structure
- look at C-C bonds, double-quantum structure

Single Quantum

- Single Quantum = Bloch Equations
- Complex Form

Step 1

• measure C spectrum

Double Quantum

• two nuclei, arrange by coherence level

(A+B)															.)	(0) 0)		$(1_{+1}) 1_{+1})$
	A	$\frac{J}{2}$	0	$-\frac{J}{2}$			•								•	$ 1_{+1}) 0$)	$ 1_{+1}) 0)$
	$\frac{J}{2}$	A	$-\frac{J}{2}$	0												$ 1_0 0$)	$ 1_{+1}) 1_{0})$
	0	$-\frac{J}{2}$	B	$\frac{J}{2}$												$ 1_{-1}) 0$)	$ 0) 1_{+1})$
		4		-												$ 0) 1_{+1}$)	$ 1_0 1_{+1}$
	2		2		-A+B	0	\underline{J}		0	0						$ 1_{+1}) 1_{+1}$)	$ 1_{-1}) 1_{+1})$
							2 0	4	0	0					•	$ 1_0 1_{+1}$)	0) 0)
		•			$\frac{J}{2}$	0	0	0	0	$-\frac{J}{2}$						$ 1_{-1}) 1_{+}$		1 ₀) 0)
					$-\frac{J}{2}$	0	0	0	0	$\frac{J}{2}$					•	$ 0) 1_0$	\rightarrow permute \rightarrow	$ 0) 1_{0})$
					0		0			$\frac{2}{0}$						$ 1_{+1}) 1_{0}$)	$ 1_0 1_0 $
					0	0	$-\frac{J}{2}$	$\frac{J}{2}$	0	A – B						$ 1_0) 1_0$)	$ 1_{+1}) 1_{-1})$
											-A	$-\frac{J}{2}$	0	$\frac{J}{2}$		$ 1_{-1}) 1_{0}$)	$ 1_{-1}) 0)$
											$-\frac{J}{2}$	- <i>A</i>	$\frac{J}{2}$	0		$ 0) 1_{-1}$)	$ 1_{-1}) 1_{0})$
											2		2			$ 1_{+1}) 1_{-1}$)	$ 0) 1_{-1})$
											_	-	_	2		$ 1_0 1_{-1}$)	$ 1_0) 1_{-1})$
	•		•	•	•	•	•	•	•	•	2	•	2	•	-A-B	$(1_{-1}) 1_{-1}$	_))	$(1_{-1}) 1_{-1})$

Measure 2Quantum

- create 2Q spin
- let it evolve (delay I)
- put it back into IQ
- measure (readout 2)

Problem: Noise

$$\min ||m - S||^{2}$$
(2)
+ $\lambda_{1} ||\delta_{x}S||^{2}$ (3)
+ $\lambda_{2} \sum_{ij} (1 - p_{ij})^{2} ||S_{ij} + S_{ji}||^{2}$ (4)
+ $\lambda_{3} \sum (||S_{ij}||^{2} - ||S_{ji}||^{2})^{2}$ (5)

$$-\frac{\overline{ij}}{1} + \mu_1 \sum_{i} \left(2 - \sum_{j \neq i} p_{ij} \right)^4$$

$$+ \mu_2 \sum_{ij} p_{ij}$$

s.t.
$$p_{ij} \ge 0$$

 $p_{ij} \le 1$

$$|\delta_x \mathcal{S}||^2 = \sum_i (s_i - s_{i+1})^2$$

(6)

(7)

(8)

(9)

s.t. s_i and s_{i+1} are horizontally adjacent in the same box

Too Hard

- Non-quadratic + bi-quadratic terms
- takes to long to solve
- solve alternately for S and p (Gauss-Seidel)

Solve for S

$$\begin{split} \min_{\mathcal{S}} & ||m - \mathcal{S}||^2 + \lambda_1 ||\delta_x \mathcal{S}||^2 + \lambda_2 \sum_{ij} (1 - p_{ij})^2 ||\mathcal{S}_{ij} + \mathcal{S}_{ji}||^2 \\ & + \lambda_3 \sum_{ij} (||\mathcal{S}_{ij}||^2 - ||\mathcal{S}_{ji}||^2)^2 \end{split}$$

Solve for p

$$\min_{p_{ij}} \sum_{ij} (1 - p_{ij})^2 ||\mathcal{S}_{ij} + \mathcal{S}_{ji}||^2 + \mu_1 \sum_i \left(2 - \sum_{j \neq i} p_{ij}\right)^4 \\
+ \mu_2 \sum_{ij} p_{ij} \\
\text{s.t. } p_{ij} \ge 0 \\
p_{ij} \le 1$$

Without Regularization

Results

- > 4X reduction in scan time
 - compared to skilled interpretation

Problems

• Can't see past O, N, etc.

• Still takes too long

Solutions

- Can't see past O, N, etc.
 - go Multi-Nuclear
- Still takes too long

Solutions

- Can't see past O, N, etc.
 - go Multi-Nuclear
- Still takes too long
 - Optimize delay times (k-space sampling)

Protein NMR

- Know DNA Sequences
- Defines Strings of Amino Acids
- Missing Info:
 - Protein Structure
 - only works if folded
 - Protein Function
 - interaction = wiggling

http://en.wikipedia.org/wiki/Protien

GTGCATCTGACTCCTGAGGAGAAG

GUGCAUCUGACUCCUGAGGAGAAG

2-d NMR

- pulse @ 2
 frequencies
- transfer spin
 state H-N-H
- phase variation
 proportional to
 delay (indirect)

2-d C-H

$$\tilde{f}(k_i) = \sum_{j=1}^m f(x_j) e^{\sqrt{-1}\langle k_i, x_j \rangle}$$

$$\tilde{f}(k_i) = \sum_{j=1}^m f(x_j) e^{\sqrt{-1}\langle k_i, x_j \rangle}$$

$$\begin{pmatrix} \tilde{f}(k_1) \\ \vdots \\ \tilde{f}(k_n) \end{pmatrix} = S \begin{pmatrix} f(x_1) \\ \vdots \\ f(x_m) \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{pmatrix}$$

$$\tilde{f}(k_i) = \sum_{j=1}^{m} f(x_j) e^{\sqrt{-1}\langle k_i, x_j \rangle}$$

$$\begin{pmatrix} \tilde{f}(k_1) \\ \vdots \\ \tilde{f}(k_n) \end{pmatrix} = S \begin{pmatrix} f(x_1) \\ \vdots \\ f(x_m) \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{pmatrix}$$

$$S_{i,j} = e^{\sqrt{-1}\langle k_i, x_j \rangle}$$

$$\tilde{f}(k_i) = \sum_{j=1}^{m} f(x_j) e^{\sqrt{-1}\langle k_i, x_j \rangle}$$

$$\begin{pmatrix} \tilde{f}(k_1) \\ \vdots \\ \tilde{f}(k_n) \end{pmatrix} = S \begin{pmatrix} f(x_1) \\ \vdots \\ f(x_m) \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{pmatrix}$$

$$S_{i,j} = e^{\sqrt{-1}\langle k_i, x_j \rangle}$$
 is linear

Moore-Penrose Inverse

Moore-Penrose Inverse

• can invert with M-P pseudo-inverse

Moore-Penrose Inverse

- can invert with M-P pseudo-inverse
- optimize {k} for M-P

Worst-Case Noise ~ Conditioning of

Worst-Case Noise ~ Conditioning of

$$(S^*S)_{i,j} = \sum_{l=1}^n e^{\sqrt{-1}\langle k_l, x_j - x_i \rangle}$$

expected maximum error
 ~ 1/ minimal eigenvalue

Worst-Case Noise ~ Conditioning of

$$(S^*S)_{i,j} = \sum_{l=1}^n e^{\sqrt{-1}\langle k_l, x_j - x_i \rangle}$$

- expected maximum error
 ~ 1/ minimal eigenvalue
- constraining eigenvalues
 = Semi-Definite Programming (SDP)

Real SDP $\min_{\{k_i\}} - \lambda$ $\{k_i\}$ subject to $A - \lambda I \succeq 0$ $A_{2i-1,2j-1} = \sum \cos\langle k_l, x_j - x_i \rangle$ l=1 $A_{2i,2j} = \sum \cos\langle k_l, x_j - x_i \rangle$ l = 1 $A_{2i,2j-1} = \sum \sin\langle k_l, x_j - x_i \rangle$ l=1 $A_{2i-1,2j} = -\sum \sin\langle k_l, x_j - x_i \rangle$ l=1

Anand - INADEQUATE - MITACS-Field's 2011

Trust Region + SDP Step

 $\min_k \quad -\lambda$

subject to
$$A|_{\tilde{k}} + \sum_{\substack{\alpha = 1...n \\ \beta = 1...r}} (k_{\alpha,\beta} - \tilde{k}_{\alpha,\beta}) \frac{\partial A}{\partial k_{\alpha,\beta}} \Big|_{\tilde{k}} - \lambda I \succeq 0$$

 $\frac{\partial A_{2i-1,2j-1}}{\partial k_{\alpha,\beta}} = -(\sin\langle k_{\alpha}, x_j - x_i \rangle)(x_{j,\beta} - x_{i,\beta})$
 $\frac{\partial A_{2i,2j}}{\partial k_{\alpha,\beta}} = -(\sin\langle k_{\alpha}, x_j - x_i \rangle)(x_{j,\beta} - x_{i,\beta})$
 $\frac{\partial A_{2i,2j-1}}{\partial k_{\alpha,\beta}} = (\cos\langle k_{\alpha}, x_j - x_i \rangle)(x_{j,\beta} - x_{i,\beta})$
 $\frac{\partial A_{2i-1,2j}}{\partial k_{\alpha,\beta}} = -(\cos\langle k_{\alpha}, x_j - x_i \rangle)(x_{j,\beta} - x_{i,\beta})$
 $|k_{\alpha,\beta} - \tilde{k}_{\alpha,\beta}| \leq \frac{\pi/2}{\max|x_{j,\beta} - x_{i,\beta}|}$

- SDP optimization = 100% efficient
- greedy random < 80% efficient
- 2x more samples with greedy random

- Efficiency increases with dimension (34 samples)
- *fewer* samples required in higher dimensions

To Do

- Celebrate 4X faster experiments
- Design mixed C-O-N experiments
- Make delay optimization numerically robust

Thanks to

- Adrian, Dhavide, Hongmei for the invitation
- MITACS and Field's the conference
- NSERC and IBM for funding
- my students for their hard work