NONINVASIVE ECG IMAGING [ECGI] OF CARDIAC ARRHYTHMIAS

Disclosure: Y. Rudy is on the scientific advisory board and holds equity in CardioInsight Technologies (CIT). CIT does not support any research conducted by Y.R., including this work.

Yoram Rudy, Director
Cardiac Bioelectricity and Arrhythmia Center
Washington University in St. Louis

http://rudylab.wustl.edu
http://cbac.wustl.edu
Cardiac arrhythmias are a major cause of death and disability
(prevalence: 3.9 million/yr; mortality: about 325,000/yr in U.S.; mortality is estimated at 7 million/yr worldwide)

Current Method for NonInvasive Diagnosis

- **ECG** (or its extension to many torso surface electrodes) –
 Obtains and analyses data on the body surface, far away from the heart, and cannot resolve or locate electrical events in the heart

- **Lacks sensitivity**
 Cannot detect arrhythmogenic substrate in many cases, or sufficiently early for preventive intervention

- **Lacks specificity**
 Cannot provide specific diagnosis of mechanism for specific therapy
How are Torso ECG Potentials Generated from Epicardial Potentials?

\[V_{ECG} = \frac{1}{4\pi} \int V_{EPI} \nabla \left(\frac{1}{r} \right) ds + [\text{Other Terms}] \]

Over Entire Heart Surface

Epicardial Potentials Torso Potentials

Ramsey et. al., Circ Res, 1977
Electrocardiographic Imaging (ECGI)

- Noninvasive imaging is a corner stone of the practice of modern medicine (CT, MRI, Ultrasound). It is used for risk stratification, diagnosis, guidance of therapy, and follow-up.

- Noninvasive imaging is also used extensively for research of disease processes in humans.

- Despite the need, a noninvasive imaging modality for cardiac arrhythmias does not exist yet.

ECGI is a new imaging approach that reconstructs potentials, electrograms, isochrones and repolarization patterns on the heart surface from body-surface electrocardiographic measurements, noninvasively.
The ECGI Procedure

CT Scan → CT Images → Heart-Torso Geometry

Electrodes Strips → 250 Electrocardiograms

Body Surface Potentials → Epicardial Surface

PNAS 2006;103:6309-6314
http://rudylab.wustl.edu
Volume between the heart and the body surface is source free - governed by Laplace’s Equation:

\[\nabla^2 \Phi = 0 \]

Green’s 2nd theorem: integrals of \(\Phi \) over the heart and torso surfaces

Forward Problem

\[
\begin{bmatrix}
\Phi_T
\end{bmatrix} = \begin{bmatrix}
A
\end{bmatrix} \begin{bmatrix}
\Phi_E
\end{bmatrix}
\]

Torso potential

Heart (epicardial) potential

Boundary Element Method
The reconstruction of Φ_E from Φ_T is an ill-posed inverse problem.

Cannot simply invert

\[
\begin{bmatrix}
\Phi \\
\Phi_T
\end{bmatrix}
= \begin{bmatrix}
A
\end{bmatrix}
\begin{bmatrix}
\Phi \\
\Phi_E
\end{bmatrix}
\]

because A is ill-conditioned and A^{-1} is close to singular.
Cardiac Inverse Problem - Methods

I. Tikhonov regularization

\[\min_{\Phi_E} \left[\left\| A\Phi_E - \Phi_T \right\|^2 + t \left\| L\Phi_E \right\|^2 \right] \]

- \(t \) = regularization parameter
- \(L \) = Unity, Gradient or Laplacian operator

Laplace's equation

constraint
II. Generalized Minimal Residual Method (GMRes) – an iterative approach

- A^{-1} is approximated by polynomial $p(A)$

\[
\Phi_E = p(A) \Phi_T
\]

- $p(A) \Phi_T$ defines a Krylov subspace, K

- For n iterations, $K_n = \text{span}\{\Phi_T, A \Phi_T, A^2 \Phi_T, \ldots, A^{n-1} \Phi_T\}$

- The order of $p(A) \Phi_T$ increases with each iteration

- Residual $||A \Phi_E - \Phi_T||$ decreases with each iteration

- Iteration stops when: residual $< \text{specified tolerance}$ or number of iterations exceeds a specified maximum

- Best iterate is chosen as the solution

Ann Biomed Eng 2003;31:981-994
The approach was validated extensively in torso-tank and animal experiments in normal and infarcted hearts.

Circulation; Circ Res; JACC; and http://rudylab.wustl.edu
Validation by Invasive Surgical Mapping

CT

BSPM

ECGI

Compare

Recording Strips

Epicardial Patches

Venous Cannula

Temporary epicardial pacing leads (RV)
Noninvasive Electrograms (Sinus Rhythm)

Anterior RV

Invasive Noninvasive

CC=0.98 (6ms)
0.97 (8ms)
0.94 (8ms)
0.96 (7ms)
0.94 (13ms)
0.96 (0ms)
0.97 (14ms)
0.97 (8ms)
0.92 (2ms)
0.93 (6ms)

Heart Rhythm
2005;2:339-354
Atrial Arrhythmias

Atrial Flutter

Atrial Fibrillation
TYPICAL ATRIAL FLUTTER

Normal Isochrones

Flutter Isochrones

LAA: Left atrial appendage
IVC: Inferior vena cava
SVC: Superior Vena cava
TA: Tricuspid Annulus
MA: Mitral Annulus
PV: Pulmonary vein
RAFW: Right atrial free-wall
SEP: Septum
CrT: Crista terminalis.

Cycle length: 200 ms

Example: PAROXYSMAL ATRIAL FIBRILLATION

Both focal triggers and spiral waves are observed.

LIPV

Red: Activation Front
Abnormal Ventricular Repolarization

Early Repolarization Syndrome
Normal Ventricular Repolarization

A. Epicardial Potential Map
 Onset of T-wave
 - Lead II
 - Anterior
 - Diaphragmatic

 Peak of T-wave

B. Electrograms
 - RV
 - LV
 - 1: 30 ms, 255 ms
 - 2: ARI: 225 ms, ARI: 265 ms, DARI=40 ms

C. Recovery Time Isochrones
 - Anterior
 - Posterior
 - Color scale: 260 ms to 360 ms

D. Activation Recovery Intervals (ARI)
 - Anterior
 - Posterior
 - Color scale: 290 ms to 260 ms

7 SUBJECTS
Mean ARI=235 ms
Mean LV apex-to-base ARI dispersion=37 ms

PNAS 2006;103:6309-6314
Repolarization abnormalities create substrate for reentry and arrhythmia

Can this substrate be detected noninvasively?
Early Repolarization Syndrome associated with Sudden Death: ECG of Identical Twins

Heart Rhythm 2010;7(4):534-537
Early Repolarization associated with Sudden Death: Activation and Repolarization Maps of Surviving Twin [Sinus Rhythm]

- Islands of very short ARI=140ms (normal is 235ms)
- Extremely large local repolarization gradients: DARI=107ms/cm (normal is 11ms/cm)

Heart Rhythm 2010;7(4):534-537
Electrocardiographic Imaging (ECGI) of Cardiac Resynchronization Therapy in Heart-Failure Patients: Observation of Variable Electrophysiological Responses

Heart Rhythm 2006;3:296-310
Heart failure \(\rightarrow\) LV conduction delay
(LBBB pattern)

Electrical Dyssynchrony

↓

Mechanical Dyssynchrony

↓

↓ Pump Function
HEART - FAILURE SUBSTRATE

Native Rhythm (NR)

- Heterogeneous LBBB activation patterns
- Relatively normal RV activation
- LV activation is delayed 90ms relative to RV (normal is less than 40ms)
- Anterior lines of block/slow conduction, U-shaped activation around block
- Latest activation region varies; lateral LV base is most common

Heart Rhythm 2006;3:296-310

Esyn = lateral (RV – LV) activation
Native Rhythm and BiV Pacing (2 responders)

- Large inter-patients variability in activation patterns and synchrony

- Patient 5: Lateral LVP; BiV improved Esyn from -113 to 20ms

- Patient 3: Anterior LVP; BiV improved Esyn from -93 to -45ms

Heart Rhythm 2006;3:296-310
Native Rhythm and BiV Pacing (2 non-responders)

- Patient 8: Lateral LVP; BiV improved Esyn from -56 to -26ms (QRS did not shorten); Latest activation in anterior LV (132ms)

- Patient 4: Anterior LVP; lateral LV activation was greatly slowed relative to NR

Heart Rhythm 2006;3:296-310
Fusion Beats during LV Pacing

- 3 of 4 patients with intact AV conduction showed fusion with intrinsic excitation during LV pacing with optimal AV delay.

- Degree of fusion increased with increase of AV delay (delay from atrial pacing to LV pacing), because intrinsic RV activation occurred progressively earlier relative to LV pacing.

- Esyn improved as fusion increased.

Heart Rhythm 2006;3:296-310
Yong Wang Bruce Lindsay
Subham Ghosh Ed Rhee
Li Li Mitch Faddis
Ramya Vijayakumar Russell Canham
Junjie Zhang Pamela Woodard
Chris Andrews Phillip Cuculich
Alan Desouza Dan Cooper
Timothy Smith Richard Schuessler
Scott Marrus Ralph Damiano
Jennifer Silva (Avari)

Washington University
Merit Award from NIH-NHLBI

Charu Ramanathan Robert Goldstein
Ping Jia Bartolo Giannattasio
Raja Ghanem Robert Gilkeson
Paul Ryu Bruce Stambler
Anselma Intini Niraj Varma
Albert Waldo William Stevenson
Alan Markowitz Pedro Brugada
Michel Haissaguerre

Case Western Reserve and others