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Diffusion MRI

The average diffusion propagator p(r) quantifies the probability of
a spin to relocate to position r + dr at experimental time τ .

p(r) =

∫
R3

s(q) e−2πı (q·r)dq, r ∈ R3,q ∈ R3

where

s(q) is a normalized diffusion signal

q is the wavevector

In High Angular Resolution Diffusion Imaging, the estimation of
p(r) is superseded by estimating its radial projection known as an
orientation distribution function (ODF):

Q(u) =

∫ ∞
0

p(α u)α2 dα, u ∈ S2.

In this case, s(q) can be restricted to a spherical shell.
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HARDI vs. DTI

Diffusion tensor imaging (DTI) is a well-established tool of diag-
nostic dMRI.

DTI

1 Unimodal Gaussian diffusion
model is assumed.

2 Typical number of diffusion -
encoding gradients is about
20 - 30.

3 Scan duration is about 5 -
10 mins.

4 Incapable of discriminating
multimodal diffusion flows
within a voxel.

HARDI

1 No assumptions on the
diffusion model are made.

2 Typical number of diffusion -
encoding gradients is about
80 - 100.

3 Scan duration is about 20 -
30 mins.

4 Can be used to delineate
multimodal diffusion flows
within a voxel.
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HARDI vs. DTI: Fibre tractography

From: J. Malcolm, O. Michailovich, S. Bouix, C.-F. Westin, A. Tannenbaum, M. Shenton and Y. Rathi, “A filtered

approach to neural tractography using the Watson directional function,” Medical Image Analysis, 14(1), 2009.
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HARDI

Thus, with r = (x , y , z) ∈ Ω ⊂ R3, HARDI measurements can be
modelled as s(u, r) : S2 × Ω→ R+.

Fundamental practical limitation

The practical value of HARDI is greatly impaired by the problem of
prohibitively long acquisition times.
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Research questions

The main questions to be addressed are:

1 Are there tools of mathematical imaging which could be used
to speed up HARDI acquisition so as to make its requirements
comparable to those of DTI?

2 To what extent the resulting approximation errors can affect
the accuracy of subsequent diagnostic inference?
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Multifiber mixture model

At each r ∈ Ω, the HARDI signal can be modelled as

s(u, r) =
M∑
i=1

αi (r)

si (u,r)︷ ︸︸ ︷
exp

{
−b (uTDi (r) u)

}

Observation

The energy of si (u) is supported alongside the great circles of S2.
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Spherical ridgelets

Central requirement

The L2-energy of HARDI signals can be efficiently “encoded” in
terms of representation atoms, whose L2-energy is concentrated
alongside the great circles of S2.
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Spherical ridgelets: construction

Let κ(x) = exp{−ρ x (x + 1)} be a Gaussian function, which we use
to define:

κj(x) = κ(2−jx) = exp
{
−ρ x

2j

( x

2j
+ 1
)}

, j ∈ N.

The Gauss-Weierstrass scaling function χj ,v : S2 → R at resolution
j ∈ N and orientation v ∈ S2 is defined as:

χj,v(u) =
∞∑
n=0

2n + 1

4π
κj(n) Pn(u · v), ∀u ∈ S2,

where Pn is the Legendre polynomial of order n.

Finally, the spherical ridgelets ψj ,v are obtained from χj ,v according
to:

ψj,v =
1

2π
R{χj+1,v − χj,v} ,

where R denotes the Funk-Radon transform.
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Spherical ridgelets: construction (cont.)

Theorem

The semi-discrete set of spherical ridgelets {ψj ,v}j∈N,v∈S2 is a frame

for the subspace S ∈ L2(S2) of symmetric spherical functions.

In practical computations, given a set of K diffusion-encoding ori-
entations {uk}Kk=1, the ridgelet frame is discretized to result in:

s(r) = Ψc(r) + e(r), ∀r ∈ Ω,

where

s(r) = [s(u1, r), s(u2, r), . . . , s(uK , r)]T

Ψ is the ridgelet (dictionary) matrix

c(r) is the vector of ridgelet representation coefficients

e(r) is a noise term
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Reconstruction of HARDI signals

Bad news

Noise contamination is typically severe.

# ridgelets � K

Good news

The spherical ridgelets have a low coherence w.r.t. the Dirac
sampling functions (µ ≈ 0.56).

Spherical ridgelets provide sparse representation of HARDI
signals (only 6÷ 8 ridgelets are needed on average).

Therefore, one can try to recover c(r) through:

min
c(r)
‖c(r)‖1

s.t. ‖Ψc(r)− s(r)‖2 ≤ ε
Ψc(r) � 0

which needs to be solved at each r ∈ Ω independently.
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Composite compressed sensing

General idea

Combine the sparse constraints in the diffusion domain (u) with a
smoothness constraint in the spatial domain (r).

To this end, we define:

s̄ = [s(r1), s(r2), . . . , s(r#Ω)]T

c̄ = [c(r1), c(r2), . . . , c(r#Ω)]T

A =


Ψ 0 . . . 0
0 Ψ . . . 0
. . . . . . . . . . . .
0 . . . 0 Ψ


and

‖Ac̄‖TV =
K−1∑
k=0

‖Dk{Ac̄}‖TV

where Dk{s̄}[n] = s̄[Kn + k] is a subsampling operator.
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Composite compressed sensing (cont.)

The spatially constrained CS problem can be now defined as

min
c̄

{
‖c̄‖1 + µ‖Ac̄‖TV

}
s.t. ‖Ac̄ − s̄‖2 ≤ ε

Ac̄ � 0

or, equivalently, in the Lagrangian form as

min
c̄

{1

2
‖Ac̄ − s̄‖2

2 + λ‖c̄‖1 + µ‖Ac̄‖TV + iC (Ac̄)
}
.

Alternatively, one can solve

min
c̄,ū

{1

2
‖ū − s̄‖2

2+λ‖c̄‖1 + µ‖ū‖TV + iC (ū)
}

s.t. Ac̄ = ū
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‖ū − s̄‖2

2+λ‖c̄‖1 + µ‖ū‖TV + iC (ū)
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Solution by means of ADMM

The above problem can be solved iteratively as(
ūt+1, c̄ t+1

)
=

arg min
c̄,ū

{1

2
‖ū − s̄‖2

2 + λ ‖c̄‖1 + µ ‖ū‖TV +
γ

2
‖ū −Ac̄ − pt‖2

2

}
pt+1 = pt +

(
Ac̄ t+1 − ūt+1

)

Finally, splitting the variables results in

Step 1: c̄ t+1 = arg min
c̄

{
1

2
‖Ac̄ − d̄ t‖2

2 + α‖c̄‖1

}
Step 2: ūt+1 = arg min

c̄

{
1

2
‖ū − d̄ t+1‖2

2 + β‖ū‖TV
}

Step 3: pt+1 = pt +
(
Ac̄ t+1 − ūt+1

)
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Numerical aspects

Step 1 is separable in the diffusion variable, and hence it can
be executed in a “voxel-by-voxel” manner (using, e.g., FISTA)

Step 2 is separable in the spatial variable, and hence it can be
executed in a “slice-by-slice” manner (using, e.g., Chambolle’s
algorithm).

The overall computational load scales proportionally with the
number of processing cores.
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In vivo experiments

O. Michailovich, Y. Rathi and S. Dolui, “Spatially regularized compressed sensing for high angular resolution diffusion

imaging,” IEEE Transactions on Medical Imaging, 30(5), 2011.
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ODF revised

• Given a recovered signal s(u, r), its corresponding ODF Q(u, r)
can be computed as (Aganj et al, 2010):

Q(u, r) =
1

4π
+

1

16π2
R
{
∇2

b ln(− ln s(u, r))
}

where ∇2
b stands for the Laplace-Beltrami operator.

• In practice, r belongs to a discrete set Ω:

Ω =
{

ri = (xi , yi , zi ) ∈ R3 | i ∈ I
}
.

• Denoting Q(u, ri ) = Qi (u), we refer to the pair

DΩ = ({ri}i∈I , {Qi (u)}i∈I)

as a directional diffusion structure (DDS).
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Graph representation of DDS

• Formally, the DDS DΩ is a subset of the probability manifold
R3 × P, where P is a set of probability densities on S2.

• DΩ is a high-dimensional space, and it is therefore imperative
to find a lower dimensional representation of DΩ in a linear metric
space.

• Such a representation should:

1 Preserve the directivity information contained in DΩ

2 Be invariant under Euclidean transformations

• To this end, we first transform DΩ into a discrete metrizable ma-
nifold.
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Graph representation of DDS (cont.)

• DΩ can be associated with an undirected weighted graph Gω =

= (V ,E ), with no self-loops and no multiple edges.

• Each vertex vi ∈ V of Gω is related to ri ∈ Ω, while the connec-
tivity on Gω is defined by means of its weights:

ωi,j =


dQ(Qi ,Qj), if ‖ri − rj‖2 = ∆√

2 dQ(Qi ,Qj), if ‖ri − rj‖2 =
√

2∆

+∞, otherwise

where ∆ is a spatial resolution parameter.

• Since physiologically significant regions within the brain are to-
pologically connected, Gω can be endowed with a metric:

dGω
(u, v) = inf {l(u, v)} ,

where l(u, v) =
∑n

k=1 ωk−1,k is the length of a path connecting u and
v .
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Graph representation of DDS (cont.)

• To finalize the definition of Gω as a metric space, the distance
dQ(Qi ,Qj) is defined to be the Jensen-Shannon divergence (aka
information radius):

dψ(Qi ,Qj) =

=

[
1

2

∫
S2

Qi (u) ln
2 Qi (u)

Qi (u) + Qj(u)
dη(u)+

+
1

2

∫
S2

Qj(u) ln
2 Qj(u)

Qi (u) + Qj(u)
dη(u)

]1/2

• Note that the Jensen-Shannon divergence defines a metric on the
space of spherical probability densities P.
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Isometric embedding via MDS

• Given a DDS DΩ and its associated graph representation Gω, one
can use dGω to compute the (geodesic) distances between every pair
of vertices in Gω.

• These distances can be arranged into an N × N matrix

δ = {δi,j = dGω
(vi , vj)}

with N = #Ω.

• A lower dimensional representation of DΩ can be found by means
of multidimensional scaling (MDS) which finds a configuration of N
points XN = {tk}Nk=1 in, e.g., Rd that minimizes the stress

E(XN) =
∑
i<j

(‖ti − tj‖2 − δi,j)2

• In this work, we use d = 3.
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Euclidean invariant biomarkers

• The low-dimensional representation XN of a DDS can be cha-
racterized by its moments

ξp,q,r =
1

N

N∑
k=1

(t1
k)p(t2

k)q(t3
k)r ,

with p +q +r ≤ P and the first-order moments ξ0,0,1, ξ0,1,0 and ξ1,1,0

set to zero.

• Given two DDSs D1
Ω and D2

Ω and their corresponding moments
{ξ1

p,q,r} and {ξ2
p,q,r}, the distance between these structures can be

defined to be:

dD(D1
Ω,D

2
Ω) =

√ ∑
p+q+r≤P

∣∣ξ1
p,q,r − ξ2

p,q,r

∣∣2
• In this work, P is set to be equal to 3, which results in a total of
16 moments of the 2nd and 3rd orders.
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Diagnosis of FES

1 The subject pool consisted of 20 FE patients (16 males, 4
females, average age: 21.21 ± 4.56 years) and 20 normal
controls (15 males, 5 females, average age: 22.47 ± 3.48
years) with the p-value for age being 0.34.

2 HARDI data was acquired using a 3T MRI scanner with spa-
tial resolution of 1.667× 1.667× 1.7 mm3 and a b-value of
900 s/mm2.

3 For each subject, expert segmentation was carried out to
identify the brain regions corresponding to the left (Ωi

L) and
right (Ωi

R) centrum semiovale (with 1 ≤ i ≤ 20).

4 For each subject in the FE and normal control groups, the
pairwise distances between X L

Ni
and XR

Ni
were computed and

used as a diagnostic biomarker.
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Diagnosis of FES (cont.)
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Conclusions

The sparsifying properties of spherical ridgelets are crucial for
the CS-based reconstruction of HARDI signals.

Adding the spatial regularization and positivity constraints can
substantially improve the reconstruction accuracy.

HARDI can be performed using as few diffusion gradients as it
is required by a standard DTI (i.e. K = 20÷ 30).

A new method for low-dimensional representation of HARDI
signals based on isometric embedding was formulated.

It was demonstrated that the performance of the method re-
mains reliable, when the sampling density is reduced by a fac-
tor of 4 with respect to its conventional value.
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Thank you
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