On the roots of a polynomial connected with Golomb Costas Arrays

John Sheekey

Claude Shannon Institute
School of Mathematical Science
University College Dublin

23 July 2010 / Fields Institute-Carleton Finite Fields Workshop
Outline

1. Costas Arrays
2. Cross-correlation
3. (Partial) Solution
A Costas Array C (of order n) is an $n \times n$ grid containing n dots such that

- Each row and each column contains precisely one dot (permutation matrix)
- All displacement vectors (i.e. vector between two dots) are distinct

In other words, the autocorrelation function of C is always either 0 or 1.
Definition

A **Costas Array** C (of order n) is an $n \times n$ grid containing n dots such that

- Each row and each column contains precisely one dot (permutation matrix)
- All displacement vectors (i.e. vector between two dots) are distinct

In other words, the autocorrelation function of C is always either 0 or 1.

John Sheekey

On the roots of a polynomial connected with Costas Arrays
A Costas Array C (of order n) is an $n \times n$ grid containing n dots such that

- Each row and each column contains precisely one dot (permutation matrix)
- All displacement vectors (i.e. vector between two dots) are distinct

In other words, the autocorrelation function of C is always either 0 or 1.
Construction

- Applications in radar and sonar
 - The number of Costas Arrays of a given order is not known. In fact, the existence of Costas Arrays for all n is an open problem.
 - However, there are some constructions.
Applications in radar and sonar

The number of Costas Arrays of a given order is not known. In fact, the existence of Costas Arrays for all n is an open problem.

However, there are some constructions.
Applications in radar and sonar

The number of Costas Arrays of a given order is not known. In fact, the existence of Costas Arrays for all n is an open problem.

However, there are some constructions.
Definition (Welch Array)

Let α be a primitive element of \mathbb{F}_p, p a prime. Define a permutation π on $\{1..p - 1\}$ by

$$\pi(i) = \alpha^i$$

Then π is a Costas permutation.

Definition (Golomb Array)

Let α and β be primitive elements of \mathbb{F}_q, q a power of a prime. Define a permutation π on $\{1..q - 2\}$ by

$$\alpha^i + \beta^{\pi(i)} = 1$$

Then π is a Costas permutation. Denote this by $G_{\alpha,\beta}$.
Definition (Welch Array)

Let α be a primitive element of \mathbb{F}_p, p a prime. Define a permutation π on $\{1..p-1\}$ by

$$\pi(i) = \alpha^i$$

Then π is a Costas permutation.

Definition (Golomb Array)

Let α and β be primitive elements of \mathbb{F}_q, q a power of a prime. Define a permutation π on $\{1..q-2\}$ by

$$\alpha^i + \beta^{\pi(i)} = 1$$

Then π is a Costas permutation. Denote this by $G_{\alpha,\beta}$
Suppose we had two Golomb arrays of the same order, \(G_{\alpha,\beta} \) and \(G_{\alpha^r,\beta^s} \), where \((r, q - 1) = (s, q - 1) = 1\). Then the maximum cross-correlation between the two arrays can be shown to equal the number of roots of the polynomial

\[
F_{r,s}(z) := z^r + (1 - z)^s - 1
\]

in \(\mathbb{F}_q \).

Conjecture (Rickard)

\(F_{r,s} \) has at most \(\frac{q+1}{2} \) roots in \(\mathbb{F}_q \).
Suppose we had two Golomb arrays of the same order, $G_{\alpha,\beta}$ and G_{α^r,β^s}, where $(r, q - 1) = (s, q - 1) = 1$. Then the maximum cross-correlation between the two arrays can be shown to equal the number of roots of the polynomial

$$F_{r,s}(z) := z^r + (1 - z)^s - 1$$

in \mathbb{F}_q.

Conjecture (Rickard)

$F_{r,s}$ has at most $\frac{q+1}{2}$ roots in \mathbb{F}_q
Suppose we had two Golomb arrays of the same order, $G_{\alpha,\beta}$ and G_{α^r,β^s}, where $(r, q - 1) = (s, q - 1) = 1$. Then the maximum cross-correlation between the two arrays can be shown to equal the number of roots of the polynomial

$$F_{r,s}(z) := z^r + (1 - z)^s - 1$$

in \mathbb{F}_q.

Conjecture (Rickard)

$F_{r,s}$ has at most $\frac{q+1}{2}$ roots in \mathbb{F}_q.
Suppose we had two Golomb arrays of the same order, \(G_{\alpha,\beta} \) and \(G_{\alpha^r,\beta^s} \), where \((r, q - 1) = (s, q - 1) = 1\). Then the maximum cross-correlation between the two arrays can be shown to equal the number of roots of the polynomial

\[
F_{r,s}(z) := z^r + (1 - z)^s - 1
\]

in \(\mathbb{F}_q \).

Conjecture (Rickard)

\(F_{r,s} \) has at most \(\frac{q+1}{2} \) roots in \(\mathbb{F}_q \).
We consider the case $r = s$, r odd, and denote by F_r.

- 0 and 1 are roots for all r.
-
 $$F_r(z) = F_r(1 - z) = -z^r F_r \left(\frac{1}{z} \right)$$

- If α is a root, then $1 - \alpha$ is a root
- If $\alpha \neq 0$ is a root, then $\frac{1}{\alpha}$ is a root
- So there is an action by S_3 on the roots of the polynomial
- This polynomial also arises in the cross-correlation of m-sequences, and in the study of APN functions
- It is related to Cauchy-Mirimanoff polynomials
We consider the case $r = s$, r odd, and denote by F_r.

- 0 and 1 are roots for all r.

$$F_r(z) = F_r(1 - z) = -z^r F_r\left(\frac{1}{z}\right)$$

- If α is a root, then $1 - \alpha$ is a root.
- If $\alpha \neq 0$ is a root, then $\frac{1}{\alpha}$ is a root.
- So there is an action by S_3 on the roots of the polynomial.
- This polynomial also arises in the cross-correlation of m-sequences, and in the study of APN functions.
- It is related to Cauchy-Mirimanoff polynomials.
We consider the case $r = s$, r odd, and denote by F_r.

- 0 and 1 are roots for all r.

$$F_r(z) = F_r(1 - z) = -z^r F_r\left(\frac{1}{z}\right)$$

- If α is a root, then $1 - \alpha$ is a root

- If $\alpha \neq 0$ is a root, then $\frac{1}{\alpha}$ is a root

- So there is an action by S_3 on the roots of the polynomial

- This polynomial also arises in the cross-correlation of m-sequences, and in the study of APN functions

- It is related to Cauchy-Mirimanoff polynomials
We consider the case $r = s$, r odd, and denote by F_r.

- 0 and 1 are roots for all r.

\[
F_r(z) = F_r(1 - z) = -z^r F_r\left(\frac{1}{z}\right)
\]

- If α is a root, then $1 - \alpha$ is a root
- If $\alpha \neq 0$ is a root, then $\frac{1}{\alpha}$ is a root

So there is an action by S_3 on the roots of the polynomial. This polynomial also arises in the cross-correlation of m-sequences, and in the study of APN functions. It is related to Cauchy-Mirimanoff polynomials.
We consider the case $r = s$, r odd, and denote by F_r.

- 0 and 1 are roots for all r.

\[F_r(z) = F_r(1 - z) = -z^r F_r\left(\frac{1}{z}\right) \]

- If α is a root, then $1 - \alpha$ is a root
- If $\alpha \neq 0$ is a root, then $\frac{1}{\alpha}$ is a root
- So there is an action by S_3 on the roots of the polynomial

This polynomial also arises in the cross-correlation of m-sequences, and in the study of APN functions

It is related to Cauchy-Mirimanoff polynomials
We consider the case $r = s$, r odd, and denote by F_r.

- 0 and 1 are roots for all r.

$$F_r(z) = F_r(1 - z) = -z^r F_r\left(\frac{1}{z}\right)$$

- If α is a root, then $1 - \alpha$ is a root
- If $\alpha \neq 0$ is a root, then $\frac{1}{\alpha}$ is a root
- So there is an action by S_3 on the roots of the polynomial
- This polynomial also arises in the cross-correlation of m-sequences, and in the study of APN functions

- It is related to Cauchy-Mirimanoff polynomials
We consider the case \(r = s, \ r \) odd, and denote by \(F_r \).

- 0 and 1 are roots for all \(r \).

\[
F_r(z) = F_r(1 - z) = -z^r F_r\left(\frac{1}{z}\right)
\]

- If \(\alpha \) is a root, then \(1 - \alpha \) is a root
- If \(\alpha \neq 0 \) is a root, then \(\frac{1}{\alpha} \) is a root
- So there is an action by \(S_3 \) on the roots of the polynomial
- This polynomial also arises in the cross-correlation of m-sequences, and in the study of APN functions
- It is related to Cauchy-Mirimanoff polynomials
Lemma

Let r be odd. Let S denote the set of non-zero roots of F_r over \mathbb{F}_q. Suppose x and y are in S, with $y \neq 1$. Then

$$\frac{x}{y} \in S \iff \frac{1 - x}{1 - y} \in S$$

Proof.

x and y are roots of F_r, so

$$x^r + (1 - x)^r = 1$$
$$y^r + (1 - y)^r = 1$$

$$\Rightarrow x^r - y^r = (1 - y)^r - (1 - x)^r$$
Lemma

Let r be odd. Let S denote the set of non-zero roots of F_r over \mathbb{F}_q. Suppose x and y are in S, with $y \neq 1$. Then

$$\frac{x}{y} \in S \iff \frac{1 - x}{1 - y} \in S$$

Proof.

x and y are roots of F_r, so

$$x^r + (1 - x)^r = 1$$
$$y^r + (1 - y)^r = 1$$

$$\Rightarrow x^r - y^r = (1 - y)^r - (1 - x)^r$$
Lemma

Let r be odd. Let S denote the set of non-zero roots of F_r over \mathbb{F}_q. Suppose x and y are in S, with $y \neq 1$. Then

$$\frac{x}{y} \in S \iff \frac{1 - x}{1 - y} \in S$$

Proof.

x and y are roots of F_r, so

$$x^r + (1 - x)^r = 1$$

$$y^r + (1 - y)^r = 1$$

$$\Rightarrow x^r - y^r = (1 - y)^r - (1 - x)^r$$
Lemma

Let r be odd. Let S denote the set of non-zero roots of F_r over \mathbb{F}_q. Suppose x and y are in S, with $y \neq 1$. Then

$$\frac{x}{y} \in S \iff \frac{1 - x}{1 - y} \in S$$

Proof.

x and y are roots of F_r, so

$$x^r + (1 - x)^r = 1$$
$$y^r + (1 - y)^r = 1$$

$$\Rightarrow x^r - y^r = (1 - y)^r - (1 - x)^r$$
Lemma

Let r be odd. Let S denote the set of non-zero roots of F_r over \mathbb{F}_q. Suppose x and y are in S, with $y \neq 1$. Then

$$\frac{x}{y} \in S \iff \frac{1-x}{1-y} \in S$$

Proof.

x and y are roots of F_r, so

$$x^r + (1-x)^r = 1$$
$$y^r + (1-y)^r = 1$$

$$\Rightarrow x^r - y^r = (1-y)^r - (1-x)^r$$
Proof (contd.)

Then $\frac{x}{y}$ is a root

$$\iff (\frac{x}{y})^r + (1 - \frac{x}{y})^r = 1$$
$$\iff \frac{x^r}{y^r} + (1 - \frac{x}{y})^r = y^r$$
$$\iff \frac{x^r}{y^r} = (x - y)^r$$
$$\iff (1 - y)^r - (1 - x)^r = (x - y)^r$$
$$\iff (1 - x)^r + (x - y)^r = (1 - y)^r$$
$$\iff (\frac{1-x}{1-y})^r + (\frac{x-y}{1-y})^r = 1$$

$$\iff \frac{1-x}{1-y} \text{ is a root of } F_r$$
Proof (contd.)

Then $\frac{x}{y}$ is a root

\[\iff (\frac{x}{y})^r + (1 - \frac{x}{y})^r = 1 \]
\[\iff x^r + (y - x)^r = y^r \]
\[\iff x^r - y^r = (x - y)^r \]
\[\iff (1 - y)^r - (1 - x)^r = (x - y)^r \]
\[\iff (1 - x)^r + (x - y)^r = (1 - y)^r \]
\[\iff (\frac{1-x}{1-y})^r + (\frac{x-y}{1-y})^r = 1 \]

\[\iff \frac{1-x}{1-y} \text{ is a root of } F_r \]
Proof (contd.)

Then \(\frac{x}{y} \) is a root

\[
\Leftrightarrow (\frac{x}{y})^r + (1 - \frac{x}{y})^r = 1 \\
\Leftrightarrow x^r + (y - x)^r = y^r \\
\Leftrightarrow x^r - y^r = (x - y)^r \\
\Leftrightarrow (1 - y)^r - (1 - x)^r = (x - y)^r \\
\Leftrightarrow (1 - x)^r + (x - y)^r = (1 - y)^r \\
\Leftrightarrow \left(\frac{1-x}{1-y}\right)^r + \left(\frac{x-y}{1-y}\right)^r = 1 \\
\Leftrightarrow \frac{1-x}{1-y} \text{ is a root of } F_r
\]
Proof (contd.)

Then $\frac{x}{y}$ is a root

\[\iff (\frac{x}{y})^r + (1 - \frac{x}{y})^r = 1\]
\[\iff x^r + (y - x)^r = y^r\]
\[\iff x^r - y^r = (x - y)^r\]
\[\iff (1 - y)^r - (1 - x)^r = (x - y)^r\]
\[\iff (1 - x)^r + (x - y)^r = (1 - y)^r\]
\[\iff (\frac{1-x}{1-y})^r + (\frac{x-y}{1-y})^r = 1\]

\[\iff \frac{1-x}{1-y} \text{ is a root of } F_r\]
Proof (contd.)

Then \(\frac{x}{y} \) is a root

\[
\Leftrightarrow (\frac{x}{y})^r + (1 - \frac{x}{y})^r = 1 \\
\Leftrightarrow x^r + (y - x)^r = y^r \\
\Leftrightarrow x^r - y^r = (x - y)^r \\
\Leftrightarrow (1 - y)^r - (1 - x)^r = (x - y)^r \\
\Leftrightarrow (1 - x)^r + (x - y)^r = (1 - y)^r \\
\Leftrightarrow (\frac{1-x}{1-y})^r + (\frac{x-y}{1-y})^r = 1
\]

\(\Leftrightarrow \frac{1-x}{1-y} \) is a root of \(F_r \)
Proof (contd.)

Then $\frac{x}{y}$ is a root

\[\iff \left(\frac{x}{y} \right)^r + \left(1 - \frac{x}{y} \right)^r = 1 \]
\[\iff x^r + (y - x)^r = y^r \]
\[\iff x^r - y^r = (x - y)^r \]
\[\iff (1 - y)^r - (1 - x)^r = (x - y)^r \]
\[\iff (1 - x)^r + (x - y)^r = (1 - y)^r \]
\[\iff \left(\frac{1-x}{1-y} \right)^r + \left(\frac{x-y}{1-y} \right)^r = 1 \]

\[\iff \frac{1-x}{1-y} \text{ is a root of } F_r \]
Proof (contd.)

Then \(\frac{x}{y} \) is a root

\[
\iff (\frac{x}{y})^r + (1 - \frac{x}{y})^r = 1 \\
\iff x^r + (y - x)^r = y^r \\
\iff x^r - y^r = (x - y)^r \\
\iff (1 - y)^r - (1 - x)^r = (x - y)^r \\
\iff (1 - x)^r + (x - y)^r = (1 - y)^r \\
\iff (\frac{1-x}{1-y})^r + (\frac{x-y}{1-y})^r = 1
\]

\[\iff \frac{1-x}{1-y} \text{ is a root of } F_r\]
Proof (contd.)

Then $\frac{x}{y}$ is a root

$\iff (x/y)^r + (1 - x/y)^r = 1$
$\iff x^r + (y - x)^r = y^r$
$\iff x^r - y^r = (x - y)^r$
$\iff (1 - y)^r - (1 - x)^r = (x - y)^r$
$\iff (1 - x)^r + (x - y)^r = (1 - y)^r$
$\iff (\frac{1-x}{1-y})^r + (\frac{x-y}{1-y})^r = 1$

$\iff \frac{1-x}{1-y}$ is a root of F_r
Then $\frac{x}{y}$ is a root

\[
\iff \left(\frac{x}{y}\right)^r + \left(1 - \frac{x}{y}\right)^r = 1 \\
\iff x^r + (y - x)^r = y^r \\
\iff x^r - y^r = (x - y)^r \\
\iff (1 - y)^r - (1 - x)^r = (x - y)^r \\
\iff (1 - x)^r + (x - y)^r = (1 - y)^r \\
\iff \left(\frac{1-x}{1-y}\right)^r + \left(\frac{x-y}{1-y}\right)^r = 1 \\
\iff \frac{1-x}{1-y} \text{ is a root of } F_r
\]
Applying this result to \(\frac{1}{x} \) and \(\frac{1}{y} \), we also have

Corollary

Suppose \(x \) and \(y \) are in \(S \), with \(y \neq 1 \). Then

\[
\frac{x}{y} \in S \iff \frac{y}{x} \left(\frac{1 - x}{1 - y} \right) \in S
\]
Applying this result to $\frac{1}{x}$ and $\frac{1}{y}$, we also have

Corollary

Suppose x and y are in S, with $y \neq 1$. Then

$$\frac{x}{y} \in S \iff \frac{y}{x} \left(\frac{1 - x}{1 - y} \right) \in S$$
Suppose now that c is any non-root of F_r. Consider the set

$$\frac{1}{c} S = \{ x \mid F_r(cx) = 0 \}$$

Let $x \in S \cap \frac{1}{c} S$, i.e. x and cx are both roots of F_r. Then by the previous lemma,

$$\frac{1-x}{1-cx}$$

and

$$c(\frac{1-x}{1-cx})$$

are both non-roots of F_r (as $c = \frac{cx}{x}$ is not a root). Hence for every element x of $S \cap \frac{1}{c} S$, there is an element $\frac{1-x}{1-cx}$ which is not in $S \cup \frac{1}{c} S$.

John Sheekey

On the roots of a polynomial connected with Costas Arrays
Suppose now that c is any non-root of F_r. Consider the set

$$\frac{1}{c}S = \{ x \mid F_r(cx) = 0 \}$$

Let $x \in S \cap \frac{1}{c}S$, i.e. x and cx are both roots of F_r. Then by the previous lemma,

$$\frac{1 - x}{1 - cx}$$

and

$$c\left(\frac{1 - x}{1 - cx}\right)$$

are both non-roots of F_r (as $c = \frac{cx}{x}$ is not a root). Hence for every element x of $S \cap \frac{1}{c}S$, there is an element $\frac{1-x}{1-cx}$ which is not in $S \cup \frac{1}{c}S$.

John Sheekey

On the roots of a polynomial connected with Costas Arrays
Suppose now that c is any non-root of F_r. Consider the set

$$\frac{1}{c}S = \{ x \mid F_r(cx) = 0 \}$$

Let $x \in S \cap \frac{1}{c}S$, i.e. x and cx are both roots of F_r. Then by the previous lemma,

$$\frac{1-x}{1-cx}$$

and

$$c\left(\frac{1-x}{1-cx}\right)$$

are both non-roots of F_r (as $c = \frac{cx}{x}$ is not a root). Hence for every element x of $S \cap \frac{1}{c}S$, there is an element $\frac{1-x}{1-cx}$ which is not in $S \cup \frac{1}{c}S$.
Suppose now that \(c \) is any non-root of \(F_r \). Consider the set
\[
\frac{1}{c} S = \{ x \mid F_r(cx) = 0 \}
\]

Let \(x \in S \cap \frac{1}{c} S \), i.e. \(x \) and \(cx \) are both roots of \(F_r \). Then by the previous lemma,
\[
\frac{1 - x}{1 - cx}
\]
and
\[
c \left(\frac{1 - x}{1 - cx} \right)
\]
are both non-roots of \(F_r \) (as \(c = \frac{cx}{x} \) is not a root). Hence for every element \(x \) of \(S \cap \frac{1}{c} S \), there is an element \(\frac{1-x}{1-cx} \) which is not in \(S \cup \frac{1}{c} S \).
Suppose now that \(c \) is any non-root of \(F_r \). Consider the set

\[
\frac{1}{c} S = \{ x \mid F_r(cx) = 0 \}
\]

Let \(x \in S \cap \frac{1}{c} S \), i.e. \(x \) and \(cx \) are both roots of \(F_r \). Then by the previous lemma,

\[
\frac{1 - x}{1 - cx}
\]

and

\[
c \left(\frac{1 - x}{1 - cx} \right)
\]

are both non-roots of \(F_r \) (as \(c = \frac{cx}{x} \) is not a root). Hence for every element \(x \) of \(S \cap \frac{1}{c} S \), there is an element \(\frac{1 - x}{1 - cx} \) which is not in \(S \cup \frac{1}{c} S \).
Suppose now that c is any non-root of F_r. Consider the set

$$\frac{1}{c}S = \{ x \mid F_r(cx) = 0 \}$$

Let $x \in S \cap \frac{1}{c}S$, i.e. x and cx are both roots of F_r. Then by the previous lemma,

$$\frac{1 - x}{1 - cx}$$

and

$$c\left(\frac{1 - x}{1 - cx}\right)$$

are both non-roots of F_r (as $c = \frac{cx}{x}$ is not a root). Hence for every element x of $S \cap \frac{1}{c}S$, there is an element $\frac{1-x}{1-cx}$ which is not in $S \cup \frac{1}{c}S$.

John Sheekey

On the roots of a polynomial connected with Costas Arrays
Suppose now that c is any non-root of F_r. Consider the set

$$\frac{1}{c} S = \{ x \mid F_r(cx) = 0 \}$$

Let $x \in S \cap \frac{1}{c} S$, i.e. x and cx are both roots of F_r. Then by the previous lemma,

$$\frac{1 - x}{1 - cx}$$

and

$$c\left(\frac{1 - x}{1 - cx}\right)$$

are both non-roots of F_r (as $c = \frac{cx}{x}$ is not a root). Hence for every element x of $S \cap \frac{1}{c} S$, there is an element $\frac{1-x}{1-cx}$ which is not in $S \cup \frac{1}{c} S$.
So if we set

\[U = \left\{ \frac{1 - x}{1 - cx} \mid x \in S \cap \frac{1}{c}S \right\} \]

we have that \(|U| = |S \cap \frac{1}{c}S| \), and hence

\[|U \cup S \cup \frac{1}{c}S| = 2|S| \leq q - 1 \]

proving the result:

Theorem

*If \(r \) is odd and \(p - 1 \) does not divide \(r - 1 \), then the polynomial

\[z^r + (1 - z)^r - 1 \]

has at most \(\frac{q+1}{2} \) roots in \(F_q \).*
So if we set

\[U = \left\{ \frac{1 - x}{1 - cx} \mid x \in S \cap \frac{1}{c}S \right\} \]

we have that \(|U| = |S \cap \frac{1}{c}S|\), and hence

\[|U \cup S \cup \frac{1}{c}S| = 2|S| \leq q - 1 \]

proving the result:

Theorem

*If \(r \) is odd and \(p - 1 \) does not divide \(r - 1 \), then the polynomial

\[z^r + (1 - z)^r - 1 \]

has at most \(\frac{q+1}{2} \) roots in \(F_q \).*
So if we set
\[U = \left\{ \frac{1 - x}{1 - cx} \mid x \in S \cap \frac{1}{c}S \right\} \]
we have that \(|U| = |S \cap \frac{1}{c}S|\), and hence
\[|U \cup S \cup \frac{1}{c}S| = 2|S| \leq q - 1 \]
proving the result:

Theorem

If r is odd and p − 1 does not divide r − 1, then the polynomial
\[z^r + (1 - z)^r - 1 \]
has at most \(\frac{q+1}{2}\) roots in \(F_q\).
So if we set

\[U = \left\{ \frac{1 - x}{1 - cx} \mid x \in S \cap \frac{1}{c}S \right\} \]

we have that \(|U| = |S \cap \frac{1}{c}S|\), and hence

\[|U \cup S \cup \frac{1}{c}S| = 2|S| \leq q - 1 \]

proving the result:

Theorem

If \(r \) is odd and \(p - 1 \) does not divide \(r - 1 \), then the polynomial

\[z^r + (1 - z)^r - 1 \]

has at most \(\frac{q + 1}{2} \) roots in \(F_q \).
Summary

- We have proved Rickard’s Conjecture for the case $r = s$

Future work
- $r \neq s$?
- Exact number of roots?
- F_r irreducible over $\mathbb{Z}[z]$?
Summary

- We have proved Rickard’s Conjecture for the case $r = s$

Future work

- $r \neq s$?
- Exact number of roots?
- F_r irreducible over $\mathbb{Z}[z]$?