Large Traders and Illiquid Options: Hedging vs. Manipulation

Christoph Kühn (joint work with Holger Kraft)

Frankfurt MathFinance Institute
Goethe-Universität Frankfurt
http://ismi.math.uni-frankfurt.de/kuehn/

6th World Congress of the Bachelier Finance Society

Toronto

June, 26, 2010

H. Kraft and C. Kühn (2010), Large Traders and Illiquid Options: Hedging vs. Manipulation, Preprint, available at SSRN.
Classical theory of option pricing assumes that hedging of derivatives has no impact on the price process of the underlying.

In practice, we observe particularly large trading activities when derivatives mature ("witches’ sabbaths").

Another example for a price impact: the battle for control of Volkswagen

Financial Times vom 29 Oct 2008:

[...] At its intra-day peak of 1,005 euros, its market capitalisation exceeded Exxon, the US oil company. This has raised fears over a “squeeze” on traders betting on a fall in Volkswagen shares through short-selling. [...]
Classical theory of option pricing assumes that hedging of derivatives has no impact on the price process of the underlying.

In practice, we observe particularly large trading activities when derivatives mature ("witches’ sabbaths").

Another example for a price impact: the battle for control of Volkswagen

Financial Times vom 29 Oct 2008:

[. . .] At its intra-day peak of 1,005 euros, its market capitalisation exceeded Exxon, the US oil company. This has raised fears over a “squeeze” on traders betting on a fall in Volkswagen shares through short-selling. [. . .]
Classical theory of option pricing assumes that hedging of derivatives has no impact on the price process of the underlying.

In practice, we observe particularly large trading activities when derivatives mature ("witches’ sabbaths").

Another example for a price impact: the battle for control of Volkswagen

Financial Times vom 29 Oct 2008:

[...] At its intra-day peak of 1,005 euros, its market capitalisation exceeded Exxon, the US oil company. This has raised fears over a "squeeze" on traders betting on a fall in Volkswagen shares through short-selling. [...]
Research questions

Given this empirical evidence, what are the **optimal manipulation strategies** of large traders with price impact that hold/issued illiquid derivatives?

What is the large trader’s **indifference price** (reservation price) of an illiquid derivative?

Extensive literature on price impact models:

… among many others
Given this empirical evidence, what are the **optimal manipulation strategies** of large traders with price impact that hold/issued illiquid derivatives?

What is the large trader’s **indifference price** (reservation price) of an illiquid derivative?

Extensive literature on price impact models:

… among many others
Given this empirical evidence, what are the **optimal manipulation strategies** of large traders with price impact that hold/issued illiquid derivatives?

What is the large trader’s **indifference price** (reservation price) of an illiquid derivative?

Extensive literature on price impact models:

... among many others
Model considered in Kraft and K. (2010)

- Investment opportunities of large trader
 1. money market account with zero interest
 2. risky small cap stock S, whose drift rate is affected by the €-amount $(\theta_t)_{t\in[0,T]}$ the large trader holds in stocks.

- stock dynamics: $dS_t = S_t [(\mu_0 + \mu_1 \theta_t) \, dt + \sigma \, dW_t]$
 typically: $\mu_1 < 0$, “squeezing” ($\mu_1 > 0$, “herding”)

- Justified as equilibrium stock price process by DeMarzo and Urošević (2006)

- This leads to the gain process X given by $X_0 = 0$ and
 $$dX_t = \frac{\theta_t}{S_t} \, dS_t = \theta_t (\mu_0 + \mu_1 \theta_t) \, dt + \theta_t \sigma \, dW_t$$

- Moreover, large trader issues an illiquid derivative on the stock with time T payoff $h(S_T)$ (“over the counter”)

- total wealth at time $T = p^h - h(S_T) + X_T$

- To switch from seller’s to buyer’s viewpoint replace h by $-h$.

Holger Kraft, Christoph Kühn
Model considered in Kraft and K. (2010)

- Investment opportunities of large trader
 1. money market account with zero interest
 2. risky small cap stock \(S \), whose drift rate is affected by the \(\mathcal{E} \)-amount \((\theta_t)_{t \in [0,T]} \) the large trader holds in stocks.

- stock dynamics: \(dS_t = S_t[(\mu_0 + \mu_1 \theta_t) \, dt + \sigma dW_t] \)
 typically: \(\mu_1 < 0 \), “squeezing” (\(\mu_1 > 0 \), “herding”)

- Justified as equilibrium stock price process by DeMarzo and Urošević (2006)

- This leads to the gain process \(X \) given by \(X_0 = 0 \) and

\[
\begin{align*}
 dX_t &= \frac{\theta_t}{S_t} \, dS_t = \theta_t(\mu_0 + \mu_1 \theta_t) \, dt + \theta_t \sigma \, dW_t
\end{align*}
\]

- Moreover, large trader issues an illiquid derivative on the stock with time \(T \) payoff \(h(S_T) \) (“over the counter”)

- total wealth at time \(T = p^h - h(S_T) + X_T \)

- To switch from seller’s to buyer’s viewpoint replace \(h \) by \(-h \).
Investment opportunities of large trader

1. money market account with zero interest
2. risky small cap stock S, whose drift rate is affected by the
 \(\varepsilon \)-amount \((\theta_t)_{t \in [0, T]}\) the large trader holds in stocks.

stock dynamics:

\[
dS_t = S_t \left[(\mu_0 + \mu_1 \theta_t) \, dt + \sigma \, dW_t \right]
\]

typically: \(\mu_1 < 0 \), “squeezing”; \(\mu_1 > 0 \), “herding”

Justified as equilibrium stock price process by DeMarzo and Urošević (2006)

This leads to the gain process \(X \) given by \(X_0 = 0 \) and

\[
dx_t = \frac{\theta_t}{S_t} \, dS_t = \theta_t(\mu_0 + \mu_1 \theta_t) \, dt + \theta_t \sigma \, dW_t
\]

Moreover, large trader issues an \textbf{illiquid derivative} on the stock

with time \(T \) payoff \(h(S_T) \) ("over the counter")

total wealth at time \(T = p^h - h(S_T) + X_T \)

To switch from seller’s to buyer’s viewpoint replace \(h \) by \(-h\).
Investment opportunities of large trader

1. money market account with zero interest
2. risky small cap stock S, whose drift rate is affected by the \(\varepsilon \)-amount \((\theta_t)_{t \in [0, T]}\) the large trader holds in stocks.

stock dynamics:

$$dS_t = S_t \left[(\mu_0 + \mu_1 \theta_t) \, dt + \sigma \, dW_t \right]$$

typically: \(\mu_1 < 0 \), “squeezing” \(\mu_1 > 0 \), “herding”)

Justified as equilibrium stock price process by DeMarzo and Urošević (2006)

This leads to the gain process \(X \) given by \(X_0 = 0 \) and

$$dX_t = \frac{\theta_t}{S_t} \, dS_t = \theta_t (\mu_0 + \mu_1 \theta_t) \, dt + \theta_t \sigma \, dW_t$$

Moreover, large trader issues an **illiquid derivative** on the stock with time \(T \) payoff \(h(S_T) \) (“over the counter”)

total wealth at time \(T = p^h - h(S_T) + X_T \)

To switch from seller’s to buyer’s viewpoint replace \(h \) by \(-h \).
Model considered in Kraft and K. (2010)

- Investment opportunities of large trader
 1. money market account with zero interest
 2. risky small cap stock S, whose drift rate is affected by the €-amount $(\theta_t)_{t \in [0, T]}$ the large trader holds in stocks.

- stock dynamics: $dS_t = S_t \left[(\mu_0 + \mu_1 \theta_t) \, dt + \sigma \, dW_t \right]$
 typically: $\mu_1 < 0$, “squeezing” ($\mu_1 > 0$, “herding”)

- Justified as equilibrium stock price process by DeMarzo and Urošević (2006)

- This leads to the gain process X given by $X_0 = 0$ and
 $$dX_t = \frac{\theta_t}{S_t} \, dS_t = \theta_t (\mu_0 + \mu_1 \theta_t) \, dt + \theta_t \sigma \, dW_t$$

- Moreover, large trader issues an illiquid derivative on the stock with time T payoff $h(S_T)$ (“over the counter”)

- total wealth at time $T = p^h - h(S_T) + X_T$

 To switch from seller’s to buyer’s viewpoint replace h by $-h$.

Model considered in Kraft and K. (2010)

- Investment opportunities of large trader
 1. money market account with zero interest
 2. risky small cap stock S, whose drift rate is affected by the €-amount $(\theta_t)_{t \in [0,T]}$ the large trader holds in stocks.

- Stock dynamics: $dS_t = S_t[(\mu_0 + \mu_1 \theta_t)\, dt + \sigma \, dW_t]$ typically: $\mu_1 < 0$, “squeezing” ($\mu_1 > 0$, “herding”)

- Justified as equilibrium stock price process by DeMarzo and Urošević (2006)

- This leads to the gain process X given by $X_0 = 0$ and

 $$dX_t = \frac{\theta_t}{S_t} dS_t = \theta_t(\mu_0 + \mu_1 \theta_t)\, dt + \theta_t \sigma \, dW_t$$

- Moreover, large trader issues an illiquid derivative on the stock with time T payoff $h(S_T)$ (“over the counter”)

- Total wealth at time $T = p^h - h(S_T) + X_T$

- To switch from seller’s to buyer’s viewpoint replace h by $-h$.
Recall the stock dynamics: $dS_t = S_t \left[(\mu_0 + \mu_1 \theta_t) \, dt + \sigma \, dW_t \right]$

- **Immediate observation**: despite of the price impact $\mu_1 \neq 0$ the large trader can perfectly replicate the claim $h(S_T)$ at the same costs as in the corresponding standard Black-Scholes model with $\mu_1 = 0$.

- *One* explanation: distribution of price process under “martingale measure” does not depend on $(\theta_t)_{t \in [0,T]}$.

 Replication costs $= \text{expected payoff under martingale measure}$

 \leadsto we have the reference Black-Scholes hedge θ^{BS} and price p^{BS}

But due to the price impact there appears a **trade-off**:

- **Hedging** (removing risk by offset transactions)
- **Manipulation** (systematic influence on the non-hedged derivative position to the own advantage)
Recall the stock dynamics: $dS_t = S_t \left[(\mu_0 + \mu_1 \theta_t) \, dt + \sigma \, dW_t \right]$

- **Immediate observation**: despite of the price impact $\mu_1 \neq 0$ the large trader can perfectly replicate the claim $h(S_T)$ at the same costs as in the corresponding standard Black-Scholes model with $\mu_1 = 0$.

- One explanation: distribution of price process under “martingale measure” does not depend on $(\theta_t)_{t \in [0,T]}$. Replication costs \Rightarrow expected payoff under martingale measure

- we have the reference Black-Scholes hedge θ^{BS} and price p^{BS}

- But due to the price impact there appears a **trade-off**:
 - **Hedging** (removing risk by offset transactions)
 - **Manipulation** (systematic influence on the non-hedged derivative position to the own advantage)
Recall the stock dynamics: \(dS_t = S_t \left[(\mu_0 + \mu_1 \theta_t) \, dt + \sigma \, dW_t \right] \)

- **Immediate observation**: despite of the price impact \(\mu_1 \neq 0 \) the large trader can perfectly replicate the claim \(h(S_T) \) at the same costs as in the corresponding standard Black-Scholes model with \(\mu_1 = 0 \).

- *One* explanation: distribution of price process under “martingale measure” does not depend on \((\theta_t)_{t \in [0,T]} \). Replication costs = expected payoff under martingale measure

- \(\rightsquigarrow \) we have the reference Black-Scholes hedge \(\theta^{BS} \) and price \(p^{BS} \)

- But due to the price impact there appears a **trade-off**:
 - **Hedging** (removing risk by offset transactions)
 - **Manipulation** (systematic influence on the non-hedged derivative position to the own advantage)
Recall the stock dynamics: \(\frac{dS_t}{S_t} = \left(\mu_0 + \mu_1 \theta_t \right) dt + \sigma dW_t \)

- **Immediate observation**: despite of the price impact \(\mu_1 \neq 0 \) the large trader can perfectly replicate the claim \(h(S_T) \) at the same costs as in the corresponding standard Black-Scholes model with \(\mu_1 = 0 \).

- *One* explanation: distribution of price process under “martingale measure” does not depend on \((\theta_t)_{t \in [0,T]} \).

Replication costs \(= \) expected payoff under martingale measure

- \(\leadsto \) we have the reference Black-Scholes hedge \(\theta^{BS} \) and price \(p^{BS} \)

But due to the price impact there appears a **trade-off**:

- **Hedging** (removing risk by offset transactions)
- **Manipulation** (systematic influence on the non-hedged derivative position to the own advantage)
Utility-based hedging and indifference pricing

- Exponential utility: \(u(Y) = E[-\exp(-\alpha Y)], \ \alpha > 0 \) risk aversion

- \(p^h \) is the **seller’s indifference price** for the derivative payoff \(h(S_T) \) iff

\[
\sup_{\theta} E[-\exp(-\alpha(p^h - h(S_T(\theta)) + X_T(\theta)))] = \sup_{\theta} E[-\exp(-\alpha(X_T(\theta)))]
\]

Utility with derivative deal \(\stackrel{!}{=} \) Utility without derivative deal

- **New**: \(h(S_T(\theta)) \) depends on \(\theta \).
 \(X_T(\theta) \) is no longer linear in the strategy \(\theta \)
 \(\implies \) in general \(p^h \neq p^{BS} \)

Hedging manipulation strategy := \(\widehat{\theta}(\text{with claim}) - \widehat{\theta}(\text{without claim}) \)
Utility-based hedging and indifference pricing

- Exponential utility: \(u(Y) = E[-\exp(-\alpha Y)], \ \alpha > 0 \) risk aversion

- \(p^h \) is the **seller’s indifference price** for the derivative payoff \(h(S_T) \) iff

\[
\sup_{\theta} E \left[-\exp(-\alpha(p^h - h(S_T(\theta)) + X_T(\theta)))\right] = \sup_{\theta} E \left[-\exp(-\alpha(X_T(\theta)))\right]
\]

Utility with derivative deal \(\overset{\dagger}{=} \) Utility without derivative deal

- **New**: \(h(S_T(\theta)) \) depends on \(\theta \).
 \(X_T(\theta) \) is no longer linear in the strategy \(\theta \)
 \(\implies \) in general \(p^h \neq p^{BS} \)

Hedging manipulation strategy \(:= \hat{\theta}(\text{with claim}) - \hat{\theta}(\text{without claim}) \)
Exponential utility:
\[u(Y) = E[-\exp(-\alpha Y)], \quad \alpha > 0 \text{ risk aversion} \]

\(p^h \) is the **seller’s indifference price** for the derivative payoff \(h(S_T) \) iff

\[
\sup_{\theta} E\left[-\exp(-\alpha (p^h - h(S_T(\theta)) + X_T(\theta)))\right] = \sup_{\theta} E\left[-\exp(-\alpha (X_T(\theta)))\right]
\]

Utility with derivative deal \(\equiv \) Utility without derivative deal

New: \(h(S_T(\theta)) \) depends on \(\theta \).
\(X_T(\theta) \) is no longer linear in the strategy \(\theta \)
\[\implies \text{in general } p^h \neq p^{BS} \]

Hedging manipulation strategy := \(\hat{\theta}(\text{with claim}) - \hat{\theta}(\text{without claim}) \)
Exponential utility: \(u(Y) = E[-\exp(-\alpha Y)] \), \(\alpha > 0 \) risk aversion

\(p^h \) is the **seller’s indifference price** for the derivative payoff \(h(S_T) \) iff

\[
\sup_{\theta} E \left[-\exp\left(-\alpha (p^h - h(S_T(\theta)) + X_T(\theta)) \right) \right] \\
= \sup_{\theta} E \left[-\exp\left(-\alpha (X_T(\theta)) \right) \right]
\]

Utility with derivative deal \(\overset{1}{=} \) Utility without derivative deal

New: \(h(S_T(\theta)) \) depends on \(\theta \).

\(X_T(\theta) \) is no longer linear in the strategy \(\theta \)

\(\implies \) in general \(p^h \neq p^{BS} \)

Hedging manipulation strategy := \(\hat{\theta} \) (with claim) − \(\hat{\theta} \) (without claim)
Assume that $\mu_1 < \frac{1}{2} \alpha \sigma^2$. Large trader’s value function:

$$G(t, x, s) = \sup_{\theta} E \left[-\exp(-\alpha(-h(S_T(\theta)) + X_T(\theta))) \right]$$

has to satisfy Hamilton-Jacobi-Bellman equation

$$\max_{\vartheta \in \mathbb{R}} \left\{ G_t + \vartheta (\mu_0 + \mu_1 \vartheta) G_x + (\mu_0 + \mu_1 \vartheta) s G_s + \frac{1}{2} \sigma^2 \vartheta^2 G_{xx} + \frac{1}{2} \sigma^2 s^2 G_{ss} + \sigma^2 \vartheta s G_{xs} \right\} = 0,$$

where $G(T, x, s) = -\exp(-\alpha(x - h(s)))$.

Ansatz for value function: $G(t, x, s) = -\exp(-\alpha x) F(t, z)$ with $z = \ln(s)$

HJB equation becomes

$$\max_{\vartheta \in \mathbb{R}} \left\{ -F_t + \left(\vartheta (\mu_0 + \mu_1 \vartheta) \alpha - \frac{1}{2} \sigma^2 \vartheta^2 \alpha^2 \right) F + \left(\sigma^2 \vartheta \alpha + \frac{1}{2} \sigma^2 - \mu_0 - \mu_1 \vartheta \right) F_z - \frac{1}{2} \sigma^2 F_{zz} \right\} = 0,$$

where $F(T, z) = \exp(\alpha h(\exp(z)))$.

Holger Kraft, Christoph Kühn
Assume that $\mu_1 < \frac{1}{2} \alpha \sigma^2$. Large trader’s value function:

$$G(t, x, s) = \sup_{\theta} E \left[- \exp(-\alpha(-h(S_T(\theta)) + X_T(\theta))) \right]$$

has to satisfy Hamilton-Jacobi-Bellman equation

$$\max_{\vartheta \in \mathbb{R}} \left\{ G_t + \vartheta (\mu_0 + \mu_1 \vartheta) G_x + (\mu_0 + \mu_1 \vartheta) s G_s
ight.$$ \nonumber
\begin{align*}
+ & \frac{1}{2} \sigma^2 \vartheta^2 G_{xx} + \frac{1}{2} \sigma^2 s^2 G_{ss} + \sigma^2 \vartheta s G_{xs} \left\} = 0, \right.
\end{align*}

where $G(T, x, s) = - \exp(-\alpha(x - h(s)))$.

Ansatz for value function: $G(t, x, s) = - \exp(-\alpha x) F(t, z)$ with $z = \ln(s)$

HJB equation becomes

$$\max_{\vartheta \in \mathbb{R}} \left\{ -F_t + \left(\vartheta (\mu_0 + \mu_1 \vartheta) \alpha - \frac{1}{2} \sigma^2 \vartheta^2 \alpha^2 \right) F + \left(\sigma^2 \vartheta \alpha + \frac{1}{2} \sigma^2 - \mu_0 - \mu_1 \vartheta \right) F_z
ight.$$ \nonumber
\begin{align*}
- & \frac{1}{2} \sigma^2 F_{zz} \left\} = 0, \right. \nonumber
\end{align*}

where $F(T, z) = \exp(\alpha h(\exp(z)))$.

Holger Kraft, Christoph Kühn
Hamilton-Jacobi-Bellman equation

Assume that $\mu_1 < \frac{1}{2} \alpha \sigma^2$. Large trader’s value function:

$$G(t, x, s) = \sup_{\theta} E \left[-\exp(-\alpha(-h(S_T(\theta)) + X_T(\theta))) \right]$$

has to satisfy Hamilton-Jacobi-Bellman equation

$$\max_{\vartheta \in \mathbb{R}} \left\{ G_t + \vartheta (\mu_0 + \mu_1 \vartheta) G_x + (\mu_0 + \mu_1 \vartheta) s G_s
ight.$$
$$+ \frac{1}{2} \sigma^2 \vartheta^2 G_{xx} + \frac{1}{2} \sigma^2 s^2 G_{ss} + \sigma^2 \vartheta s G_{xs} \right\} = 0,$$

where $G(T, x, s) = -\exp(-\alpha(x - h(s)))$.

Ansatz for value function: $G(t, x, s) = -\exp(-\alpha x) F(t, z)$ with $z = \ln(s)$

HJB equation becomes

$$\max_{\vartheta \in \mathbb{R}} \left\{ -F_t + \left(\vartheta (\mu_0 + \mu_1 \vartheta) \alpha - \frac{1}{2} \sigma^2 \vartheta^2 \alpha^2 \right) F + \left(\sigma^2 \vartheta \alpha + \frac{1}{2} \sigma^2 - \mu_0 - \mu_1 \vartheta \right) F_z
ight.$$
$$- \frac{1}{2} \sigma^2 F_{zz} \right\} = 0,$$

where $F(T, z) = \exp(\alpha h(\exp(z)))$.

Holger Kraft, Christoph Kühn
Optimal strategy

\[\hat{\theta}_t = \frac{\mu_0}{\alpha \sigma^2 - 2\mu_1} + \left(1 + \frac{\mu_1}{\alpha \sigma^2 - 2\mu_1}\right) \frac{F_Z(t, \ln(S_t))}{\alpha F(t, \ln(S_t))} \]

maximizer without claim

\[=: \text{hedge multiplier} \]

\[= \partial_z \rho^h(t, \ln(S_t)) \]

\[\mu_1 = 0 \text{ (Black-Scholes)} \implies \text{hedge multiplier} = 1 \text{ (perfect hedging)} \]

\[\mu_1 < 0 \implies \text{hedge multiplier} < 1 \text{ (underhedging)} \]

\[\mu_1 > 0 \implies \text{hedge multiplier} > 1 \text{ (overhedging)} \]

Interpretation for the case \(\mu_1 < 0 \): large trader replicates e.g. 80% of the claim. The hedging portfolio suffers a loss from the price impact of the hedging activity (as price impact is negative). But the opposite derivative position profits from it. Taken together the 20% unhedged position profits from the price impact of 80% hedging activity.

Plugging the optimal stock position in the HJB-equation yields

\[0 = -F_t + \left(\mu_0 - \frac{1}{2} \sigma^2\right)F_Z - \frac{1}{2} \sigma^2 F_{zz} + \frac{1}{2} \left(\alpha \mu_0 F - \mu_1 F_Z + \sigma^2 \alpha F_Z^2\right) \frac{1}{\alpha (\alpha \sigma^2 - 2\mu_1) F} \]

Non linear!
Optimal strategy

\[\hat{\theta}_t = \frac{\mu_0}{\alpha \sigma^2 - 2\mu_1} + \left(1 + \frac{\mu_1}{\alpha \sigma^2 - 2\mu_1}\right) \frac{F_z(t, \ln(S_t))}{\alpha F(t, \ln(S_t))} \]

maximizer without claim

\(\mu_1 = 0 \) (Black-Scholes) \(\Rightarrow \) hedge multiplier \(= 1 \) (perfect hedging)
\(\mu_1 < 0 \) \(\Rightarrow \) hedge multiplier \(< 1 \) (underhedging)
\(\mu_1 > 0 \) \(\Rightarrow \) hedge multiplier \(> 1 \) (overhedging)

Interpretation for the case \(\mu_1 < 0 \): large trader replicates e.g. 80\% of the claim. The hedging portfolio suffers a loss from the price impact of the hedging activity (as price impact is negative). But the opposite derivative position profits from it. Taken together the 20\% unhedged position profits from the price impact of 80\% hedging activity.

Plugging the optimal stock position in the HJB-equation yields

\[0 = -F_t + -\left(\mu_0 - \frac{1}{2} \sigma^2\right)F_z - \frac{1}{2} \sigma^2 F_{zz} + \frac{1}{2} \left(\alpha \mu_0 F - \mu_1 F_z + \sigma^2 \alpha F_z^2\right) \frac{2}{\alpha (\alpha \sigma^2 - 2\mu_1) F} \]

Non linear!

Holger Kraft, Christoph Kühn
Optimal strategy

$$\hat{\theta}_t = \frac{\mu_0}{\alpha \sigma^2 - 2 \mu_1} + \left(1 + \frac{\mu_1}{\alpha \sigma^2 - 2 \mu_1}\right) \frac{F_z(t, \ln(S_t))}{\alpha F(t, \ln(S_t))}. $$

maximizer without claim

$\mu_1 = 0$ (Black-Scholes) \implies hedge multiplier $= 1$ (perfect hedging)

$\mu_1 < 0$ \implies hedge multiplier < 1 (underhedging)

$\mu_1 > 0$ \implies hedge multiplier > 1 (overhedging)

Interpretation for the case $\mu_1 < 0$: large trader replicates e.g. 80% of the claim. The hedging portfolio suffers a loss from the price impact of the hedging activity (as price impact is negative). But the opposite derivative position profits from it. Taken together the 20% unhedged position profits from the price impact of 80% hedging activity.

Plugging the optimal stock position in the HJB-equation yields

$$0 = -F_t + -\left(\mu_0 - \frac{1}{2} \sigma^2\right) F_z - \frac{1}{2} \sigma^2 F_{zz} + \frac{1}{2} \frac{(\alpha \mu_0 F - \mu_1 F_z + \sigma^2 \alpha F_z)^2}{\alpha (\alpha \sigma^2 - 2 \mu_1) F}$$

Non linear!
Solution of the HJB-equation

To knock out the nonlinear term we use a trick applied in papers by Henderson, Hobson, and Zariphopoulou

Ansatz: \(F(t, z) = g(t, z)^\beta \)

and thus \(g(T, z) = \exp \left(\frac{\alpha}{\beta} h(\exp(z)) \right) \).

The HJB-equation becomes

\[
0 = -\frac{\beta}{\alpha} g_t - \frac{\gamma}{\alpha} (\mu_0 - \frac{1}{2} \sigma^2) g_z - \frac{1}{2} \frac{\gamma}{\alpha} \sigma^2 [(\beta - 1) \frac{g_z^2}{g} + g_{zz}] \\
+ \frac{1}{2} \frac{(\mu_0 g - \frac{\gamma}{\alpha} \mu_1 g_z + \beta \sigma^2 g_z)^2}{(\alpha \sigma^2 - 2 \mu_1) g}
\]

To knock out the terms with \(\frac{g_z^2}{g} \) we choose

\[
\beta = \frac{1}{1 - \frac{(\sigma^2 - \mu_1 / \alpha)^2}{\sigma^2 (\sigma^2 - 2 \mu_1 / \alpha)}} < 0
\]
To knock out the nonlinear term we use a trick applied in papers by Henderson, Hobson, and Zariphopoulou.

Ansatz: \[F(t, z) = g(t, z)^\beta \]

and thus \[g(T, z) = \exp \left(\frac{\alpha}{\beta} h(\exp(z)) \right) . \]

The HJB-equation becomes

\[
0 = -\frac{\beta}{\alpha} g_t - \frac{\gamma}{\alpha} \left(\mu_0 - \frac{1}{2} \sigma^2 \right) g_z - \frac{1}{2} \frac{\gamma}{\alpha} \sigma^2 \left[(\beta - 1) \frac{g_z^2}{g} + g_{zz} \right] + \frac{1}{2} \left(\mu_0 g - \frac{\gamma}{\alpha} \mu_1 g_z + \beta \sigma^2 g_z \right)^2 \frac{1}{(\alpha \sigma^2 - 2 \mu_1) g} \]

To knock out the terms with \(\frac{g_z^2}{g} \) we choose

\[
\beta = \frac{1}{1 - \frac{\sigma^2 - \mu_1/\alpha}{\sigma^2(\sigma^2 - 2 \mu_1/\alpha)}} < 0
\]
Solution of the HJB-equation

To knock out the nonlinear term we use a trick applied in papers by Henderson, Hobson, and Zariphopoulou

Ansatz: \[F(t, z) = g(t, z)^{\beta} \]

and thus \(g(T, z) = \exp\left(\frac{\alpha}{\beta} h(\exp(z))\right) \).

The HJB-equation becomes

\[
0 = -\frac{\beta}{\alpha} g_t - \frac{\gamma}{\alpha} (\mu_0 - \frac{1}{2} \sigma^2) g_z - \frac{1}{2} \frac{\gamma}{\alpha} \sigma^2 \left[(\beta - 1) \frac{g_z^2}{g} + g_{zz}\right] \\
+ \frac{1}{2} \left(\mu_0 g - \frac{\gamma}{\alpha} \mu_1 g_z + \beta \sigma^2 g_z\right)^2 \\
\quad \frac{1}{2} \frac{1}{(\alpha \sigma^2 - 2 \mu_1)} g
\]

To knock out the terms with \(\frac{g_z^2}{g} \) we choose

\[
\beta = \frac{1}{1 - \frac{(\sigma^2 - \mu_1 / \alpha)^2}{\sigma^2 (\sigma^2 - 2 \mu_1 / \alpha)}} < 0
\]
\[
g_t - \frac{1}{2} \alpha \frac{\mu_0^2}{\alpha \sigma^2 - 2\mu_1} g + \left(\mu_0 - \frac{1}{2} \sigma^2 - \frac{\mu_0 (\alpha \sigma^2 - \mu_1)}{\alpha \sigma^2 - 2\mu_1} \right) g_z + \frac{1}{2} \sigma^2 g_{zz} = 0.
\]

This PDE is linear and thus it possesses a Feynman-Kac stochastic representation

\[
g(t, z) = \exp(-\tilde{\tau} (T - t)) \tilde{E} \left[\exp \left(\frac{\alpha}{\beta} h(\exp(Z_T)) \right) \right], \quad \text{wobei}
\]

\(Z_T\) is normally distributed with expectation \(\eta_Z \cdot (T - t)\) & variance \(\sigma^2 \cdot (T - t)\)

For the **seller's indifference price** this yields

\[
p^h = \frac{1}{\alpha \beta} \ln \left(\tilde{E} \left[\exp \left(\frac{\alpha}{\beta} h(\exp(Z_T)) \right) \right] \right).
\]

As \(\beta < 0\) this would formally correspond to the exponential principles (under the artificial measure \(\tilde{\mathbb{P}}\)) with the artificial **negative risk aversion** \(\frac{\alpha}{\beta}\).

Consequence: many things turn around
\[g_t - \frac{1}{2} \frac{\alpha}{\beta} \frac{\mu_0^2}{\alpha \sigma^2 - 2 \mu_1} g + \left(\mu_0 - \frac{1}{2} \sigma^2 - \frac{\mu_0 (\alpha \sigma^2 - \mu_1)}{\alpha \sigma^2 - 2 \mu_1} \right) g_z + \frac{1}{2} \sigma^2 g_{zz} = 0. \]

This PDE is linear and thus it possesses a Feynman-Kac stochastic representation

\[g(t, z) = \exp(-\tilde{\tau}(T - t)) \tilde{E} \left[\exp \left(\frac{\alpha}{\beta} h(\exp(Z_T)) \right) \right], \]

wobei \(Z_T \) is normally distributed with expectation \(\eta_z \cdot (T - t) \) & variance \(\sigma^2 \cdot (T - t) \)

For the seller's indifference price this yields

\[p^h = \frac{1}{\alpha} \ln \left(\tilde{E} \left[\exp \left(\frac{\alpha}{\beta} h(\exp(Z_T)) \right) \right] \right). \]

As \(\beta < 0 \) this would formally correspond to the exponential principles (under the artificial measure \(\tilde{P} \)) with the artificial negative risk aversion \(\frac{\alpha}{\beta} \).

Consequence: many things turn around
Seller’s indifference price:

\[p^h = \frac{1}{\alpha} \ln \left(\tilde{E} \left[\exp \left(\frac{\alpha}{\beta} h(\exp(Z_T)) \right) \right] \right) \]

with \(\beta < 0 \).

- Seller’s indifference price is concave (and not convex as in (in)complete frictionless markets)
- Every claim \(h \geq 0 \) has a finite seller’s indifference price (even if Black-Scholes replication costs and expectation w.r.t. \(P \) are infinite)
- Hedging manipulation strategy \(\rightarrow \theta^{\text{Black-Scholes}} \) if risk aversion \(\alpha \rightarrow \infty \)
 \(\Rightarrow \) indifference price \(\rightarrow p^{\text{BS}} \) for \(\alpha \rightarrow \infty \)
- \(\frac{p^{\lambda h}}{\lambda} \rightarrow \text{ess inf}_{s \in \mathbb{R}^+} h(s), \quad \lambda \rightarrow \infty \)
 where the essential infimum is taken w.r.t. the Lebesgue measure on \(\mathbb{R} \)
 i.e. indifference price (per share) tends to minimal possible payoff of the derivative if position size \(\lambda \) explodes
 In the case of call/put options \(\text{ess inf}_{s \in \mathbb{R}^+} h(s) = 0 \)
Seller’s indifference price:

\[p^h = \frac{1}{\alpha \beta} \ln \left(\widetilde{E} \left[\exp \left(\frac{\alpha}{\beta} h(\exp(Z_T)) \right) \right] \right) \]

with \(\beta < 0 \).

- Seller’s indifference price is concave (and not convex as in (in)complete frictionless markets).
- Every claim \(h \geq 0 \) has a finite seller’s indifference price (even if Black-Scholes replication costs and expectation w.r.t. \(P \) are infinite).

Hedging manipulation strategy \(\rightarrow \theta^{\text{Black-Scholes}} \)

if risk aversion \(\alpha \rightarrow \infty \)

\(\implies \) indifference price \(\rightarrow p^{\text{BS}} \) for \(\alpha \rightarrow \infty \)

\(\frac{p^{\lambda h}}{\lambda} \rightarrow \text{ess inf}_{s \in \mathbb{R}^+} h(s), \quad \lambda \rightarrow \infty \)

where the essential infimum is taken w.r.t. the Lebesgue measure on \(\mathbb{R} \).

i.e. indifference price (per share) tends to minimal possible payoff of the derivative if position size \(\lambda \) explodes.

In the case of call/put options \(\text{ess inf}_{s \in \mathbb{R}^+} h(s) = 0 \)
Seller’s indifference price:

\[p^h = \frac{1}{\alpha \beta} \ln \left(\tilde{E} \left[\exp \left(\frac{\alpha}{\beta} h(\exp(Z_T)) \right) \right] \right) \quad \text{with} \quad \beta < 0. \]

- seller’s indifference price is concave (and not convex as in (in)complete frictionless markets)
- Every claim \(h \geq 0 \) has a finite seller’s indifference price (even if Black-Scholes replication costs and expectation w.r.t. \(P \) are infinite)
- **Hedging manipulation strategy** \(\rightarrow \theta^{\text{Black-Scholes}} \)
 - if risk aversion \(\alpha \rightarrow \infty \)
 - \(\implies \) indifference price \(\rightarrow p^{\text{BS}} \) for \(\alpha \rightarrow \infty \)
- \(\frac{p^h}{\lambda} \rightarrow \text{ess inf}_{s \in \mathbb{R}^+} h(s), \quad \lambda \rightarrow \infty \)
 - where the essential infimum is taken w.r.t. the Lebesgue measure on \(\mathbb{R} \)
 - i.e. indifference price (per share) tends to minimal possible payoff of the derivative if position size \(\lambda \) explodes
- In the case of call/put options \(\text{ess inf}_{s \in \mathbb{R}^+} h(s) = 0 \)
Seller’s indifference price:

\[p^h = \frac{1}{\alpha \beta} \ln \left(\tilde{E} \left[\exp \left(\frac{\alpha}{\beta} h(\exp(Z_T)) \right) \right] \right) \]

with \(\beta < 0 \).

- seller’s indifference price is concave (and not convex as in (in)complete frictionless markets)
- Every claim \(h \geq 0 \) has a finite seller’s indifference price (even if Black-Scholes replication costs and expectation w.r.t. \(P \) are infinite)
- Hedging manipulation strategy \(\to \theta^{\text{Black-Scholes}} \)
 if risk aversion \(\alpha \to \infty \)
 \(\implies \) indifference price \(\to p^{\text{BS}} \) for \(\alpha \to \infty \)
- \(\frac{p^{\lambda h}}{\lambda} \to \text{ess inf}_{s \in \mathbb{R}^+} h(s), \quad \lambda \to \infty \)
- where the essential infimum is taken w.r.t. the Lebesgue measure on \(\mathbb{R} \)
- i.e. indifference price (per share) tends to minimal possible payoff of the derivative if position size \(\lambda \) explodes
- In the case of call/put options \(\text{ess inf}_{s \in \mathbb{R}^+} h(s) = 0 \)
\(\theta^i \) is the €-amount that the \(i \)-th trader invests in stocks \((i = 1, 2)\)

Stock price dynamics:

\[
dS_t = S_t \left((\mu_0 + \mu_1 \theta_1^i + \mu_1 \theta_2^i) \, dt + \sigma \, dW_t \right)
\]

\(i \)-th player’s liquid wealth reads

\[
dX_t^i = \frac{\theta^i_t}{S_t} \, dS_t = \theta^i_t (\mu_0 + \mu_1 \theta_1^i + \mu_1 \theta_2^i) \, dt + \theta^i_t \sigma \, dW_t, \quad i = 1, 2.
\]

Both traders maximize expected utilities from terminal wealths w.r.t. \(u_i(Y) = E_P \left[-\exp(-\alpha_i Y) \right] \), \(i = 1, 2 \), with possibly different \(\alpha_1, \alpha_2 > 0 \)
θ^i is the €-amount that the i-th trader invests in stocks (i = 1, 2)

Stock price dynamics:

\[dS_t = S_t \left((\mu_0 + \mu_1 \theta^1_t + \mu_1 \theta^2_t) \, dt + \sigma \, dW_t \right) \]

i-th player’s liquid wealth reads

\[dX^i_t = \frac{\theta^i_t}{S_t} \, dS_t = \theta^i_t (\mu_0 + \mu_1 \theta^1_t + \mu_1 \theta^2_t) \, dt + \theta^i_t \sigma \, dW_t, \quad i = 1, 2. \]

Both traders maximize expected utilities from terminal wealths w.r.t.

\[u_i(Y) = E_P \left[-\exp(-\alpha_i Y) \right], \quad i = 1, 2, \text{ with possibly different } \alpha_1, \alpha_2 > 0 \]
Consider the case that the first trader holds a short and the second a long position in the same illiquid derivative with payoff \(h(S_T) \)

- \(i = 1 \) (issuer) \(G^1(t, x, s) = -\exp(-\alpha_1(x - h(s))) \)
- \(i = 2 \) (holder) \(G^2(t, x, s) = -\exp(-\alpha_2(x + h(s))) \)

Result: The game has the following **Nash equilibrium**:

\[
\theta^1_t = \tilde{\theta}^1_t + S_t v_s(t, S_t) \quad \text{and} \quad \theta^2_t = \tilde{\theta}^2_t - S_t v_s(t, S_t),
\]

where

\[
\tilde{\theta}^i = \frac{(\alpha_j \sigma^2 - \mu_1) \mu_0}{\alpha_1 \alpha_2 \sigma^4 - 2 \sigma^2 \mu_1 (\alpha_1 + \alpha_2) + 3 \mu_1^2}, \quad i = 1, 2, \quad j \neq i
\]

and \(v(t, s) \) is the Black-Scholes price of the claim \(h(S_T) \)

- \(\implies \) price impacts of \(S_t v_s(t, S_t) \) and \(-S_t v_s(t, S_t) \) completely compensate \(\implies \) indifference prices = Black-Scholes price
Consider the case that the first trader holds a short and the second a long position in the same illiquid derivative with payoff $h(S_T)$

- $i = 1$ (issuer) $G^1(t, x, s) = -\exp(-\alpha_1(x - h(s)))$
- $i = 2$ (holder) $G^2(t, x, s) = -\exp(-\alpha_2(x + h(s)))$

Result: The game has the following Nash equilibrium:

$$\theta_1^i = \hat{\theta}_1^i + S_t v_s(t, S_t) \quad \text{and} \quad \theta_2^i = \hat{\theta}_2^i - S_t v_s(t, S_t),$$

where

$$\hat{\theta}^i = \frac{(\alpha_j \sigma^2 - \mu_1)\mu_0}{\alpha_1 \alpha_2 \sigma^4 - 2 \sigma^2 \mu_1 (\alpha_1 + \alpha_2) + 3 \mu_1^2}, \quad i = 1, 2, \ j \neq i$$

and $v(t, s)$ is the Black-Scholes price of the claim $h(S_T)$

⇒ price impacts of $S_t v_s(t, S_t)$ and $-S_t v_s(t, S_t)$ completely compensate ⇒ indifference prices = Black-Scholes price
Consider the case that the first trader holds a short and the second a long position in the same illiquid derivative with payoff $h(S_T)$

- $i = 1$ (issuer) $G^1(t, x, s) = -\exp(-\alpha_1(x - h(s)))$
- $i = 2$ (holder) $G^2(t, x, s) = -\exp(-\alpha_2(x + h(s)))$

Result: The game has the following **Nash equilibrium**:

$$\theta^1_t = \hat{\theta}^1_t + S_t v_s(t, S_t) \quad \text{and} \quad \theta^2_t = \hat{\theta}^2_t - S_t v_s(t, S_t),$$

where

$$\hat{\theta}^i = \frac{(\alpha_i \sigma^2 - \mu_1)\mu_0}{\alpha_1 \alpha_2 \sigma^4 - 2\sigma^2 \mu_1 (\alpha_1 + \alpha_2) + 3\mu_1^2}, \quad i = 1, 2, \quad j \neq i$$

and $v(t, s)$ is the Black-Scholes price of the claim $h(S_T)$

$$\implies$$ price impacts of $S_t v_s(t, S_t)$ and $-S_t v_s(t, S_t)$ completely compensate \implies indifference prices = Black-Scholes price
Intuition: Why is

\[\theta_1^t = \hat{\theta}_1^t + S_t \nu_s(t, S_t) \quad \text{and} \quad \theta_2^t = \hat{\theta}_2^t - S_t \nu_s(t, S_t), \]

a Nash equilibrium?

Start with \((\theta_1^1, \theta_2^1)\) and show that for neither of the traders there is an incentive to change his strategy.

- Both traders hedge the risk of the derivative completely away.
- In addition, the price impacts of the hedging strategies \(S_t \nu_s(t, S_t)\) and \(-S_t \nu_s(t, S_t)\) completely compensate.
- Thus the situation is exactly the same as without the derivative deal with Nash equilibrium \((\hat{\theta}_1^1, \hat{\theta}_2^1)\).
Intuition: Why is

\[\theta_t^1 = \hat{\theta}_t^1 + S_t \nu_s(t, S_t) \quad \text{and} \quad \theta_t^2 = \hat{\theta}_t^2 - S_t \nu_s(t, S_t), \]

a Nash equilibrium?

Start with \((\theta^1, \theta^2)\) and show that for neither of the traders there is an incentive to change his strategy.

- Both traders hedge the risk of the derivative completely away.
- In addition, the price impacts of the hedging strategies \(S_t \nu_s(t, S_t)\) and \(-S_t \nu_s(t, S_t)\) completely compensate.
- Thus the situation is exactly the same as without the derivative deal with Nash equilibrium \((\hat{\theta}^1, \hat{\theta}^2)\).
Intuition: Why is
\[\theta_t^1 = \hat{\theta}_t^1 + S_t \nu_s(t, S_t) \quad \text{and} \quad \theta_t^2 = \hat{\theta}_t^2 - S_t \nu_s(t, S_t), \]
a Nash equilibrium?

Start with \((\theta^1, \theta^2)\) and show that for neither of the traders there is an incentive to change his strategy.

- Both traders hedge the risk of the derivative completely away.
- In addition, the price impacts of the hedging strategies \(S_t \nu_s(t, S_t)\) and \(-S_t \nu_s(t, S_t)\) completely compensate.
- Thus the situation is exactly the same as without the derivative deal with Nash equilibrium \((\hat{\theta}^1, \hat{\theta}^2)\).
Intuition: Why is

\[\theta^1_t = \hat{\theta}^1_t + S_t v_s(t, S_t) \quad \text{and} \quad \theta^2_t = \hat{\theta}^2_t - S_t v_s(t, S_t), \]

a Nash equilibrium?

Start with \((\theta^1, \theta^2)\) and show that for neither of the traders there is an incentive to change his strategy.

- Both traders hedge the risk of the derivative completely away.
- In addition, the price impacts of the hedging strategies \(S_t v_s(t, S_t)\) and \(-S_t v_s(t, S_t)\) completely compensate.
- Thus the situation is exactly the same as without the derivative deal with Nash equilibrium \((\hat{\theta}^1, \hat{\theta}^2)\).
Intuition: Why is

\[\theta_1^t = \hat{\theta}_1^t + S_t \nu_s(t, S_t) \quad \text{and} \quad \theta_2^t = \hat{\theta}_2^t - S_t \nu_s(t, S_t), \]

a Nash equilibrium?

Start with \((\theta_1, \theta_2)\) and show that for neither of the traders there is an incentive to change his strategy.

- Both traders hedge the risk of the derivative completely away.
- In addition, the price impacts of the hedging strategies \(S_t \nu_s(t, S_t)\) and \(-S_t \nu_s(t, S_t)\) completely compensate.
- Thus the situation is exactly the same as without the derivative deal with Nash equilibrium \((\hat{\theta}_1, \hat{\theta}_2)\).
Many thanks for your attention!