Dynamic Hedging of Conditional Value-at-Risk
6th World Congress of Bachelier Finance Society

Alexander Melnikov melnikov@ualberta.ca
University of Alberta

June 2010
In this talk, the problem of partial hedging is studied by constructing hedging strategies that minimize conditional value-at-risk (CVaR) of the portfolio. Two aspects of the problem are considered: minimization of CVaR with initial capital bounded from above, and minimization of hedging costs subject to a CVaR constraint. The Neyman-Pearson lemma is used to deduce semi-explicit solutions. The results are illustrated by constructing CVaR-efficient hedging strategies for a call option in the Black-Scholes model, call option in regime-switching telegraph market model and embedded call option for equity-linked life insurance contract.
In a complete unconstrained financial market every contingent claim with discounted payoff H can be hedged perfectly.

Perfect hedging requires initial capital in the amount of $H_0 = \mathbb{E}_{\mathbb{P}^*}[H]$.

In a constrained market perfect hedging is not always possible.

Example of a constraint: initial capital bounded by $\tilde{V}_0 < H_0$.

The problem is to select the “best” partial hedging strategy.

One of the approaches is to optimize a risk measure.
Properties of the optimal hedging strategy depend on the risk measure being optimized.

Poor choice of the risk measure generally leads to poor results.

Examples of risk measures:

- Linear shortfall risk
- Quadratic loss
- Probability of successful hedging
- Value-at-risk
- Conditional value-at-risk
- Lower/upper tail conditional expectation
- Worst conditional expectation
- Expected shortfall
Let random variable L represent loss (can be negative).

- **Linear shortfall risk**: $\mathbb{E}_P[L^+]$, where $x^+ = \max(x, 0)$.
- **Quadratic loss**: $\mathbb{E}_P[L^2]$.
- **Probability of successful hedging**: $\mathbb{P}(L \leq 0)$.

Alexander Melnikov
Dynamic Hedging of Conditional Value-at-Risk
Choosing a Risk Measure
Value-at-Risk and Conditional Value-at-Risk

- VaR and CVaR are defined for a fixed level \(\alpha \in (0, 1) \).
- Let \(L(\alpha) \) and \(L^{(\alpha)} \) be lower and upper \(\alpha \)-quantiles of \(L \):
 \[
 L(\alpha) = \inf\{x \in \mathbb{R} : \mathbb{P}[L \leq x] \geq \alpha\},
 \]
 \[
 L^{(\alpha)} = \inf\{x \in \mathbb{R} : \mathbb{P}[L \leq x] > \alpha\}
 \]
- **Value-at-risk (VaR)** at level \(\alpha \):
 \[
 \text{VaR}^\alpha(L) = L^{(1-\alpha)}.
 \]
- **Conditional value-at-risk (CVaR)** at level \(\alpha \):
 \[
 \text{CVaR}^\alpha(L) = \inf \left\{ z + \frac{1}{\alpha} \cdot \mathbb{E}_\mathbb{P} \left[(L - z)^+ \right] : z \in \mathbb{R} \right\}.
 \]
- Note that the infimum in CVaR definition is always attained as minimum (see Rockafellar and Uryasev, 2000).
Choosing a Risk Measure
Tail Conditional Expectation, Worst Conditional Expectation and Expected Shortfall

- **Lower tail conditional expectation (lower TCE) at level** α:
 \[
 \text{TCE}_\alpha(L) = \mathbb{E}[L \mid L \geq L(1-\alpha)].
 \]

- **Upper tail conditional expectation (upper TCE) at level** α:
 \[
 \text{TCE}_\alpha(L) = \mathbb{E}[L \mid L \geq L^{(1-\alpha)}].
 \]

- **Worst conditional expectation (WCE) at level** α:
 \[
 \text{WCE}_\alpha(L) = \sup \{ \mathbb{E}[L \mid A] : A \in \mathcal{F}, \mathbb{P}[A] > \alpha \}.
 \]

- **Expected shortfall (ES) at level** α:
 \[
 \text{ES}_\alpha(L) = \frac{1}{\alpha} \cdot \left(\mathbb{E}[L \cdot 1_{\{L \geq L(1-\alpha)\}}] + L(1-\alpha) \cdot \left(\mathbb{P}[L \geq L(1-\alpha)] - \alpha \right) \right).
 \]
The following relationships are true for any loss function:

\[
\begin{align*}
\text{ES}_\alpha &= \text{CVaR}_\alpha, \\
\text{TCE}_\alpha &\leq \text{TCE}_\alpha \leq \text{CVaR}_\alpha, \\
\text{TCE}_\alpha &\leq \text{WCE}_\alpha \leq \text{CVaR}_\alpha.
\end{align*}
\]

\[
\text{TCE}_\alpha(L) = \text{TCE}_\alpha(L) = \text{WCE}_\alpha(L) = \text{CVaR}_\alpha(L) \text{ if and only if}
\]

\[
\mathbb{P}(L \geq L^{(1-\alpha)}) = \alpha, \mathbb{P}(L > L^{(1-\alpha)}) > 0
\]

or

\[
\mathbb{P}(L \geq L^{(1-\alpha)}, L \neq L^{(1-\alpha)}) = 0.
\]
Consider a world with three states: \(P(\omega_1) = P(\omega_2) = 0.48, \ P(\omega_3) = 0.04 \) and three different loss functions: \(L_1, L_2 \) and \(L_3 \).

<table>
<thead>
<tr>
<th></th>
<th>(\omega_1)</th>
<th>(\omega_2)</th>
<th>(\omega_3)</th>
<th>(P[L \leq 0])</th>
<th>(\text{VaR}_{0.05})</th>
<th>(\mathbb{E}[L^2])</th>
<th>(\text{CVaR}_{0.05})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L_1)</td>
<td>-1</td>
<td>1</td>
<td>10</td>
<td>0.48</td>
<td>1.00</td>
<td>4.96</td>
<td>8.20</td>
</tr>
<tr>
<td>(L_2)</td>
<td>-1</td>
<td>1</td>
<td>100</td>
<td>0.48</td>
<td>1.00</td>
<td>400.96</td>
<td>80.20</td>
</tr>
<tr>
<td>(L_3)</td>
<td>-2</td>
<td>1</td>
<td>10</td>
<td>0.48</td>
<td>1.00</td>
<td>6.40</td>
<td>8.20</td>
</tr>
</tbody>
</table>

In the example above:

- \(P[L_1 \leq 0] = P[L_2 \leq 0] = P[L_3 \leq 0] \),
- \(\text{VaR}_{0.05}(L_1) = \text{VaR}_{0.05}(L_2) = \text{VaR}_{0.05}(L_3) \),
- \(\mathbb{E}[(L_1)^2] \leq \mathbb{E}[(L_3)^2] \leq \mathbb{E}[(L_2)^2] \),
- \(\text{CVaR}_{0.05}(L_1) = \text{CVaR}_{0.05}(L_3) \leq \text{CVaR}_{0.05}(L_2) \).
Let the discounted price process X_t be a semimartingale on a standard stochastic basis $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in [0, T]}, \mathbb{P})$, with $\mathcal{F}_0 = \{\emptyset, \Omega\}$.

A self-financing strategy: initial capital $V_0 > 0$ and a predictable process ξ_t. For each strategy (V_0, ξ) the value process V_t is

$$V_t = V_0 + \int_0^t \xi_s dX_s, \quad \forall t \in [0, T].$$

A strategy (V_0, ξ) is admissible if

$$V_t \geq 0, \quad \forall t \in [0, T], \quad \mathbb{P} - a.s.$$

Denote the set of all admissible self-financing strategies by \mathcal{A}.
Consider a short position in a contingent claim whose discounted payoff is an \mathcal{F}_T–measurable random variable $H \in L^1(\mathbb{P})$, $H \geq 0$.

In a complete market there exists a unique martingale measure $\mathbb{P}^* \approx \mathbb{P}$, and the perfect hedging strategy requires allocating initial capital $H_0 = \mathbb{E}_{\mathbb{P}^*}[H]$ (risk-neutral price).

For each strategy (V_0, ξ) define loss function:

$$L = L(V_0, \xi) = H - V_T.$$

Capital constraint: $V_0 \leq \tilde{V}_0 < H_0$.

The problem is to minimize CVaR over the set of admissible self-financing strategies:

$$\begin{cases}
\text{CVaR}_\alpha(V_0, \xi) \longrightarrow \min_{(V_0, \xi) \in \mathcal{A}}, \\
V_0 \leq \tilde{V}_0.
\end{cases}$$
Recall that

$$\text{CVaR}^\alpha (V_0, \xi) = \inf \left\{ z + \frac{1}{\alpha} \cdot E_P \left[(H - V_T - z)^+ \right] : z \in \mathbb{R} \right\},$$

and define

$$\mathcal{A}_{\tilde{V}_0} = \{(V_0, \xi) \mid (V_0, \xi) \in \mathcal{A}, \ V_0 \leq \tilde{V}_0 \},$$

$$c(z) = z + \frac{1}{\alpha} \cdot \min_{(V_0, \xi) \in \mathcal{A}_{\tilde{V}_0}} E_P \left[(H - V_T - z)^+ \right].$$

Then

$$\min_{(V_0, \xi) \in \mathcal{A}_{\tilde{V}_0}} \text{CVaR}^\alpha (V_0, \xi) = \min_{z \in \mathbb{R}} c(z).$$

If we manage to derive an explicit form for $c(z)$, the initial problem is reduced to a problem of one-dimensional minimization.
The problem is to find an explicit expression for the function

\[c(z) = z + \frac{1}{\alpha} \cdot \min_{(V_0, \xi) \in \tilde{A}_V_0} \mathbb{E}_P \left[(H - V_T - z)^+ \right]. \]

Note that \((H - V_T - z)^+ \equiv ((H - z)^+ - V_T)^+\) and consider the problem

\[\mathbb{E}_P \left[(H - z)^+ - V_T \right]^\pm \longrightarrow \min_{(V_0, \xi) \in \tilde{A}_V_0} . \]

The latter is a problem of linear shortfall risk minimization with respect to a contingent claim whose payoff \((H - z)^+\) depends on parameter \(z\). The solution \((\hat{V}_0(z), \hat{\xi}(z))\) may be derived with the help of Neyman-Pearson lemma (Föllmer and Leukert, 2000).
The optimal strategy \((\hat{V}_0(z), \hat{\xi}(z))\) for the problem

\[
\mathbb{E}_{\mathbb{P}} \left[(H - z)^+ - V_T^+ \right] \rightarrow \min_{(V_0, \xi) \in \mathcal{A}_{\tilde{V}_0}}
\]

is a perfect hedge for \(\tilde{H}(z) = (H - z)^+ \tilde{\varphi}(z)\), where

\[
\tilde{\varphi}(z) = \mathbbm{1}\left\{ \frac{d\mathbb{P}}{d\mathbb{P}^*} > \tilde{a}(z) \right\} + \gamma(z) \cdot \mathbbm{1}\left\{ \frac{d\mathbb{P}}{d\mathbb{P}^*} = \tilde{a}(z) \right\},
\]

\[
\tilde{a}(z) = \inf \left\{ a \geq 0 : \mathbb{E}_{\mathbb{P}^*} \left[(H - z)^+ \cdot \mathbbm{1}\left\{ \frac{d\mathbb{P}}{d\mathbb{P}^*} > a \right\} \right] \leq \tilde{V}_0 \right\},
\]

\[
\gamma(z) = \frac{\tilde{V}_0 - \mathbb{E}_{\mathbb{P}^*} \left[(H - z)^+ \cdot \mathbbm{1}\left\{ \frac{d\mathbb{P}}{d\mathbb{P}^*} > \tilde{a}(z) \right\} \right]}{\mathbb{E}_{\mathbb{P}^*} \left[(H - z)^+ \cdot \mathbbm{1}\left\{ \frac{d\mathbb{P}}{d\mathbb{P}^*} = \tilde{a}(z) \right\} \right]}.
\]
The optimal strategy \((\hat{V}_0, \hat{\xi})\) for the problem

\[
\text{CVaR}_\alpha(V_0, \xi) \longrightarrow \min_{(V_0, \xi) \in A} \tilde{V}_0
\]

is a perfect hedge for \(\tilde{H}(\hat{z}) = (H - \hat{z})^+ \tilde{\phi}(\hat{z})\), where \(\tilde{\phi}(z)\) is the randomized test from linear shortfall risk subproblem, \(\hat{z}\) is the point of global minimum of

\[
c(z) = \begin{cases}
 z + \frac{1}{\alpha} \cdot E_P [(H - z)^+(1 - \tilde{\phi}(z))], & \text{for } z < z^*, \\
 z, & \text{for } z \geq z^*,
\end{cases}
\]

on interval \(z < z^*\), and \(z^*\) is a real root of equation

\[
\tilde{V}_0 = E_P^* [(H - z^*)^+].
\]

Besides, one always has

\[
\text{CVaR}_\alpha(\hat{V}_0, \hat{\xi}) = c(\hat{z}).
\]
The dual problem is to minimize initial capital subject to a CVaR constraint:

\[
\begin{align*}
V_0 & \rightarrow \min_{(V_0, \xi) \in A}, \\
\text{CVaR}_\alpha(V_0, \xi) & \leq \tilde{C}.
\end{align*}
\]

\[\iff\]

\[
\begin{align*}
\mathbb{E}_{P^*}[V_T] & \rightarrow \min_{V_T \in F_T}, \\
\text{CVaR}_\alpha(V_T) & \leq \tilde{C}.
\end{align*}
\]

Recall that

\[
\text{CVaR}_\alpha(V_0, \xi) = \min_{z \in \mathbb{R}} \left(z + \frac{1}{\alpha} \cdot \mathbb{E}_P(H - V_T - z)^+ \right)
\]

and consider a family of problems

\[
\begin{align*}
\mathbb{E}_{P^*}[V_T] & \rightarrow \min_{V_T \in F_T}, \\
\mathbb{E}_P(H - V_T - z)^+ & \leq (\tilde{C} - z) \cdot \alpha.
\end{align*}
\]
Lemma

Let \tilde{x} be a solution of

$$\begin{cases}
 f(x) \rightarrow \min, \\
 \min_{x \in X} g(x, z) \leq c.
\end{cases}$$

Then the following family of problems also admits solutions, denoted $\tilde{x}(z)$:

$$\begin{cases}
 f(x) \rightarrow \min, \\
 g(x, z) \leq c.
\end{cases}$$

Besides, one always has

$$\tilde{x} = \tilde{x}(\tilde{z}),$$

where z is a point of global minimum of $f(\tilde{x}(z))$.

Alexander Melnikov
Dynamic Hedging of Conditional Value-at-Risk
Let $\tilde{V}_T(z)$ be the solution of

\[
\begin{align*}
\mathbb{E}_{P^*}[V_T] &\longrightarrow \min_{\nu_T \in \mathcal{F}_T}, \\
\mathbb{E}_P(H - V_T - z)^+ &\leq (\tilde{C} - z) \cdot \alpha.
\end{align*}
\]

Then the solution of the dual problem

\[
\begin{align*}
\mathbb{E}_{P^*}[V_T] &\longrightarrow \min_{\nu_T \in \mathcal{F}_T}, \\
\text{CVaR}_\alpha(V_T) &\leq \tilde{C}.
\end{align*}
\]

can be expressed as $\tilde{V}_T = \tilde{V}_T(\tilde{z})$, where

\[
\mathbb{E}_{P^*}[\tilde{V}_T(\tilde{z})] = \min_{z \in \mathbb{R}} \mathbb{E}_{P^*}[\tilde{V}_T(z)].
\]
If $\mathbb{E}_\mathbb{P}[H] > \tilde{C}\alpha$ and $\mathbb{E}_\mathbb{P}[(H - \tilde{C})^+] > 0$, the optimal strategy $(\hat{V}_0, \hat{\xi})$ for the dual problem is a perfect hedge for $(H - \hat{z})^+ (1 - \tilde{\phi}(\hat{z}))$, where $\tilde{\phi}(z)$ is defined by

$$
\tilde{\phi}(z) = 1 \left\{ \frac{d\mathbb{P}^*}{d\mathbb{P}} > \tilde{a}(z) \right\} + \gamma(z) \cdot 1 \left\{ \frac{d\mathbb{P}^*}{d\mathbb{P}} = \tilde{a}(z) \right\},
$$

$$
\tilde{a}(z) = \inf \left\{ a \geq 0 : \mathbb{E}_\mathbb{P} \left[(H - z)^+ \cdot 1 \left\{ \frac{d\mathbb{P}^*}{d\mathbb{P}} > a \right\} \right] \leq (\tilde{C} - z)\alpha \right\},
$$

$$
\gamma(z) = \frac{(\tilde{C} - z)\alpha - \mathbb{E}_\mathbb{P} \left[(H - z)^+ \cdot 1 \left\{ \frac{d\mathbb{P}^*}{d\mathbb{P}} > \tilde{a}(z) \right\} \right]}{\mathbb{E}_\mathbb{P} \left[(H - z)^+ \cdot 1 \left\{ \frac{d\mathbb{P}^*}{d\mathbb{P}} = \tilde{a}(z) \right\} \right]},
$$

and \hat{z} is a point of minimum of function

$$
d(z) = \mathbb{E}_{\mathbb{P}^*} \left[(H - z)^+ (1 - \tilde{\phi}(z)) \right]
$$

on interval $-\infty < z \leq \tilde{C}$.
Minimizing Hedging Costs
Dual Problem: Final Results (Part 2)

- If \(E_P[H] \leq \tilde{C} \alpha \) or \(E_P[(H - \tilde{C})^+] \leq 0 \), the optimal strategy \((\hat{V}_0, \hat{\xi})\) for the dual problem is a passive strategy (do nothing).
- If the first inequality is not satisfied, target CVaR is too high compared to the expected payoff on the contingent claim, so there is no need to hedge.
- If the second inequality is not satisfied, the payoff is bounded from above by a constant less than \(\tilde{C} \), so CVaR can never reach its target value no matter what strategy is used.
CVaR Hedging in the Black-Scholes Model

The Discounted Price Process

- Let the underlying S_t and bond price B_t follow
 \[
 \begin{align*}
 B_t &= e^{rt}, \\
 S_t &= S_0 \exp(\sigma W_t + \mu t).
 \end{align*}
 \]

- SDE for the discounted price process $X_t = B_t^{-1} S_t$:
 \[
 \begin{align*}
 dX_t &= X_t (\sigma dW_t + m dt), \\
 X_0 &= x_0,
 \end{align*}
 \]
 where $m = \mu - r + \frac{\sigma^2}{2}$.

- Terminal value and Radon-Nikodym derivative:
 \[
 \begin{align*}
 X_T &= x_0 \exp \left(\sigma W_T + (m - \frac{1}{2} \sigma^2) T \right), \\
 \frac{d\mathbb{P}^*}{d\mathbb{P}} &= \exp \left(-\frac{m}{\sigma} W_T - \frac{1}{2} \left(\frac{m}{\sigma} \right)^2 T \right) = \text{const} \cdot X_T^{-m/\sigma^2}.
 \end{align*}
 \]
The contingent claim of interest is a plain vanilla call option with payoff \((S_T - K)^+\).

The discounted payoff \(H\) is equal to

\[H = (X_T - Ke^{-rT})^+. \]

The initial capital \(H_0\) required for a perfect hedge is

\[H_0 = \mathbb{E}_{\mathbb{P}^*}[H] = x_0 \Phi_+(Ke^{-rT}) - Ke^{-rT} \Phi_-(Ke^{-rT}), \]

where

\[\Phi_{\pm}(K) = \Phi \left(\frac{\ln x_0 - \ln K}{\sigma \sqrt{T}} \pm \frac{1}{2} \sigma \sqrt{T} \right), \]

and \(\Phi(\cdot)\) is a c.d.f. for standard normal distribution.
CVaR Hedging in the Black-Scholes Model

Problem Setting

- Assume the initial capital V_0 is limited by $\tilde{V}_0 < H_0$.
- For simplicity of presentation, assume $m > 0$.
- Our goal is to derive a hedging strategy that minimizes CVaR of the portfolio.
The optimal strategy \((\hat{V}_0, \hat{\xi})\) is a perfect hedge for
\[
\tilde{H}(\hat{z}) = (X_T - (Ke^{-rT} + \hat{z}))^+ \cdot 1_{\{X_T > \tilde{b}(\hat{z})\}},
\]
where \(\hat{z}\) is a point of global minimum of \(c(z)\) on \((-\infty, z^*)\),
\[
c(z) = z + \frac{1}{\alpha} \cdot x_0 e^{mT} \tilde{\Phi}_\pm \left(Ke^{-rT} + z\right) - \tilde{\Phi}_\pm(\tilde{b}(z))
\]
\[
- (Ke^{-rT} + z) \left[\tilde{\Phi}_\pm \left(Ke^{-rT} + z\right) - \tilde{\Phi}_\pm(\tilde{b}(z))\right],
\]
where \(\tilde{\Phi}_\pm(x) = \Phi_\pm(xe^{-mT})\), \(z^*\) is the solution of
\[
\tilde{V}_0 = x_0 \Phi_+(Ke^{-rT} + z^*) - (Ke^{-rT} + z^*) \Phi_-(Ke^{-rT} + z^*),
\]
and for each \(z \in \mathbb{R}\), \(\tilde{b}(z)\) is the solution of
\[
\begin{cases}
x_0 \Phi_+(b) - ((Ke^{-rT} + z)) \Phi_-(b) = \tilde{V}_0, \\
b \geq (Ke^{-rT} + z).
\end{cases}
\]
Consider a plain vanilla call option with strike price of $K = 110$ and time to maturity $T = 0.25$.

Assume that financial market evolves according to the Black-Scholes model with parameters

$$\sigma = 0.3, \quad \mu = 0.09, \quad r = 0.05.$$

Initial stock price is $S_0 = 100$.

The objective is to construct CVaR$_{0.025}$-optimal partial hedging strategies for the call option with variable amount of initial capital available, ranging from 0 to the fair price of the option.
CVaR Hedging in the Black-Scholes Model

Numerical Example: Optimal CVaR vs. Initial Capital (2)

Available Capital as Fraction of Fair Price

Optimal CVaR

Dynamic Hedging of Conditional Value-at-Risk
(Ω, ℱ, ℙ) is "financial" probability space, as described earlier.
Consider "actuarial" probability space (˜Ω, ˜ℱ, ˜ℙ).
Let random variable \(T(x) \) denote the remaining lifetime of a person aged \(x \).
Let \(T \rho_x = \tilde{ℙ}[T(x) > T] \) be a survival probability for the next \(T \) years of the insured.
Assume that \(T(x) \) does not depend on the evolution of financial market.
Insurance company is obliged to pay the benefit in the amount of \bar{H} to the insured, giving the insured is alive at time T.

\bar{H} is an \mathcal{F}_T-measurable non-negative random variable.

The optimal price is traditionally calculated as an expected present value of cash flows under the risk-neutral probability.

The ”insurance” part of the contract doesn’t need to be risk-adjusted since the mortality risk is unsystematic.

Brennan-Shwartz price of the contract:

$$
\tau U_x = \mathbb{E}_\mathbb{P} \left\{ \mathbb{E}_{\mathbb{P}^*} \left[H \cdot 1_{\{T(x) > T\}} \right] \right\} = \tau p_x \cdot \mathbb{E}_{\mathbb{P}^*} \left[H \right],
$$

where $H = \bar{H}e^{-rT}$ is the discounted benefit.
The problem of the insurance company is to mitigate financial part of risk and hedge \(\bar{H} \) in the financial market.

However,

\[
\tau U_x < \mathbb{E}_{\mathbb{P}^*} [H],
\]

hence the perfect hedge is not accessible.

For a fixed client age \(x \) and time horizon \(T \), denote

\[
\tilde{V}_0 = \tau p_x \cdot \mathbb{E}_{\mathbb{P}^*} [H].
\]

We can now consider the problem of CVaR-optimal hedging of \(\bar{H} \) with capital constraint \(V_0 \leq \tilde{V}_0 \) and apply all techniques described earlier to derive the solution.

The related dual problem can also be considered.
Consider an equity-linked pure endowment contract with benefit being a call option with strike price of $K = 110$.

Let the starting price of the underlying be equal to $X_0 = 100$.

Let ”financial” world be driven by the Black-Scholes model:

$$\mu = 0.09, \quad r = 0.05, \quad \sigma = 0.3.$$

We optimize CVaR of hedging strategies for confidence level $\alpha = 0.025$ and variable time horizon.

We use survival probabilities from mortality table UP94 @ 2015 (Uninsured Pensioner Mortality 1994 Table Projected to the Year 2015) from McGill et al., ”Fundamentals of Private Pensions” (2004)).
CVaR Hedging of Equity-Linked Insurance Contracts

Numerical Example: Optimal CVaR for Ages 1-70

![Graph showing optimal CVaR for different ages and time periods. The graph includes lines for different time periods (T = 5, T = 10, T = 15, T = 20, T = 25) and shows how the optimal CVaR increases with age and time.]

Alexander Melnikov
Dynamic Hedging of Conditional Value-at-Risk
Numerical Example: Optimal CVaR for Ages 1-35

The graph illustrates the optimal CVaR values for different client ages and time periods. The x-axis represents the client age, ranging from 0 to 35 years, and the y-axis represents the optimal CVaR values. For each time period (T), the graph shows how the optimal CVaR changes with age. The curves for different time periods are color-coded as follows:

- Blue: T = 5
- Green: T = 10
- Red: T = 15
- Cyan: T = 20
- Purple: T = 25

The optimal CVaR generally increases with age and time period, indicating a higher risk or variability in the outcomes for older clients and longer time periods.
Let \(\sigma(t) \in \{1, 2\} \), \(\sigma(0) = 1 \) be a continuous time Markov chain process with Markov generator

\[
L_\sigma = \begin{pmatrix}
-\lambda_1 & \lambda_1 \\
\lambda_2 & -\lambda_2
\end{pmatrix}.
\]

Define the main driving factors of the market:

\[
X_t = \int_0^t c_{\sigma(s)} ds, \quad J_t = \sum_{0}^{N_t} h_{\sigma(T_j-)},
\]

where \(c = (c_1, c_2) \), \(h = (h_1, h_2) \) and \(N_t \) is the number of jumps of \(\sigma(t) \) up to time \(t \).

The risk-free asset is defined by \(dB_t = r_{\sigma(t)} B_t dt \), and the interest rate \(r \) has two states \((r_1, r_2) \).

The risky asset is defined similarly to Merton’s model:

\[
dS_t = S_t - d(X_t + J_t).
\]
Telegraph market model can be described as a complete market model with two traded assets, where dynamics of the risky asset features jumps and regime switching.

The model can be viewed as a generalization of Merton’s model preserving completeness of the market.

Theorem

The telegraph model is arbitrage free if and only if

\[
\frac{r_\sigma - c_\sigma}{h_\sigma} > 0, \quad \sigma = 1, 2.
\]

If the model is arbitrage free, it is complete.
Our algorithm for deriving CVaR-optimal strategies requires computing expectations of the form

$$\mathbb{E}[f(S_T, B_T) \cdot 1\{Z_T < a\}]$$

for various functions f and constants a, both under the statistical measure \mathbb{P} and under the risk-neutral measure \mathbb{P}^*. S_t, B_t and Z_t may all be expressed in terms of X_t and N_t; consider $g(\cdot, \cdot)$ such that

$$\mathbb{E}[f(S_T, B_T) \cdot 1\{Z_T < a\}] = \mathbb{E}[g(X_t, N_t)].$$
Expand the expected value above by conditioning on $N_t = n$:

$$
\mathbb{E}[g(X_t, N_t)] = \sum_{n \geq 0} \int \mathbb{R} g(x, n) p_n(t, x) dx,
$$

where $p_n(t, x)$ is defined as

$$
p_n(t, x) = \frac{d}{dx} \mathbb{P} \left[\{X_t < x\} \cap \{N_t = n\} \right].
$$
For all $t \geq 0$ and $x \in \mathbb{R}$,

$$p_0(t, x) = e^{-\lambda_1 t} \delta(x - c_1 t)$$

and for all $k \geq 1$

\[
p_{2k-1}(t, x) = \frac{\lambda_1 (\phi_1(t, x)\phi_2(t, x))^{k-1}}{|c_2 - c_1| ((k-1)!!)^2} \exp \left(-\phi_1(t, x) - \phi_2(t, x)\right),
\]

\[
p_{2k}(t, x) = \frac{p_{2k-1}(t, x)\phi_2(t, x)}{k},
\]

where

\[
\phi_1(t, x) = \lambda_1 \frac{c_2 t - x}{c_2 - c_1},
\]

\[
\phi_2(t, x) = \lambda_2 \frac{x - c_1 t}{c_2 - c_1},
\]

and $x \in (\min\{c_1 t, c_2 t\}, \max\{c_1 t, c_2 t\})$.
Consider a plain vanilla call option with strike price of $K = 100$ and time to maturity $T = 1$.

Assume that financial market evolves according to the telegraph market model with parameters

\[
\begin{align*}
 c_1 &= -0.5, \quad c_2 = 0.5, \\
 \lambda_1 &= \lambda_2 = 5, \\
 r_1 &= r_2 = 0.07, \\
 h_1 &= 0.5, \quad h_2 = -0.35.
\end{align*}
\]

Initial stock price is $S_0 = 100$.

The objective is to construct CVaR_{0.025}-optimal partial hedging strategies for the call option with variable amount of initial capital available, ranging from 0 to the fair price of the option.