Multiscale Stochastic Volatility Models

Jean-Pierre Fouque
University of California Santa Barbara

6th World Congress of the Bachelier Finance Society
Toronto, June 25, 2010
Multiscale Stochastic Volatility for Equity, Interest-Rate and Credit Derivatives

J.-P. Fouque, G. Papanicolaou, R. Sircar, K. Sølna
Cambridge University Press. To appear (soon...)

www.pstat.ucsb.edu/faculty/fouque
Price Expansion

P: price of a vanilla European option (to start with)

\[
P = P_0 + v_0 \partial_{\sigma} P_0 + v_1 D_1 \partial_{\sigma} P_0 + v_2 D_2 P_0 + v_3 D_1 D_2 P_0 + v_4 \partial_{\sigma \sigma} P_0 + \cdots
\]

\[
D_1 = S \frac{\partial}{\partial S} (\text{Delta}), \quad D_2 = S^2 \frac{\partial^2}{\partial S^2} (\text{Gamma}) \quad \partial_{\sigma} = \frac{\partial}{\partial \sigma} (\text{Vega}) \cdots
\]

\[
v_i = v_i(\tau), \text{ payoff independent, } \quad \tau = \text{ time-to-maturity}
\]

P_0 is typically a constant volatility price → closed-form formula

Black-Scholes in Equity (Vasicek or CIR in Fixed Income, Black-Cox in Credit, ...)

Where do we get such an expansion?
What do we expect from it?
Wish List

\[P = P_0 + v_0 \partial_\sigma P_0 + v_1 D_1 \partial_\sigma P_0 + v_2 D_2 P_0 + v_3 D_1 D_2 P_0 + v_4 \partial_{\sigma\sigma} P_0 + \cdots \]

- **Accuracy**: the truncated expansion should be a good approximation \((v_i \to 0\) fast enough)
Wish List

\[P = P_0 + v_0 \partial_\sigma P_0 + v_1 D_1 \partial_\sigma P_0 + v_2 D_2 P_0 + v_3 D_1 D_2 P_0 \]
\[+ v_4 \partial^2_{\sigma\sigma} P_0 + \cdots \]

- **Accuracy**: the truncated expansion should be a good approximation \((v_i \to 0\) fast enough)

- **Stability**: the coefficients \(v\)’s should be stable in time
 “short-time tight-fit vs. long-time rough fit”
Wish List

\[P = P_0 + v_0 \partial_\sigma P_0 + v_1 D_1 \partial_\sigma P_0 + v_2 D_2 P_0 + v_3 D_1 D_2 P_0 + v_4 \partial^2_{\sigma\sigma} P_0 + \cdots \]

- **Accuracy**: the truncated expansion should be a good approximation \((v_i \to 0 \text{ fast enough})\)
- **Stability**: the coefficients \(v\)'s should be stable in time
 “short-time tight-fit vs. long-time rough fit”
- Should lead to practical **consistent pricing** of path-dependent derivatives
Wish List

\[
P = P_0 + v_0 \partial_\sigma P_0 + v_1 D_1 \partial_\sigma P_0 + v_2 D_2 P_0 + v_3 D_1 D_2 P_0 + \ldots
\]

- **Accuracy**: the truncated expansion should be a good approximation \((v_i \to 0 \text{ fast enough})\)
- **Stability**: the coefficients \(v\)'s should be stable in time
 “short-time tight-fit vs. long-time rough fit”
- Should lead to practical **consistent pricing** of path-dependent derivatives
- Should be useful for **hedging under physical measure** (the \(v\)'s are calibrated under risk-neutral)
Wish List

\[P = P_0 + v_0 \partial_\sigma P_0 + v_1 D_1 \partial_\sigma P_0 + v_2 D_2 P_0 + v_3 D_1 D_2 P_0 + v_4 \partial^2_{\sigma\sigma} P_0 + \cdots \]

- **Accuracy**: the truncated expansion should be a good approximation \((v_i \to 0\) fast enough)
- **Stability**: the coefficients \(v\)’s should be stable in time
 “short-time tight-fit vs. long-time rough fit”
- Should lead to practical **consistent pricing** of path-dependent derivatives
- Should be useful for **hedging under physical measure** (the \(v\)’s are calibrated under risk-neutral)

Let’s look at **calibration** first →
Calibration on Implied Volatilities

For vanilla European options we have: \(\partial_{\sigma} P_0 = \tau \bar{\sigma} D_2 P_0 \) so that

\[
P = P_0 + v_0 \partial_{\sigma} P_0 + v_1 D_1 \partial_{\sigma} P_0 + \frac{v_2}{\bar{\sigma}_T} \partial_{\sigma} P_0 + \frac{v_3}{\bar{\sigma}_T} D_1 \partial_{\sigma} P_0 + \cdots
\]
Calibration on Implied Volatilities

For vanilla European options we have: $\partial_\sigma P_0 = \tau \bar{\sigma} D_2 P_0$ so that

$$P = P_0 + v_0 \partial_\sigma P_0 + v_1 D_1 \partial_\sigma P_0 + \frac{v_2}{\bar{\sigma} \tau} \partial_\sigma P_0 + \frac{v_3}{\bar{\sigma} \tau} D_1 \partial_\sigma P_0 + \cdots$$

For Calls, $P_0 = C_{BS}$ and by direct computation

$$P = C_{BS} + \left\{ v_0 + \frac{v_2}{\bar{\sigma} \tau} + \left(v_1 + \frac{v_3}{\bar{\sigma} \tau} \right) \left(1 - \frac{d_1}{\bar{\sigma} \sqrt{\tau}} \right) \right\} \partial_\sigma C_{BS} + \cdots$$

where $d_1 = \frac{-LM + (\tau + \frac{1}{2} \bar{\sigma}^2) \tau}{\bar{\sigma} \sqrt{\tau}}$, and $LM \equiv \log(K/S)$
Calibration on Implied Volatilities

For vanilla European options we have: $\partial_{\sigma}P_0 = \tau\bar{\sigma}D_2P_0$ so that

$$P = P_0 + v_0\partial_{\sigma}P_0 + v_1D_1\partial_{\sigma}P_0 + \frac{v_2}{\bar{\sigma}\tau}\partial_{\sigma}P_0 + \frac{v_3}{\bar{\sigma}\tau}D_1\partial_{\sigma}P_0 + \cdots$$

For Calls, $P_0 = C_{BS}$ and by direct computation

$$P = C_{BS} + \left\{v_0 + \frac{v_2}{\bar{\sigma}\tau} + \left(v_1 + \frac{v_3}{\bar{\sigma}\tau}\right) \left(1 - \frac{d_1}{\bar{\sigma}\sqrt{\tau}}\right)\right\}\partial_{\sigma}C_{BS} + \cdots$$

where $d_1 = \frac{-LM+(r+\frac{1}{2}\bar{\sigma}^2)\tau}{\bar{\sigma}\sqrt{\tau}}$, and $LM \equiv \log(K/S)$

Expanding the implied volatility $I = \bar{\sigma} + I_1 + \cdots \rightarrow$

$$P \equiv C_{BS}(\bar{\sigma} + I_1 + \cdots) = C_{BS} + I_1\partial_{\sigma}C_{BS} + \cdots$$

$$\implies I_1 = v_0 + \frac{v_2}{\bar{\sigma}\tau} + \left(v_1 + \frac{v_3}{\bar{\sigma}\tau}\right) \left(1 - \frac{d_1}{\bar{\sigma}\sqrt{\tau}}\right) + \cdots$$

Affine in LMMR: $I = b + a \frac{LM}{\tau} + (\text{quartic in } LM) + \cdots$

where the term structure of the v’s (τ dependence) is important.
Calibration Examples

Goal: fit

\[I = b + a \frac{LM}{\tau} + \text{(quartic in LM)} + \cdots \]

to the observed implied volatility surface.

We typically fit the parameters \(a, b, \ldots \) by regressing in LMMR maturity-by-maturity, then we fit their dependence in \(\tau \).

We will see that our expansion leads to \(a, b \) which are affine in \(\tau \).

Some examples →
S&P 500 Implied Volatility data on June 5, 2003 and fits to the affine LMMR approximation for six different maturities.
S&P 500 Implied Volatility data on June 5, 2003 and fits to the two-scales asymptotic theory. The bottom (resp. top) figure shows the linear regression of b (resp. a) with respect to time to maturity τ.
Higher Order Expansion

\[I \sim \sum_{j=0}^{4} a_j(\tau) (LM)^j + \frac{1}{\tau} \Phi_t, \]
S&P 500 Implied Volatility data on June 5, 2003 and quartic fits to the asymptotic theory for four maturities.
Stochastic Volatility Models

Equity for instance.
Under physical measure:

\[
\frac{dS_t}{S_t} = \mu dt + \sigma_t dW_t^{(0)}
\]

\[
\sigma_t = f(Y_t, Z_t, \cdots)
\]

\[
dY_t = \alpha(Y_t) dt + \beta(Y_t) dW_t^{(1)}
\]

\[
dZ_t = c(Z_t) dt + g(Z_t) dW_t^{(2)}
\]

\[
\cdots
\]

Volatility factors can be differentiated by their time scales
Multiscale Stochastic Volatility Models

\[\sigma_t = f(Y_t, Z_t) \]

- \(Y_t \) is fast mean-reverting (ergodic on a fast time scale):
 \[dY_t = \frac{1}{\varepsilon} \alpha(Y_t) dt + \frac{1}{\sqrt{\varepsilon}} \beta(Y_t) dW_t^{(1)}, \quad 0 < \varepsilon \ll 1 \]
Multiscale Stochastic Volatility Models

\[\sigma_t = f(Y_t, Z_t) \]

- **\(Y_t \) is fast mean-reverting** (ergodic on a fast time scale):
 \[
dY_t = \frac{1}{\varepsilon} \alpha(Y_t) dt + \frac{1}{\sqrt{\varepsilon}} \beta(Y_t) dW_t^{(1)}, \quad 0 < \varepsilon \ll 1
 \]
- **\(Z_t \) is slowly varying**:
 \[
dZ_t = \delta c(Z_t) dt + \sqrt{\delta} g(Z_t) dW_t^{(2)}, \quad 0 < \delta \ll 1
 \]
Multiscale Stochastic Volatility Models

\[\sigma_t = f(Y_t, Z_t) \]

- **\(Y_t \) is fast mean-reverting** (ergodic on a fast time scale):
 \[dY_t = \frac{1}{\epsilon} \alpha(Y_t) dt + \frac{1}{\sqrt{\epsilon}} \beta(Y_t) dW_t^{(1)}, \quad 0 < \epsilon \ll 1 \]

- **\(Z_t \) is slowly varying**:
 \[dZ_t = \delta c(Z_t) dt + \sqrt{\delta} g(Z_t) dW_t^{(2)}, \quad 0 < \delta \ll 1 \]

Separation of time scales: \(\epsilon \ll T \ll 1/\delta \)

(assuming \(f \) continuous in \(z \)):

\[\frac{1}{T} \int_0^T \sigma_t^2 dt = \frac{1}{T} \int_0^T f^2(Y_t, Z_t) dt \longrightarrow \langle f^2(\cdot, z) \rangle_{\Phi_Y} \]

Local Effective Volatility: \(\bar{\sigma}^2(z) \equiv \langle f^2(\cdot, z) \rangle_{\Phi_Y} \)

\[P_0 = P_{BS}(\bar{\sigma}(z)) \]
Market Prices of Volatility Risk

Under the risk neutral measure \mathbb{P}^* chosen by the market:

\[
\begin{align*}
 dS_t &= rS_t dt + f(Y_t, Z_t)S_t dW_t^{(0)*}, \\
 dY_t &= \left(\frac{1}{\varepsilon} \alpha(Y_t) - \frac{1}{\sqrt{\varepsilon}} \beta(Y_t) \Lambda(Y_t, Z_t) \right) dt + \frac{1}{\sqrt{\varepsilon}} \beta(Y_t) dW_t^{(1)*}, \\
 dZ_t &= \left(\delta c(Z_t) - \sqrt{\delta} g(Z_t) \Gamma(Y_t, Z_t) \right) dt + \sqrt{\delta} g(Z_t) dW_t^{(2)*}.
\end{align*}
\]

\[d < W^{(0)*}, W^{(1)*} >_t = \rho_1 dt\]
\[d < W^{(0)*}, W^{(2)*} >_t = \rho_2 dt\]

\(\Lambda\) and \(\Gamma\): market prices of volatility risk
Pricing Equation

\[P^{\varepsilon,\delta}(t, x, y, z) = \mathbb{E}^{*}\left\{ e^{-r(T-t)}h(S_T) \mid S_t = x, Y_t = y, Z_t = z \right\} \]

Feynman–Kac:

\[
\left(\frac{1}{\varepsilon} \mathcal{L}_Y + \frac{1}{\sqrt{\varepsilon}} \mathcal{L}_{\rho_1,\Lambda} + \mathcal{L} + \sqrt{\delta} \mathcal{L}_{\rho_2,\Gamma} + \delta \mathcal{L}_Z + \sqrt{\frac{\delta}{\varepsilon}} \mathcal{L}_{\rho_{12}} \right) P^{\varepsilon,\delta} = 0
\]

\[P^{\varepsilon,\delta}(T, x, y, z) = h(x) \]

with

\[
\mathcal{L} = \mathcal{L}_{BS}(f(y, z)) = \frac{\partial}{\partial t} + \frac{1}{2} f^2(y, z) x^2 \frac{\partial^2}{\partial x^2} + r \left(x \frac{\partial}{\partial x} - \cdot \right)
\]
Regular-Singular Perturbations

\[P^{\varepsilon,\delta} = \sum_{i,j} \varepsilon^{i/2} \delta^{j/2} P_{i,j} = P_0 + \sqrt{\varepsilon} P_{1,0} + \sqrt{\delta} P_{0,1} + \cdots \]

\[\mathcal{L}_{BS}(\bar{\sigma}(z)) P_0 = 0, \quad P_0(T, x) = h(x) \implies P_0 = P_{BS}(\bar{\sigma}(z)) \]

\(P_0 \) is independent of \(y \) and \(z \) is a parameter.
Regular-Singular Perturbations

\[P^{\varepsilon,\delta} = \sum_{i,j} \varepsilon^{i/2} \delta^{j/2} P_{i,j} = P_0 + \sqrt{\varepsilon} P_{1,0} + \sqrt{\delta} P_{0,1} + \cdots \]

\[\mathcal{L}_{BS}(\bar{\sigma}(z))P_0 = 0, \quad P_0(T, x) = h(x) \implies P_0 = P_{BS}(\bar{\sigma}(z)) \]

\(P_0 \) is independent of \(y \) and \(z \) is a parameter.

\[\mathcal{L}_{BS}(\bar{\sigma}(z)) \left(\sqrt{\varepsilon} P_{1,0} \right) + V_2^\varepsilon D_2 P_{BS} + V_3^\varepsilon D_1 D_2 P_{BS} = 0 \]
\[\mathcal{L}_{BS}(\bar{\sigma}(z)) \left(\sqrt{\delta} P_{0,1} \right) + 2 \left(V_0^\delta \partial_{\sigma} P_{BS} + V_1^\delta D_1 \partial_{\sigma} P_{BS} \right) = 0 \]
\[P_{1,0}(T, x) = P_{0,1}(T, x) = 0 \]

\(V_0^\delta \) and \(V_2^\varepsilon \) are volatility level adjustments due to \(\Gamma \) and \(\Lambda \) resp. \(V_1^\delta \) and \(V_3^\varepsilon \) are skew parameters proportional to \(\rho_2 \) and \(\rho_1 \) resp.
Regular-Singular Perturbations

\[P^{\varepsilon,\delta} = \sum_{i,j} \varepsilon^{i/2} \delta^{j/2} P_{i,j} = P_0 + \sqrt{\varepsilon} P_{1,0} + \sqrt{\delta} P_{0,1} + \cdots \]

\[\mathcal{L}_{BS}(\bar{\sigma}(z)) P_0 = 0, \quad P_0(T,x) = h(x) \implies P_0 = P_{BS}(\bar{\sigma}(z)) \]

\[P_0 \text{ is independent of } y \text{ and } z \text{ is a parameter.} \]

\[\mathcal{L}_{BS}(\bar{\sigma}(z)) \left(\sqrt{\varepsilon} P_{1,0} \right) + V^\varepsilon_2 D_2 P_{BS} + V^\varepsilon_3 D_1 D_2 P_{BS} = 0 \]

\[\mathcal{L}_{BS}(\bar{\sigma}(z)) \left(\sqrt{\delta} P_{0,1} \right) + 2 \left(V^\delta_0 \partial_\sigma P_{BS} + V^\delta_1 D_1 \partial_\sigma P_{BS} \right) = 0 \]

\[P_{1,0}(T,x) = P_{0,1}(T,x) = 0 \]

\(V^\delta_0 \) and \(V^\varepsilon_2 \) are volatility level adjustments due to \(\Gamma \) and \(\Lambda \) resp.

\(V^\delta_1 \) and \(V^\varepsilon_3 \) are skew parameters proportional to \(\rho_2 \) and \(\rho_1 \) resp.

Important: these Black-Scholes equations will hold for exotic options with additional boundary conditions, but with the same group parameters \(V \)'s
Explicit formulas for Vanilla European Options

Notation: \(T - t = \tau \)

\[
\sqrt{\epsilon} P_{1,0} = \tau \left(V^\epsilon_2 D_2 P_{BS} + V^\epsilon_3 D_1 D_2 P_{BS} \right)
\]

easily checked by using \(\mathcal{L}_{BS} D_i = D_i \mathcal{L}_{BS} \)
Explicit formulas for Vanilla European Options

Notation: \(T - t = \tau \)

\[
\sqrt{\varepsilon} P_{1,0} = \tau \left(V_2^\varepsilon D_2 P_{BS} + V_3^\varepsilon D_1 D_2 P_{BS} \right)
\]
easily checked by using \(\mathcal{L}_{BS} D_i = D_i \mathcal{L}_{BS} \)

\[
\sqrt{\delta} P_{0,1} = \tau \left(V_0^\delta \partial_\sigma P_{BS} + V_1^\delta D_1 \partial_\sigma P_{BS} \right)
\]
easily checked by using first \(\partial P_{BS} = \tau \bar{\sigma} D_2 P_{BS} \) and then \(\mathcal{L}_{BS} D_i = D_i \mathcal{L}_{BS} \)
Explicit formulas for Vanilla European Options

Notation: $T - t = \tau$

$$\sqrt{\varepsilon} P_{1,0} = \tau \left(V_2^\varepsilon D_2 P_{BS} + V_3^\varepsilon D_1 D_2 P_{BS} \right)$$

easily checked by using $\mathcal{L}_{BS} D_i = D_i \mathcal{L}_{BS}$

$$\sqrt{\delta} P_{0,1} = \tau \left(V_0^\delta \partial_\sigma P_{BS} + V_1^\delta D_1 \partial_\sigma P_{BS} \right)$$

easily checked by using $\partial P_{BS} = \tau \bar{\sigma} D_2 P_{BS}$ and then $\mathcal{L}_{BS} D_i = D_i \mathcal{L}_{BS}$.

• Back to our expansion \rightarrow

$$P = P_0 + v_0 \partial_\sigma P_0 + v_1 D_1 \partial_\sigma P_0 + v_2 D_2 P_0 + v_3 D_1 D_2 P_0 + \cdots$$

$$v_0 = \tau V_0^\delta, \quad v_1 = \tau V_1^\delta$$

$$v_2 = \tau V_2^\varepsilon, \quad v_3 = \tau V_3^\varepsilon$$

In terms of calibration to implied volatilities \rightarrow
Implied Volatility Calibration Formulas

\[
\bar{\sigma} + \frac{V_2}{\bar{\sigma}} + \frac{V_3}{2\bar{\sigma}}(1 - \frac{2r}{\bar{\sigma}^2}) + \tau \left(V_0 + \frac{V_1}{2}(1 - \frac{2r}{\bar{\sigma}^2}) \right) + \left(\frac{V_3}{\bar{\sigma}^3} + \tau \frac{V_1}{\bar{\sigma}^2} \right)
\]

LMMR

Either

- one estimates \(\bar{\sigma} \) from historical data (preferred for hedging where \(V_0 \) and \(V_2 \) do not appear), and then fitting maturity-by-maturity and regressing in \(\tau \), one gets:
 1. \(V_1 \) and \(V_3 \) from the slope \(a \)
 2. \(V_0 \) and \(V_2 \) from the intercept \(b \)
Implied Volatility Calibration Formulas

\[
\bar{\sigma} + \frac{V_2}{2\bar{\sigma}} + \frac{V_3}{2\bar{\sigma}}(1 - \frac{2r}{\bar{\sigma}^2}) + \tau \left(\frac{V_0}{2} \left(1 - \frac{2r}{\bar{\sigma}^2}\right) \right) + \left(\frac{V_3}{\bar{\sigma}^3} + \tau \frac{V_1}{\bar{\sigma}^2} \right) \quad \text{LMMR}
\]

intercept \(b \)

slope \(a \)

Either

- one estimates \(\bar{\sigma} \) from **historical data** (preferred for **hedging** where \(V_0 \) and \(V_2 \) do not appear), and then fitting maturity-by-maturity and regressing in \(\tau \), one gets:
 1. \(V_1 \) and \(V_3 \) from the slope \(a \)
 2. \(V_0 \) and \(V_2 \) from the intercept \(b \)

- or one uses the **adjusted effective volatility** \(\sigma^* \equiv \sqrt{\bar{\sigma}^2 + 2V_2} \)
 calibrated from **option data**, along with \(V_0 \), \(V_1 \), and \(V_3 \) (preferred for **pricing**):

\[
\sigma^* + \frac{V_3}{2\sigma^*}(1 - \frac{2r}{\sigma^*2}) + \tau \left(\frac{V_0}{2} \left(1 - \frac{2r}{\sigma^*2}\right) \right) + \left(\frac{V_3}{\sigma^3} + \tau \frac{V_1}{\sigma^2} \right) \quad \text{LMMR}
\]
Back to the Wish List: Accuracy

If the payoff function h is smooth:

\[
P^{\varepsilon,\delta} = \left(P_0 + \sqrt{\varepsilon} P_{1,0} + \varepsilon P_{2,0} + \varepsilon^{3/2} P_{3,0} \right) + \sqrt{\delta} \left(P_{0,1} + \sqrt{\varepsilon} P_{1,1} + \varepsilon P_{2,1} \right) + R^{\varepsilon,\delta}
\]

\[
= \left(P_0 + \sqrt{\varepsilon} P_{1,0} + \sqrt{\delta} P_{0,1} \right) + O(\varepsilon + \delta) + R^{\varepsilon,\delta}
\]

then the residual $R^{\varepsilon,\delta}$ satisfies

\[
\mathcal{L}^{\varepsilon,\delta} R^{\varepsilon,\delta} = O(\varepsilon + \delta)
\]

\[
R^{\varepsilon,\delta}(T) = O(\varepsilon + \delta)
\]

and therefore $R^{\varepsilon,\delta} = O(\varepsilon + \delta)$.

If h is non-smooth (call option in particular), then use a careful regularization.
Path-Dependent Derivatives (Barrier, Asian,...)

- Calibrate σ^*, V_0, V_1 and V_3 on the implied volatility surface
- Solve the corresponding problem with constant volatility σ^*
 \[\implies P_0 = P_{BS}(\sigma^*) \]
- Use V_0, V_1 and V_3 to compute the source
 \[2 (V_0 \partial_\sigma P_{BS}^* + V_1 D_1 \partial_\sigma P_{BS}^*) + V_3 D_1 D_2 P_{BS}^* \]
- Get the correction by solving the SAME PROBLEM with zero boundary conditions and the source.
American Options

- Calibrate σ^*, V_0, V_1 and V_3 on the **implied volatility surface**
- Solve the corresponding problem with **constant volatility** σ^*
 \[
 \Rightarrow P^* \text{ and the free boundary } x^*(t)
 \]

- Use V_0, V_1 and V_3 to compute the **source**
 \[
 2 \left(V_0 \partial_\sigma P^*_{BS} + V_1 D_1 \partial_\sigma P^*_{BS} \right) + V_3 D_1 D_2 P^*_{BS}
 \]

- Get the **correction** by solving the corresponding problem with **fixed boundary** $x^*(t)$, **zero boundary conditions** and the **source**.
Cost of the Black-Scholes Hedging Strategy

\[
P_{BS}(T, S_T) = h(S_T)
\]

\[
P_{BS}(t, S_t) = a_t S_t + b_t e^{r t}, \quad a_t = \partial_x P_{BS}
\]

Infinitesimal cost:

\[
dP_{BS}(t, S_t) - \underbrace{(a_t dS_t + rb_t e^{r t} dt)}_{\text{self-financing part}} = \frac{1}{2} \left(f^2(Y_t, Z_t) - \sigma^2 \right) D_2 P_{BS}(t, S_t) dt
\]

Cumulative financing cost:

\[
E_{BS}(t) = \frac{1}{2} \int_0^t e^{-rs} \left(f^2(Y_s, Z_s) - \sigma^2 \right) D_2 P_{BS}(s, S_s) ds
\]

Choice of \(\sigma \)?
Choice of σ?

Since Y_t is fast mean-reverting ($\varepsilon \ll 1$), integrals like

$$\int_0^t \left(f^2(Y_s, Z_s) - \sigma^2 \right) \Psi_s ds$$

will be small with ε if

$$\sigma^2 = \bar{\sigma}^2(z) = \langle f^2(\cdot, z) \rangle \Phi(Y)$$

Therefore two choices:

- $\sigma^2 = \bar{\sigma}^2(Z_t)$ and $P_{BS} = P_{BS}(t, S_t; \bar{\sigma}(Z_t))$, in which case $\bar{\sigma}(Z_t)$ needs to be estimated continuously (and dP_{BS} revisited)

- $\sigma^2 = \bar{\sigma}^2(Z_0)$ and $P_{BS} = P_{BS}(t, S_t; \bar{\sigma}(Z_0))$ with

$$f^2(Y_s, Z_s) - \sigma^2 = (f^2(Y_s, Z_s) - \bar{\sigma}^2(Z_t)) + (\bar{\sigma}^2(Z_t) - \bar{\sigma}^2(Z_0))$$

in which case parameters are frozen at time zero, an additional cost of order $\sqrt{\delta}$ comes from the second term (offset in practice by re-calibration at $\sqrt{\delta}$-frequency).
Corrected Hedging Strategy

A careful analysis of the cost shows

\[E_0(t) = \frac{1}{2} \int_0^t e^{-rs} \left(f^2(Y_s, Z_s) - \bar{\sigma}^2(Z_t) \right) D_2 P_{BS}(s, S_s) ds \]

\[= \sqrt{\varepsilon} (B^\varepsilon_t + M^\varepsilon_t) + O(\varepsilon + \delta), \]

where \(M^\varepsilon_t \) is a martingale, and

\[B^\varepsilon_t = -\frac{\rho_1}{2} \int_0^t e^{-rs} \beta(Y_s) \frac{\partial \phi}{\partial y} f(Y_s, Z_s) D_1 D_2 P_{BS}(s, S_s) ds \]

is a bounded variation bias which can be compensated by using the corrected hedging ratio \(a_t \) given by

\[\partial_x P_{BS} + (T - t)V_3 \partial_x D_1 D_2 P_{BS} + (T - t)V_1 \partial_x D_1 \partial_\sigma P_{BS} \]

The last term compensates for the bias generated by \(\bar{\sigma}^2(Z_t) - \bar{\sigma}^2(Z_0) \)
Examples of other:

- Models
- Regimes
- Applications
A Model with Volatility Time-Scale of Order One

In the model $\sigma_t = f(Y_t, Z_t)$, if one wants to:

- keep Y fast mean-reverting
- let Z be on a time scale comparable to maturity (or add one such factor)
- keep the computational tractability

then, one needs to make sure that the SV model $\bar{\sigma}^2(Z_t)$ is tractable.
A Model with Volatility Time-Scale of Order One

In the model $\sigma_t = f(Y_t, Z_t)$, if one wants to:

- keep Y fast mean-reverting
- let Z be on a time scale comparable to maturity (or add one such factor)
- keep the computational tractability

then, one needs to make sure that the SV model $\bar{\sigma}^2(Z_t)$ is tractable.

An interesting choice is the **Heston model**:
“A Fast Mean-Reverting Correction to Heston Stochastic Volatility Model” with **Matthew Lorig** (PhD student, UCSB), where we develop this idea.

An example of fit
SPX Implied Volatilities from May 17, 2006
Fast Mean-Reverting SV and Short Maturities

If the time scale of the fast mean-reverting factor Y is $\varepsilon << 1$, and if the maturity of interest is small but still large compared with ε, then, one can consider the regime

$$\varepsilon << T \sim \sqrt{\varepsilon} << 1$$

It involves a non-trivial mixture of Large Deviation (short maturity) and Homogenization (fast mean reverting coefficient):

Interestingly, in this regime and for this model, we derive explicit formulas for the limiting implied volatility which looks like
Three parameters which control the implied volatility skew’s level (θ), slope (ρ) and convexity (ν/κ).

![Implied Volatility in the small-epsilon limit](image)
A Cool Application to Forward-Looking Betas

Discrete time CAPM model:

\[R_a - R_f = \beta_a (R_M - R_f) + \epsilon_a \]

Christoffersen, Jacobs, and Vainberg (2008, McGill University):

\[\beta_a = \left(\frac{\text{SKEW}_a}{\text{SKEW}_M} \right)^{\frac{1}{3}} \left(\frac{\text{VAR}_a}{\text{VAR}_M} \right)^{\frac{1}{2}} \]

where \(\text{VAR} \) and \(\text{SKEW} \) are variance and risk-neutral skewness
A Cool Application to Forward-Looking Betas

Discrete time CAPM model:

\[R_a - R_f = \beta_a (R_M - R_f) + \epsilon_a \]

Christoffersen, Jacobs, and Vainberg (2008, McGill University):

\[\beta_a = \left(\frac{SKEW_a}{SKEW_M} \right)^{\frac{1}{3}} \left(\frac{VAR_a}{VAR_M} \right)^{\frac{1}{2}} \]

where \(VAR \) and \(SKEW \) are variance and risk-neutral skewness

With Eli Kollman (PhD 2009, UCSB), we propose in

“Calibration of Stock Betas from Skews of Implied Volatilities”

(Applied Mathematical Finance, 2010):

\[\hat{\beta}_a = \left(\frac{V_{3,a,\epsilon}}{V_{3,M,\epsilon}} \right)^{1/3} = \left(\frac{a_{a,\epsilon}}{a_{M,\epsilon}} \right)^{1/3} \left(\frac{b^{a_*}}{b^{M_*}} \right) \]
LMMR fits (2/18/2009): S&P500 and Amgen, beta estimate is 1.03

![Graphs showing the relationship between LMMR and implied volatility for S&P 500 and AMGN.](image)
LMMR fits (2/19/2009): S&P500 and Goldman Sachs, beta estimate is 2.28
THANKS FOR YOUR ATTENTION