Exact Sampling of Jump-Diffusion Processes

Kay Giesecke and Dmitry Smelov
Management Science & Engineering
Stanford University
Jump-Diffusion Processes

- Ubiquitous in finance and economics
 - Price models: equity, commodity, rates, energy, FX
 - Default timing models (jump component)

- We develop a method for the exact sampling of a jump-diffusion process with state-dependent drift, volatility, jump intensity, and jump size
 - Leads to unbiased simulation estimators of derivative prices, risk measures, and other quantities

- The method extends an innovative acceptance/rejection scheme developed by Beskos & Roberts (2005, AAP) and Chen (2009) for diffusions
Jump-Diffusion

- Fix a filtered probability space \((\Omega, \mathcal{F}, \mathcal{F}, \mathbb{P})\)
- For suitable functions \(\mu\) and \(\sigma\), consider the SDE

\[
dX_t = \mu(X_t)dt + \sigma(X_t)dW_t + dJ_t
\]

where \(W\) is a standard Brownian motion and \(J\) is a jump process

\[
J_t = \sum_{n \leq N_t} c(X_{T_n^-}, Z_n)
\]

- \(N\) is a counting process with event times \((T_n)\) and intensity
 \(\lambda_t = \Lambda(X_{t^-})\) for a suitable function \(\Lambda\)
- \((Z_n)\) is a sequence of mark variables valued in \(E\)
- \(c : D_X \times E \rightarrow D_X\) determines the jump magnitudes

- \(J\) is self-exciting; dependence between jump sizes and frequency

Kay Giesecke
Jump-Diffusion

- For a suitable function f and a horizon T we wish to calculate

$$\mathbb{E}\{f(X_T, (J_t)_{t \leq T})\}$$

- Price of a derivative written on X_T
- Price of a credit derivative written on J

- Alternative approaches
 - Analytical solutions: rare; e.g. Merton and Kou models
 - Semi-analytical transform approaches: AJDs, LQJDs, Lévy
 - PIDE approaches: fewer restrictions
 - Monte Carlo simulation: perhaps the widest scope
Discretizing the Jump-Diffusion

Standard approach to simulating X

- X is approximated on a discrete-time grid
 - Euler or higher order scheme for diffusion component
 - Thinning or time-scaling scheme for jump times T_n

- Simulation estimator is biased
 - Magnitude of the bias? Confidence intervals?
 - Convergence of scheme?
 - Allocation of computational budget?
Discretizing the Jump-Diffusion

Time-scaling for jumps: $T_n \overset{d}{=} \inf\{t : \int_0^t \Lambda(X_s)ds \geq \mathcal{E}_1 + \cdots + \mathcal{E}_n\}$
Exact Sampling

• We provide an exact sampling scheme for X that avoids discretization entirely, and leads to unbiased simulation estimators

• First step: transform X into a unit-diffusion SDE
 - Lamperti transform $F(x) = \int_{X_0}^{x} \frac{1}{\sigma(u)} du$
 - Then $Y_t = F(X_t)$ solves
 \[dY_t = \alpha(Y_t) dt + dW_t + dJ^Y_t \]

where

\[\alpha(y) = \frac{\mu(F^{-1}(y))}{\sigma(F^{-1}(y))} - \frac{1}{2} \sigma'(F^{-1}(y)) \]

\[J^Y_t = \sum_{n \leq N_t} \Delta(Y_{T_n}, Z_n) \]

for $\Delta(y, z) = F(F^{-1}(y) + c(F^{-1}(y), z)) - y$
Exact Sampling

Assumptions

1. $\sigma(x)$ is bounded away from 0

2. $\mu(x)$ and $\Lambda(x)$ are continuously differentiable and $\sigma(x)$ is twice continuously differentiable.

3. Conditions on $\alpha(y)$ and $c(x, z)$ guaranteeing that Y does not reach the boundaries in finite time (known).
Acceptance/Rejection Scheme

- The exact method uses an A/R scheme
- Suppose we want to sample from a density $f(y)$ and there is another density $g(y)$ and a constant $c > 0$ such that

$$c \cdot \frac{f(y)}{g(y)} \leq 1$$

- A/R scheme
 1. Draw a sample Y from g
 2. Draw a Bernoulli variable I with success probability $c \cdot \frac{f(Y)}{g(Y)}$
 3. Accept Y as a sample from f if $I = 1$
A/R for Continuous Y

Beskos & Roberts (2005, AAP)

- We wish to sample Y_T using the A/R scheme
- Under Novikov and additional boundedness conditions,

$$\frac{f_{Y_T}(y)}{g(y)} \propto \mathbb{E} \left[\exp \left(- \int_0^T \phi(W_s) ds \right) \middle| W_T = y \right] =: H(y)$$

where $\phi = (\alpha' + \alpha^2)/2$ and $g(y)$ is a proposal density
- For the A/R step, note that $H(y) = \mathbb{P}(M_T = 0 \mid W_T = y)$ where M is a doubly-stochastic Poisson process with intensity $\phi(W_s)$
 - The Bernoulli indicator $\{I = 1\} = \{M_T = 0\}$ can be generated by sampling M_T given $W_T = Y$ with Y drawn from g
 - If $\phi(x) \leq \pi$, then this can be done by thinning a Poisson process with intensity π (requires sampling from BB)
A/R for Continuous Y

Localization: Chen (2009)
A/R for Continuous \(Y \)

Generating the first piece of \(Y \)

- Target exit time \(\zeta_1 = \inf\{t \geq 0 : |Y_t - Y_0| \geq L\} \) for \(L > 0 \)
- Proposal exit time \(\tau = \inf\{t \geq 0 : |W_t| \geq L\} \)
- The LR between \((\zeta_1, Y_1 - Y_0)\) and \((\tau, W_\tau)\) is proportional to

\[
\mathbb{E}\left[\exp\left(- \int_0^\tau \phi(Y_0 + W_s)ds \right) \mid \tau, W_\tau \right]
\]

- Because of the continuity assumptions, \(\phi(Y_0 + W_s) \) is bounded and thinning can always be used in the acceptance test
 - Need to sample from Brownian meander
- The density of \(\tau \) is known and can be sampled from using the method of Burq & Jones (2006)
A/R for Jump-Diffusion Y

Introducing jumps

![Diagram](image-url)
A/R for Jump-Diffusion Y

Generating the first piece of Y

1. Sample τ as before using a bound L. Suppose $\tau \leq T$.
2. Sample candidate jump times $(\sigma_1, \ldots, \sigma_n)$ of Y during $[0, \tau]$ from a Poisson process with intensity $\pi \geq \Lambda(F^{-1}(Y_0 + y))$, $y \in [-L, L]$.
3. Sample $(W_{\sigma_1}, \ldots, W_{\sigma_n}, W_\tau)$ from a Brownian meander.
4. Perform acceptance tests for the σ_i by drawing Bernoulli variables with success probabilities $\Lambda(F^{-1}(Y_0 + W_{\sigma_i}))/\pi$.
5. Perform acceptance test for $(\zeta_1, Y_{\sigma_1} - Y_0, \ldots, Y_{\sigma_k} - Y_0)$ given the proposal $(\tau, W_{\sigma_1}, \ldots, W_{\sigma_k})$, where σ_k is the first candidate jump time of Y accepted in the previous step.
6. If the skeleton is accepted, draw mark Z_1 and compute $Y_{T_1} = Y_{\sigma_k} + \Delta(Y_{\sigma_k}, Z_1)$.
A/R for Jump-Diffusion Y

Likelihood ratio

- The LR for the last acceptance test is proportional to

$$e^{A(Y_0+W_{\sigma_k})} \mathbb{E} \left[\exp \left(- \int_0^{\sigma_k} \phi(Y_0 + W_u) du \right) \middle| \tau, W_{\sigma_1}, \ldots, W_{\sigma_k} \right]$$

where $A(x) = \int_0^x \alpha(u) du$ and $\phi = (\alpha' + \alpha^2)/2$

- Generate Bernoulli indicator by generating the jump times of a doubly-stochastic Poisson process with intensity $\phi(Y_0 + W_u)$
 - Thinning applies
 - Sample from Brownian meander
Numerical examples

\[dX_t = (r + \Lambda(X_t))X_t dt + \sigma(X_t) dW_t + dJ_t \]

where \(X_0 > 0\) and for \(a > 0, b \geq 0, c \geq \frac{1}{2}\) and \(\beta < 0\)

- \(\Lambda(x) = b + ca^2 x^{2\beta}\) is the jump intensity
- \(\sigma(x) = ax^{\beta+1}\) is the volatility
- \(c(x, z) = -xz\) for \(z \in (0, 1)\) is the jump size

- The firm defaults at the first jump time \(T_1\) of \(J\)

- The default intensity \(\lambda = \Lambda(X)\) is unbounded

 - Violates boundedness hypothesis of thinning scheme for jumps
 (Glasserman & Merener (2003), Casella & Roberts (2010))
 - Convergence order of discretization scheme unknown
Numerical examples

- We are interested in X during $[0, T \wedge T_1]$ for some $T > 0$
- The target functional takes the form

$$f(X_T, (J_t)_{t \leq T}) = h_1(X_T)1_{\{J_T=0\}} + h_2(X_T)1_{\{J_T \neq 0\}}$$

Examples

- Probability of survival to T: $h_1(x) = 1$ and $h_2(x) = 0$
- European put with strike K and maturity T:
 $$h_1(x) = e^{-rT}(K - x)^+ \quad \text{and} \quad h_2(x) = Ke^{-rT}$$

- Carr & Linetsky (2006) provide analytical solutions to these and other quantities
Numerical examples

- We estimate the price of a European put on X
- We consider the RMSE $= \sqrt{\text{Bias}^2 + \text{SE}^2}$ for
 - The exact method, for which the bias is 0
 - The discretization method (Euler plus time-scaling for jumps)
 * The number of time steps is equal to the square root of the number of trials (Duffie & Glynn (1995))
 * The bias is estimated using 10 million trials
- Matlab implementation (favors discretization)
Numerical examples

\[X_0 = 50, \beta = -1, r = 0.05, a = 50/4, b = 0, c = 0.5, T = 1, \text{ strike } 5, \text{ analytical value } 0.1491 \]

<table>
<thead>
<tr>
<th>Method</th>
<th>Trials</th>
<th>Steps</th>
<th>Value</th>
<th>Bias</th>
<th>SE</th>
<th>RMSE</th>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact</td>
<td>10K</td>
<td>N/A</td>
<td>0.1417</td>
<td>0</td>
<td>0.00809</td>
<td>0.00809</td>
<td>36.19</td>
</tr>
<tr>
<td>Exact</td>
<td>20K</td>
<td>N/A</td>
<td>0.1363</td>
<td>0</td>
<td>0.00561</td>
<td>0.00561</td>
<td>74.75</td>
</tr>
<tr>
<td>Exact</td>
<td>40K</td>
<td>N/A</td>
<td>0.1522</td>
<td>0</td>
<td>0.00419</td>
<td>0.00419</td>
<td>150.52</td>
</tr>
<tr>
<td>Exact</td>
<td>100K</td>
<td>N/A</td>
<td>0.1487</td>
<td>0</td>
<td>0.00262</td>
<td>0.00262</td>
<td>416.07</td>
</tr>
<tr>
<td>Exact</td>
<td>500K</td>
<td>N/A</td>
<td>0.1495</td>
<td>0</td>
<td>0.00117</td>
<td>0.00117</td>
<td>1905.71</td>
</tr>
<tr>
<td>Euler</td>
<td>10K</td>
<td>100</td>
<td>0.1417</td>
<td>0.0019</td>
<td>0.00809</td>
<td>0.00831</td>
<td>26.72</td>
</tr>
<tr>
<td>Euler</td>
<td>20K</td>
<td>140</td>
<td>0.1496</td>
<td>0.0018</td>
<td>0.00587</td>
<td>0.00624</td>
<td>75.19</td>
</tr>
<tr>
<td>Euler</td>
<td>40K</td>
<td>200</td>
<td>0.1422</td>
<td>0.0008</td>
<td>0.00405</td>
<td>0.00413</td>
<td>215.75</td>
</tr>
<tr>
<td>Euler</td>
<td>100K</td>
<td>310</td>
<td>0.1531</td>
<td>0.0005</td>
<td>0.00265</td>
<td>0.00271</td>
<td>822.07</td>
</tr>
<tr>
<td>Euler</td>
<td>500K</td>
<td>707</td>
<td>0.1478</td>
<td>0.0004</td>
<td>0.00117</td>
<td>0.00123</td>
<td>9373.81</td>
</tr>
</tbody>
</table>
Numerical Examples

Convergence of RMSEs (log-log plot), strike $K = 5$
Numerical examples

\[X_0 = 50, \beta = -1, r = 0.05, a = 50/4, b = 0, c = 0.5, T = 1, \text{ strike 50, analytical value } 4.4118 \]

<table>
<thead>
<tr>
<th>Method</th>
<th>Trials</th>
<th>Steps</th>
<th>Value</th>
<th>Bias</th>
<th>SE</th>
<th>RMSE</th>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact</td>
<td>10K</td>
<td>N/A</td>
<td>4.3773</td>
<td>0</td>
<td>0.09309</td>
<td>0.09309</td>
<td>36.19</td>
</tr>
<tr>
<td>Exact</td>
<td>20K</td>
<td>N/A</td>
<td>4.2248</td>
<td>0</td>
<td>0.06512</td>
<td>0.06512</td>
<td>74.75</td>
</tr>
<tr>
<td>Exact</td>
<td>40K</td>
<td>N/A</td>
<td>4.4464</td>
<td>0</td>
<td>0.04781</td>
<td>0.04781</td>
<td>150.52</td>
</tr>
<tr>
<td>Exact</td>
<td>100K</td>
<td>N/A</td>
<td>4.4123</td>
<td>0</td>
<td>0.02996</td>
<td>0.02996</td>
<td>416.07</td>
</tr>
<tr>
<td>Exact</td>
<td>500K</td>
<td>N/A</td>
<td>4.4214</td>
<td>0</td>
<td>0.01344</td>
<td>0.01344</td>
<td>1905.71</td>
</tr>
<tr>
<td>Euler</td>
<td>10K</td>
<td>100</td>
<td>4.3198</td>
<td>0.0185</td>
<td>0.09345</td>
<td>0.09527</td>
<td>26.72</td>
</tr>
<tr>
<td>Euler</td>
<td>20K</td>
<td>140</td>
<td>4.451</td>
<td>0.0163</td>
<td>0.06742</td>
<td>0.06936</td>
<td>75.19</td>
</tr>
<tr>
<td>Euler</td>
<td>40K</td>
<td>200</td>
<td>4.3876</td>
<td>0.0157</td>
<td>0.04691</td>
<td>0.04946</td>
<td>215.75</td>
</tr>
<tr>
<td>Euler</td>
<td>100K</td>
<td>310</td>
<td>4.4464</td>
<td>0.0081</td>
<td>0.03031</td>
<td>0.03136</td>
<td>822.07</td>
</tr>
<tr>
<td>Euler</td>
<td>500K</td>
<td>707</td>
<td>4.3914</td>
<td>0.0039</td>
<td>0.01338</td>
<td>0.01394</td>
<td>9373.81</td>
</tr>
</tbody>
</table>
Numerical Examples

Convergence of RMSEs (log-log plot), strike $K = 50$
Extensions

• The target functional can take the form

\[\mathbb{E}\{f((X_t)_{t \in S}, (J_t)_{t \leq T})\} \]

for a discrete set \(S \) of times \(t \in [0, T] \)

– Treatment of certain path-dependent payoffs

• The intensity can take the form

\[\lambda_t = \Lambda(X_{t-}, J_{t-}, t) \]
Conclusions

• We develop a method for the exact sampling of a one-dimensional jump-diffusion process with state-dependent drift, volatility, jump intensity and jump size
 – Only mild conditions on the coefficients are required

• Numerical experiments indicate the advantages of the method over a conventional discretization scheme

• Future research
 – Efficiency: choice of localization bound
 – Extension to multiple dimensions: stochastic volatility with state-dependent jumps