Pricing and Hedging with Constant Elasticity and Stochastic Volatility

Sun-Yong Choi1 Jean-Pierre Fouque2 Jeong-Hoon Kim3

1,3Department of Mathematics
Yonsei University

2Department of Statistics and Applied Probability
University of California, Santa Barbara

6th World Congress of the Bachelier Finance Society
Toronto, Canada
Introduction

1. Introduction
 - Background
 - Purpose

2. Stochastic Volatility CEV
 - Dynamics
 - Characteristics
 - Corrected Price
 - Asymptotic theory

3. Numerical Implementation
 - P_0 and P_1
 - Implied Volatility

4. Conclusion

5. Bibliography
Drawback of Black Scholes Model

- Smile curve

- Rubinstein (1985)
- Jackwerth and Rubinstein (1996)
- In B.S. Model, Implied Volatility curve is flat.
- We need to use the implied volatility which explicitly depends on the option strike and maturity.
Local Volatility Model

One needs volatility to depend on underlying
Local Volatility Models

\[
\frac{dS_t}{S_t} = \mu(S_t, t)dt + \sigma(S_t, t)dW_t
\]

The dynamics of Implied Volatility in Local Volatility model.

This is opposite to real market. (Hagan, 2002)
CEV Model

- CEV (constant elasticity of variance) diffusion model
- X_t stock price s.t.

$$dX_t = \mu X_t dt + \sigma X_t^{\frac{\theta}{2}} dW_t$$

- Introduced by Cox and Ross (1976)

- Analytic tractability
CEV Model cont.

- When $\theta = 2$ the model is Black-Scholes case.
- When $\theta < 2$ volatility falls as stock price rises. ⇒ realistic, can generate a fatter left tail.
- When $\theta > 2$ volatility rise as stock price rises. ⇒ (futures option)
CEV Model cont.

Theorem (Lipton, 2001)

The call option price C_{CEV} for $X_t = x$ is given by

$$C_{CEV}(t, x) = e^{-r(T-t)} x \int_\tilde{K}^\infty \left(\frac{\tilde{x}}{y} \right)^{\frac{1}{2(2-\theta)}} e^{-(\tilde{x}+y)I_{\frac{1}{2-\theta}}(2\sqrt{\tilde{x}y})} dy$$

$$+ e^{-r(T-t)} K \int_\tilde{K}^\infty \left(\frac{y}{\tilde{x}} \right)^{\frac{1}{2(2-\theta)}} e^{-(\tilde{x}+y)I_{\frac{1}{2-\theta}}(2\sqrt{\tilde{x}y})} dy,$$

where

$$\tilde{x} = \frac{2xe^{r(2-\theta)(T-t)}}{(2-\theta)^2 \chi}, \quad \chi = \frac{\sigma^2}{(2-\theta)r} \left(e^{r(2-\theta)T} - e^{r(2-\theta)t} \right)$$

$$\tilde{K} = \frac{2K^{2-\theta}}{(2-\theta)^2 \chi}$$
Dynamics of Implied Volatility for CEV model

\[\theta = 1.9 \]
\[\theta = 2.1 \]
Outline

1. Introduction
 - Background
 - Purpose

2. Stochastic Volatility CEV
 - Dynamics
 - Characteristics
 - Corrected Price
 - Asymptotic theory

3. Numerical Implementation
 - P_0 and P_1
 - Implied Volatility

4. Conclusion

5. Bibliography
Stochastic Volatility CEV model

Underlying asset price Model X_t and Y_t

\[dX_t = \mu X_t dt + f(Y_t)X_t^{\theta} dW_t \]

\[dY_t = \alpha(m - Y_t) dt + \beta d\hat{Z}_t, \]

where $f(y)$ smooth function and the Brownian motion \hat{Z}_t is correlated with W_t such that

\[d<W, \hat{Z}>_t = \rho dt. \]

In terms of the instantaneous correlation coefficient ρ, we write

\[\hat{Z}_t = \rho W_t + \sqrt{1 - \rho^2} Z_t \]
Characteristics

- The new volatility is given by the multiplication of a function of a new process.
- The new process is taken to be an Ito process (O-U process):
 \[dY_t = \alpha(m - Y_t)dt + \beta d\hat{Z}_t. \]
- \(\alpha = \) rate of mean reversion.
 Assume that mean reversion is fast.
 So, \(\alpha \) is large enough.
Use Risk Neutral Valuation method

Equivalent martingale measure Q, Option price is given by the formula

$$P(t, x, y) = E^Q[e^{-r(T-t)}h(X_T)|X_t = x, Y_t = y]$$ (5)
Theorem 3.1

The option price $P(t, x, y)$ defined by (5) satisfies the Kolmogorov PDE

\[
P_t + \frac{1}{2} f^2(y) x^\theta P_{xx} + \rho \beta f(y) x^{\frac{\theta}{2}} P_{xy} + \frac{1}{2} \beta^2 P_{yy} \\
+ r x P_x + (\alpha (m - y) - \beta \Lambda(t, x, y)) P_y - rP = 0, \quad (6)
\]

where

\[
\Lambda(t, x, y) = \rho \frac{\mu - r}{f(y) x^{\frac{\theta-2}{2}}} + \sqrt{1 - \rho^2 \gamma(y)}.
\]
Asymptotic theory

- Develop an asymptotic theory on fast mean reversion
- Introduce a small parameter ϵ

$$\epsilon = \frac{1}{\alpha}$$

- Assume $\nu = \frac{\beta}{\sqrt{2\alpha}}$ is fixed in scale as ϵ become zero.

$$\alpha \sim O(\epsilon^{-1}), \quad \beta \sim O(\epsilon^{-1/2}), \quad \text{and} \quad \nu \sim O(1).$$
To solve the PDE (6), we use **Singular Perturbation** method.

Procedure

- Substituting the asymptotic series

\[P(x; \epsilon) \approx \sum_{n=0}^{\infty} \epsilon^n P_n(x) \]

into the differential equation.

- Expanding all quantities in a power series in \(\epsilon \).

- Collecting terms with same powers of \(\epsilon \) and equating them to zero.

- Solving this hierarchy of the problem sequentially.
Asymptotic theory

After rewritten in terms of ϵ, the PDE (6) becomes

$$
Pt + \frac{1}{2} f^2(y)x^\theta P_{xx} + \rho \frac{\sqrt{2} \nu}{\sqrt{\epsilon}} f(y)x^\theta P_{xy} + \frac{1}{2} \frac{2 \nu^2}{\epsilon} P_{yy} \\
+ rxP_x + \left(\frac{1}{\epsilon} (m - y) - \beta \frac{\sqrt{2} \nu}{\sqrt{\epsilon}} \Lambda(t, x, y) \right) P_y - rP = 0
$$

Collecting by ϵ order,

$$
\frac{1}{\epsilon} \left(\nu^2 P_{yy} + (m - y) P_y \right) + \frac{1}{\sqrt{\epsilon}} \left(\sqrt{2} \rho \nu f(y)x^\theta P_{xy} - \sqrt{2} \nu \Lambda P_y \right) \\
+ \left(P_t + \frac{1}{2} f^2(y)x^\theta P_{xx} + rxP_x - rP \right) = 0
$$
Define operators \mathcal{L}_0, \mathcal{L}_1, \mathcal{L}_2 as

\begin{align*}
\mathcal{L}_0 &= \nu^2 \partial_{yy}^2 + (m - y) \partial_y, \\
\mathcal{L}_1 &= \sqrt{2} \rho \nu f(y) x^\theta \partial_{xy}^2 - \sqrt{2} \nu \Lambda(t, x, y) \partial_y, \\
\mathcal{L}_2 &= \partial_t + \frac{1}{2} f(y)^2 x^\theta \partial_{xx}^2 + r(x \partial_x - \cdot).
\end{align*}

then, the PDE (6) can be written as

\[\left(\frac{1}{\epsilon} \mathcal{L}_0 + \frac{1}{\sqrt{\epsilon}} \mathcal{L}_1 + \mathcal{L}_2 \right) P^\epsilon = 0 \]
Asymptotic Expansion

Expand P^ϵ in powers of $\sqrt{\epsilon}$:

$$P^\epsilon = P_0 + \sqrt{\epsilon}P_1 + \epsilon P_2 + \cdots$$ \hspace{1cm} (11)

Here, the choice of the power unit $\sqrt{\epsilon}$ in the power series expansion was determined by the method of matching coefficient.
Substituting the PDE (10),

\[
\frac{1}{\epsilon} \mathcal{L}_0 P_0 + \frac{1}{\sqrt{\epsilon}} (\mathcal{L}_0 P_1 + \mathcal{L}_1 P_0) \\
+ (\mathcal{L}_0 P_2 + \mathcal{L}_1 P_1 + \mathcal{L}_2 P_0) + \\
\sqrt{\epsilon} (\mathcal{L}_0 P_3 + \mathcal{L}_1 P_2 + \mathcal{L}_2 P_1) + \cdots = 0,
\]

which holds for arbitrary $\epsilon > 0$.
Lemma 3.1

If solution to the Poisson equation

\[\mathcal{L}_0 \chi(y) + \psi(y) = 0 \]

exists, then the following centering (solvability) condition must satisfy \(\langle \psi \rangle = 0 \), where \(\langle \cdot \rangle \) is the expectation with respect to the invariant distribution of \(Y_t \). If then, solutions of (13) are given by the form

\[\chi(y) = \int_0^t E^y[\psi(Y_t)] \, dt + \text{constant}. \]

Note:

\[\langle \psi \rangle = \int_{-\infty}^{\infty} \psi(y) f(y) \, dy, \quad f(y) = \frac{1}{\sqrt{2\pi\nu^2}} \exp \left(-\frac{(y - m)^2}{2\nu^2} \right) \]
From the asymptotic expansion (12) $1/\epsilon$ order, we first have

$$\mathcal{L}_0 P_0 = 0. \quad (15)$$

Solving this equation yields

$$P_0(t, x, y) = c_1(t, x) \int_0^y e^{\frac{(m-z)^2}{2\nu^2}} dz + c_2(t, x)$$

for some functions c_1 and c_2 independent of y.

- $c_1 = 0$ is required.
- $P_0(t, x, y)$ must be a function of only t and x

$$P_0 = P_0(t, x).$$
Asymptotic Expansion cont.

- From the expansion (12) $1/\sqrt{\epsilon}$ order,

$$\mathcal{L}_0P_1 + \mathcal{L}_1P_0 = 0$$

- Known $\mathcal{L}_1P_0 = 0$
- Get $\mathcal{L}_0P_1 = 0$

$$P_1 = P_1(t, x) \quad (16)$$
The leading term $P_0(t, x)$ is given by the solution of the PDE

$$\frac{\partial P_1}{\partial t} + \frac{1}{2} < f^2 > x^\theta \frac{\partial^2 P_1}{\partial x^2} + r(x \frac{\partial P_1}{\partial x} - P_1) = 0 \quad (17)$$

with the terminal condition $P_0(T, x) = h(x)$.

Proof of Theorem 3.2

Proof
From the expansion (12), the PDE

\[\mathcal{L}_0 P_2 + \mathcal{L}_1 P_1 + \mathcal{L}_2 P_0 = 0 \] \hspace{1cm} (18)

Since \(\mathcal{L}_1 P_1 = 0 \), then

\[\mathcal{L}_0 P_2 + \mathcal{L}_2 P_0 = 0 \] \hspace{1cm} (19)

which is a Poisson equation.
Proof of Theorem 3.2 cont.

From Lemma 3.1 with $\psi = \mathcal{L}_2 P_0$, $P_0(t, x)$ has to satisfy the centering condition

$$<\mathcal{L}_2> P_0 = 0$$

with the terminal condition $P_0(T, x) = h(x)$, where

$$<\mathcal{L}_2> = \partial_t + \frac{1}{2} <f^2> x^\theta \partial_{xx}^2 + r(x\partial_x - \cdot).$$

Thus P_0 solves the PDE (17). \square
Asymptotic Expansion P_1 cont.

Theorem 3.3

The first correction $P_1(t, x)$ is given by the solution of the PDE

$$\frac{\partial P_1}{\partial t} + \frac{1}{2} \langle f^2 \rangle x^\theta \frac{\partial^2 P_1}{\partial x^2} + r(x \frac{\partial P_1}{\partial x} - P_1) =$$

$$V_3x \frac{\partial}{\partial x}(x^2 \frac{\partial^2 P_0}{\partial x^2}) + V_2x^2 \frac{\partial^2 P_0}{\partial x^2}$$

(21)

with the final condition $P_1(T, x) = 0$, where V_3 and V_2 are given by (22) and (23), respectively.
Asymptotic Expansion P_1

For convenience,

$$V_3(x; \theta) = \frac{\nu}{\sqrt{2}} \rho x^{\frac{\theta-2}{2}} <f \psi_y>, \quad (22)$$

$$V_2(x; \Lambda; \theta) = \frac{\nu}{\sqrt{2}} \left(\rho x^{\frac{\theta}{2}} <f \psi_{xy}> - <\Lambda \psi_y> \right), \quad (23)$$

where $\psi(t, x, y)$ is solution of the Poisson equation

$$\mathcal{L}_0 \psi = \nu^2 \psi_{yy} + (m - y) \psi_y = (f^2 - <f^2>) x^{\theta-2}. \quad (24)$$
Outline

1 Introduction
 - Background
 - Purpose

2 Stochastic Volatility CEV
 - Dynamics
 - Characteristics
 - Corrected Price
 - Asymptotic theory

3 Numerical Implementation
 - P_0 and P_1
 - Implied Volatility

4 Conclusion

5 Bibliography
\(\theta = 1.95 \text{ and } \epsilon = 0.01 \)

Line 1 = \(P_0 \), Line 2 = \(P_1 \), Line 3 = \(P_0 + \sqrt{\epsilon}P_1 \)
\(\theta = 2.00 \) and \(\epsilon = 0.01 \)

\[\theta_1 = 2.0, \epsilon = 0.01 \]

\(P_0(t, x) \) with \(K = 100, \ T = 1, \ \overline{\sigma} = 0.165, \) and \(r = 0.02. \) It is computed with terminal condition \(h(x) = (x - K)^+ \).
$\theta = 2.05$ and $\epsilon = 0.01$
\(\theta = 1.95 \), \(\theta = 1.95 \), \(\theta = 2.05 \)

Line 1: \(\theta = 1.95 \), Line 2: \(\theta = 1.95 \), Line 3: \(\theta = 2.05 \)
Dynamics of Implied Volatility ($\theta = 1.9$ and $\theta = 1.925$)

Line 1: $X_0 = 90$, Line 2: $X_0 = 95$, Line 3: $X_0 = 100$,
Line 4: $X_0 = 105$, Line 5: $X_0 = 110$
Dynamics of Implied Volatility ($\theta = 1.95$ and $\theta = 1.975$)
Dynamics of Implied Volatility ($\theta = 2.00$ and $\theta = 2.025$)
Dynamics of Implied Volatility ($\theta = 2.05$ and $\theta = 2.075$)
Remark

- Implied volatility curve move from left to right for $\theta \geq 1.975$.
- For $\theta \geq 2$, The implied volatility curve seems to be skew, unlike CEV model.
Outline

1 Introduction
 - Background
 - Purpose

2 Stochastic Volatility CEV
 - Dynamics
 - Characteristics
 - Corrected Price
 - Asymptotic theory

3 Numerical Implementation
 - P_0 and P_1
 - Implied Volatility

4 Conclusion

5 Bibliography
Conclusion

- Corrected Price (A new hybrid model)
- Right dynamics of Implied Volatility
- Stability of Hedging
- Still ongoing research (Fitting to Market Data)
Outline

1. Introduction
 - Background
 - Purpose

2. Stochastic Volatility CEV
 - Dynamics
 - Characteristics
 - Corrected Price
 - Asymptotic theory

3. Numerical Implementation
 - P_0 and P_1
 - Implied Volatility

4. Conclusion

5. Bibliography

Patrick S. Hagan, Deep Kumar. Andrew S. Lesniewski, Diana E. Woodward : Managing Smile Risk
Thank you for your attention!