Perpetual Cancellable Call Option

Thomas J. Emmerling
University of Michigan

Bachelier Finance Society: Sixth World Congress

June 25, 2010
Outline

Game Options
 Complete Market Valuation
 Optimal Policies

Perpetual Cancellable Call Option
 Previous results: Perpetual Cancellable Put Option
 Valuation
 Conclusions
The current financial crisis has highlighted the importance of adequately hedging risk and limiting downside losses.

Hedging:
- Modeling fluctuations in value under changes in market factors (X, σ, etc) and constructing offsetting positions in tradable assets.

Another way is to build extra features, such as cancellation, into the derivative specifications.
Consider an American-style derivative with a cancellation feature given to the writer of the contract.

At any point during the life of the contract, the writer can force the holder to take the current payoff plus a small additional amount as compensation for terminating the contract.
Game Option

- Consider an American-style derivative with a cancellation feature given to the writer of the contract.

- At any point during the life of the contract, the writer can force the holder to take the current payoff plus a small additional amount as compensation for terminating the contract.

- We refer to this as a Game option.
Game Option

- Contract: Seller A Buyer B

- B can *exercise* at any time t.
 \[A \xrightarrow{Y_t} B \]

- A can *cancel* at any time t.
 \[A \xrightarrow{Y_t+\delta_t} B \]

- Two optimal stopping problems: Optimal Exercise Time and Optimal Cancellation Time.

- What is the fair price V that B should pay to A for the contract? What are the optimal exercise and cancellation times for this game option?
In this setting, valuation corresponds to solving a zero-sum optimal stopping game between two players.

For cancellation policy τ and exercise policy σ the payoff of the claim is

$$R(\sigma, \tau) := (Y_{\tau} + \delta_{\tau})1_{\{\tau < \sigma\}} + Y_\sigma 1_{\{\sigma \leq \tau\}}$$
Valuation: Complete Markets

- In this setting, valuation corresponds to solving a zero-sum optimal stopping game between two players.

- For cancellation policy τ and exercise policy σ the payoff of the claim is

$$R(\sigma, \tau) := (Y_\tau + \delta_\tau)1_{\{\tau < \sigma\}} + Y_\sigma 1_{\{\sigma \leq \tau\}}$$

- Kifer (2000) shows the fair price is

$$V_t = \inf_{\tau \in S_t, T} \sup_{\sigma \in S_t, T} \mathbb{E}[e^{-r(\sigma \land \tau - t)} R(\sigma, \tau) | F_t]$$

$$= \sup_{\sigma \in S_t, T} \inf_{\tau \in S_t, T} \mathbb{E}[e^{-r(\sigma \land \tau - t)} R(\sigma, \tau) | F_t]$$

- Basic Price Bound: $Y_t \leq V_t \leq Y_t + \delta_t$.

Optimal Policies

- What are the ‘optimal’ σ, τ stopping times?

i.e. What policies achieve the infimum and supremum?

$$\sigma_t^* := \inf \{s \geq t : V_s = Y_s\}$$
$$\tau_t^* := \inf \{s \geq t : V_s = Y_s + \delta_s\}$$

- These stopping times are also ‘optimal’ exercise dates.
 - The holder waits until the value drops to the exercise value.
 - The writer waits until the value reaches the cancellation value.
Perpetual Cancellable Call Option

- Let the risky asset X satisfy the following risk-neutralized evolution

$$dX_t = (r - d)X_t \, dt + \sigma X_t \, dW_t$$

- Suppose $T = \infty$ and consider the following:

$$Y_t = (X_t - K)^+; \quad \delta_t = \delta > 0$$

- We call this a *Perpetual Cancellable Call Option* or simply a *δ-penalty call option*.
Valuation of δ-penalty Put Option

Completed by Kyprianou (2004):

- Value function identified explicitly.
- Optimal Stopping times (for δ small):

$$\sigma^* := \inf \{ t \geq 0 : X_t = k^* \}$$
$$\tau^* := \inf \{ t \geq 0 : X_t = K \}$$

Does the valuation of a Call Option with dividend $d > 0$ follow symmetrically to this result?
Optimal Policies for Perpetual American Call?

Figure: Possible Exercise and Cancellation Barriers
Valuation: \(r \leq d \)

Conjecture: Value function satisfies for \(x \in (0, K) \),

\[
\mathcal{L} V - r V = 0
\]

\[
V(K) = \delta, \quad \lim_{x \downarrow 0} V(x) = 0
\]

and for \(x \in (K, k^*) \),

\[
\mathcal{L} V - r V = 0
\]

\[
V(K) = \delta, \quad V(k^*) = (k^* - K)^+, \quad V_x(k^*) = 1,
\]

where

\[
\mathcal{L} := (r - d)x \frac{d}{dx} + \frac{1}{2}\sigma^2 x^2 \frac{d^2}{dx^2}
\]
Valuation: \(r \leq d \)

Proof: Let \(v(x) \) be the proposed value function.

\[
v(x) \leq \inf_{\tau \in S_{0,\infty}} \mathbb{E}_x \left[e^{-r(\tau \wedge \sigma_k^*)} v(X_{\tau \wedge \sigma_k^*}) \right]
\]

\[
\leq \inf_{\tau \in S_{0,\infty}} \mathbb{E}_x \left[e^{-r(\tau \wedge \sigma_k^*)} (X_{\sigma_k^*} - K)^+ 1\{\sigma_k^* \leq \tau\} \right]
+ ((X_\tau - K)^+ + \delta) 1\{\tau < \sigma_k^*\})]
\]

\[
\leq \sup_{\sigma \in S_{0,\infty}} \inf_{\tau \in S_{0,\infty}} \mathbb{E}_x \left[e^{-r(\tau \wedge \sigma)} (X_{\sigma} - K)^+ 1\{\sigma \leq \tau\} \right]
+ ((X_\tau - K)^+ + \delta) 1\{\tau < \sigma\})]
\]

\[
\leq \sup_{\sigma \in S_{0,\infty}} \mathbb{E}_x \left[e^{-r(\tau_k \wedge \sigma)} (X_{\sigma} - K)^+ 1\{\sigma \leq \tau_k\} \right]
+ ((X_{\tau_k} - K)^+ + \delta) 1\{\tau_k < \sigma\})]
\]

\[
\leq \sup_{\sigma \in S_{0,\infty}} \mathbb{E}_x \left[e^{-r(\tau_k \wedge \sigma)} v(X_{\tau_k \wedge \sigma}) \right]
\leq v(x)
\]
Value function: $r \leq d$

Conclusion:

$$V(x) = \begin{cases}
 x - K & \text{if } x \in [k^*, \infty) \\
 g(x) & \text{if } x \in (K, k^*) \\
 \delta \left(\frac{x}{K} \right)^{\frac{\lambda}{\sigma} - \kappa} & \text{if } x \in (0, K)
\end{cases}$$

$$g(x) := (k^* - K) \left(\frac{k^*}{x} \right)^\kappa \frac{(K/x) - \frac{\lambda}{\sigma} - (K/x)^{\frac{\lambda}{\sigma}}}{(k^*/K)^{\frac{\lambda}{\sigma}} - (k^*/K)^{-\frac{\lambda}{\sigma}}} + \delta \left(\frac{K}{x} \right)^\kappa \frac{(k^*/x)^{\frac{\lambda}{\sigma} - (k^*/x)^{-\frac{\lambda}{\sigma}}}}{(k^*/K)^{\frac{\lambda}{\sigma}} - (k^*/K)^{-\frac{\lambda}{\sigma}}}$$
Value function $r \leq d$

\begin{figure}
\centering
\includegraphics[width=\textwidth]{convex_value_function.png}
\caption{Convex value function.}
\end{figure}
Valuation: $r > d$

Conjecture: Why not same as before?
Valuation: $r > d$

Conjecture: Why not same as before?
- $v(x)$ violates basic inequality

 $$ (x - K)^+ \leq v(x) \leq (x - K)^+ + \delta $$

Figure: $v(x)$ (dark blue) violates upper bound.
Valuation: $r > d$

New Conjecture: Value function satisfies

for $x \in (0, K)$,

$$\mathcal{L} V - rV = 0$$

$$V(K) = \delta, \quad \lim_{x \downarrow 0} V(x) = 0$$

and for $x \in (h^*, k^*)$,

$$\mathcal{L} V - rV = 0,$$

$$V(h^*) = (h^* - K)^+ + \delta, \quad V_x(h^*) = 1,$$

$$V(k^*) = (k^* - K)^+, \quad V_x(k^*) = 1$$
Valuation: $r > d$

Proof:

$v(x) \geq \sup_{\sigma \in {S_0, \infty}} \mathbb{E}_x [e^{-r(\sigma \wedge \tau_{[K, h^*]})} \{((X_{\tau_{[K, h^*]}^\tau} - K)^{+} + \delta)1\{\tau_{[K, h^*]} < \tau\}] + (X_\sigma - K)^{+}1\{\sigma \leq \tau_{[K, h^*]}\}]$

$\geq \inf_{\tau \in {S_0, \infty}} \sup_{\sigma \in {S_0, \infty}} \mathbb{E}_x [e^{-r(\sigma \wedge \tau)} \{((X_{\tau} - K)^{+} + \delta)1\{\tau < \sigma\}] + (X_\sigma - K)^{+}1\{\sigma \leq \tau\}]$

$\geq \sup_{\sigma \in {S_0, \infty}} \inf_{\tau \in {S_0, \infty}} \mathbb{E}_x [e^{-r(\sigma \wedge \tau)} \{((X_{\tau} - K)^{+} + \delta)1\{\tau < \sigma\}] + (X_\sigma - K)^{+}1\{\sigma \leq \tau\}]$

$\geq v(x)$

where $\tau_{[K,k^*]} := \inf\{ t \geq 0 : K \leq X_t \leq h^*\}$.
Value function: $r > d$

Conclusion:

$$V(x) = \begin{cases}
 x - K & \text{if } x \in [k^*, \infty) \\
 (k^* - K)^+ & \mathbb{E}_x[e^{-r\sigma_{k^*}}1\{\sigma_{k^*} \leq \tau_{[K, h^*]}\}] \\
 + ((h^* - K)^+ + \delta) & \mathbb{E}_x[e^{-r\tau_{[K, h^*]}1\{\tau_{[K, h^*]} < \sigma_{k^*}\}}] \\
 (x - K) + \delta & \text{if } x \in (h^*, k^*) \\
 \delta & \mathbb{E}_x[e^{-r\tau_{[K, h^*]}}] \\
 \delta & \mathbb{E}_x[e^{-r\tau_{[K, h^*]}}] \\
\end{cases}$$

where

$$\tau_{[K, k^*]} := \inf\{t \geq 0 : K \leq X_t \leq h^*\}$$

$$\sigma_{k^*} := \inf\{t \geq 0 : X_t \geq k^*\}$$
Value function $r > d$

Figure: Non-convex value function.
Some Implications

- Game Options with convex underlying payoffs are not necessarily convex.
- Subsequently, game option prices are not always increasing in the volatility parameter σ.

i.e., Vega can be negative,

$$\frac{\partial V(x)}{\partial \sigma} < 0, \text{ for some } x \text{ values.}$$
Thank You!

Thank you very much for your attention!
Some References

