MULTIVARIATE EXTENSION OF PUT-CALL SYMMETRY

Michael Schmutz

joint work with I. Molchanov

University of Bern, Switzerland
Barrier-contingent claims

- $S_t = (S_{01}e^{t\lambda_1}e^{\xi_{t1}}, \ldots, S_{0n}e^{t\lambda_n}e^{\xi_{tn}}), \ t \in [0, T]$
 \((\lambda_1, \ldots, \lambda_n \text{ — deterministic carrying costs})\)

- $S_T = F\eta = (F_1\eta_1, \ldots, F_n\eta_n)$

Barrier-contingent claim:

$$X = f(S_T)\mathbb{I}\{\ldots\} = f(F\eta)\mathbb{I}\{\ldots\}$$

where $\mathbb{I}\{\ldots\}$ is the indicator of some barrier event and f is some payoff function, e.g. $(k > 0)$

$$f(S_T) = (w_1F_1\eta_1 + \cdots + w_nF_n\eta_n - k)_+,$$

$$f(S_T) = (\max(w_1F_1\eta_1, \ldots, w_nF_n\eta_n) - k)_+,$$

$$f(S_T) = (w_1F_1\eta_1 + \cdots + w_nF_n\eta_n)_+.$$
Well-known classic European put-call symmetry (holding for certain models)

\[E(F\eta - k)_{+} = E(F - k\eta)_{+} \quad \text{for every } k \geq 0. \]

In view of that, consider

- \(\eta = (\eta_1, \ldots, \eta_n), (1, \eta_1, \ldots, \eta_n) \) — random price changes
- \(f(\eta) \) — payoff function (forward prices are included in the payoff functions)
- Discussion: In which case is \(E_Q f(\eta) \) invariant with respect to swaps of its arguments (expectation w.r.t. martingale measure)?

Main application: Semi-static hedging of certain barrier-contingent claims, i.e. the replication of these contracts by trading European-style claims at no more than two times after inception.
Some historic remarks

- *Bates’ rule:*

- *Semi-static hedge* of barrier options (based on J. Bowie and P. Carr):
 (a call option at the barrier can be converted in certain put options)

- *Lévy markets:*

- *Multiasset case:*
Duality principle alone does not suffice

For the duality principle, see Eberlein, Papapantoleon & Shiryaev 2008, 2009 and the literature cited therein.

Since $\mathbb{E}_Q \eta = 1$, define

$$\frac{d\tilde{Q}}{dQ} = \eta.$$

With $\tilde{\eta} = \eta^{-1}$

$$\mathbb{E}_Q (H\eta - k)_+ = \mathbb{E}_Q \eta^{-1} (H\eta - k)_+ = \mathbb{E}_{\tilde{Q}} (H - k\tilde{\eta})_+$$

$$= kH^{-1} \mathbb{E}_{\tilde{Q}} (H^2 k^{-1} - H\tilde{\eta})_+.$$

Need

$$\mathbb{E}_Q (H\eta - k)_+ = kH^{-1} \mathbb{E}_Q (H^2 k^{-1} - H\eta)_+$$

(resp. equivalent properties) for symmetry based semi-static hedges.
Most important multivariate functions

- Basket option $\mathbb{E}_Q \left(u_0 + u_1 \eta_1 + \cdots + u_n \eta_n \right)_+$
 function of $(\eta_0 = 1, \eta_1, \ldots, \eta_n)$

- Calls (puts) on maximum/minimum, e.g.
 $$\mathbb{E}_Q \left(\max(u_1 \eta_1, \ldots, u_n \eta_n) - u_0 \right)_+$$

 for our symmetry analysis can be replaced by
 $$\mathbb{E}_Q \max(u_0, u_1 \eta_1, \ldots, u_n \eta_n)$$

- Exchange option $\mathbb{E}_Q \left(u_1 \eta_1 + \cdots + u_n \eta_n \right)_+$
Characterisation of distributions

- Breeden & Litzenberger (1978): the prices of all call (resp. put) options determine the distribution of the single underlying.

- The prices of all basket options determine the multiasset distribution
 Carr & Laurence — absolutely continuous case;
 the general case is implicit in Henkin & Shananin, Koshevoy & Mosler.
• The same holds for all options on the maximum (weighted)
 \[\max(u_0, u_1 \eta_1, \ldots, u_n \eta_n) \] or minimum \[\min(u_0, u_1 \eta_1, \ldots, u_n \eta_n) \].

• The same holds for calls (puts) on maximum/minimum, e.g.
 \[(\min(u_1 \eta_1, \ldots, u_n \eta_n) - u_0)^+ . \]

Does not hold for exchange options \((u_1 \eta_1 + \cdots + u_n \eta_n)_+ \).
Information in exchange options

Let $\eta = e^\xi$ and $\eta^* = e^{\xi^*}$ be integrable random vectors. Then

$$E(\langle u, \eta \rangle)_+ = E(\langle u, \eta^* \rangle)_+ \quad \text{for all } u \in \mathbb{R}^n$$

if and only if

$$\varphi_\xi(u - \iota w) = \varphi_{\xi^*}(u - \iota w) \quad (1)$$

for all $u \in \mathbb{H}$, where

$$\mathbb{H} = \{ u \in \mathbb{R}^n : \sum_{k=1}^{n} u_k = 0 \},$$

and for at least one (and then necessarily for all) w, such that $\sum w_i = 1$ and both sides in (1) are finite.

Infinitely divisible case: (1) can be expressed via the Lévy triplet.
Consequences

• Prices of all basket options determine the prices of all European options (depending on the same assets, with the same maturity).

• Prices of all exchange options determine them for a certain class of payoff functions.
Symmetries of multivariate option prices functions

• Basket option \(E_Q \left(u_0 + u_1 \eta_1 + \cdots + u_n \eta_n \right)_+ \)
 (swap \(u_0 \) and \(u_i \)) — \(\eta \) is \(i \)-self-dual (for all \((u_0, u) \in \mathbb{R}^{n+1} \))

• Option on the maximum \(E_Q \max(u_0, u_1 \eta_1, \ldots, u_n \eta_n) \)
 (swap \(u_0 \) and \(u_i \)) — \(\eta \) is \(i \)-self-dual (for all \((u_0, u) \in \mathbb{R}^{n+1} \))

• Exchange option \(E_Q \left(u_1 \eta_1 + \cdots + u_n \eta_n \right)_+ \)
 (swap \(u_i \) and \(u_j \) with \(u_0 = 0 \)) — \(\eta \) is \(i,j \)-swap-invariant
 (for all \(u \in \mathbb{R}^n \))
Characterisation of self-dual distributions

Integrable \(\eta \) is \(i \)-self-dual if and only if e.g.

- \(\mathbb{E} f(\eta) = \mathbb{E}[f(\kappa_i(\eta))\eta_i] \) for all integrable payoffs \(f \), where

\[
\kappa_i(x) = \left(\frac{x_1}{x_i}, \ldots, \frac{x_{i-1}}{x_i}, \frac{1}{x_i}, \frac{x_{i+1}}{x_i}, \ldots, \frac{x_n}{x_i} \right).
\]

- The distribution of \(\eta \) under \(Q \) coincides with the distribution of \(\kappa_i(\eta) \) under \(Q^i \), where

\[
\frac{dQ^i}{dQ} = \eta_i.
\]

- If \(\eta \) is absolutely continuous,

\[
p_\eta(x) = x_i^{-n-2}p_\eta(\kappa_i(x)) \text{ a.e.}
\]
• Characterisation in terms of the distribution of \(\xi = \log \eta \)

\[
\varphi_\xi\left(u - \frac{1}{2} e_i\right) = \varphi_\xi\left(K_i^\top u - \frac{1}{2} e_i\right), \quad u \in \mathbb{R}^n,
\]

where

\(K_i x = (x_1 - x_i, \ldots, x_{i-1} - x_i, -x_i, x_{i+1} - x_i, \ldots, x_n - x_i) \),

(some other equivalent complex shifts are also possible).

Infinitely divisible case: This characterisation can be expressed via the Lévy triplet.
PCS in the one asset case

• Classic European put-call symmetry is equivalent to many other definitions.

• Almost any tail behaviour is possible.

• η has a non-negative skewness and for infinitely divisible $\xi = \log \eta$, ξ has non-positive skewness.

• For much more, see Carr and Lee 2009 and the literature cited therein.
Swap-invariance and PCS

Integrable η is called ij-swap-invariant if

$$E_Q(u_1\eta_1 + \cdots + u_n\eta_n)^+, \ u \in \mathbb{R}^n,$$

is π_{ij}-invariant (swap u_i and u_j).

Integrable η is ij-swap-invariant if and only if the $(n - 1)$-dimensional random vector

$$\tilde{\kappa}_j(\eta) = \left(\frac{\eta_1}{\eta_j}, \ldots, \frac{\eta_{j-1}}{\eta_j}, \frac{\eta_{j+1}}{\eta_j}, \ldots, \frac{\eta_n}{\eta_j} \right)$$

is self-dual with respect to the ith component under Q^j.

Characterisation

An integrable random vector $\eta = e^\xi$ is ij-swap-invariant if and only if the characteristic function of ξ satisfies

$$\varphi_\xi(u - \frac{1}{2} e_{ij}) = \varphi_\xi(\pi_{ij} u - \frac{1}{2} e_{ij})$$

for all

$$u \in H = \{ u \in \mathbb{R}^n : \sum_{k=1}^{n} u_k = 0 \},$$

where $e_{ij} = e_i + e_j$ (many equivalent complex shifts).

Infinitely divisible case: This characterisation can be expressed via the Lévy triplet.
Examples

- **Black-Scholes** case: *Each bivariate* risk-neutral log-normal distribution is swap-invariant, no matter what volatilities of the assets and correlation are.
- The considerable effective degrees of freedom for modelling two assets based on dependent **generalised hyperbolic Lévy processes** only slightly decrease if we ensure that the bivariate swap-invariance property holds.
- Etc.
Example: Certain knock-out Margrabe \((n = 2) \)

- **Payoff**

\[
X_{sw} = (S_{T1} - S_{T2}) + \mathbb{I}_{c > \frac{S_{t2}}{S_{t1}}} \forall t \in [0, T]
\]

with \(c \geq 1, 0 < \frac{S_{02}}{S_{01}} < c \), and (for simplicity) assume

\[
(S_{t1}, S_{t2}) = (S_{01} e^{\lambda t} e^{\xi_{t1}}, S_{02} e^{\lambda t} e^{\xi_{t2}}), (\xi_{t1}, \xi_{t2}), t \in [0, T],
\]

is a Brownian motion with drift and non singular covariance matrix

\[
\mu = -\left(\frac{\sigma_1^2}{2}, \frac{\sigma_2^2}{2} \right) \quad \text{and} \quad \Sigma = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}.
\]

- **Hedge portfolio:**
 - long position in the Margrabe option with payoff function
 \[
 (S_{T1} - S_{T2})_+,
 \]
 - short position in the weighted Margrabe option with payoff function
 \[
 (c^{-1}S_{T2} - cS_{T1})_+.
 \]
Verification of the hedge

• If the barrier is not hit, then \(cS_{t_1} > S_{t_2} \) for all \(t \); the short position
 \((c^{-1}S_{T_2} - cS_{T_1})_+ \) expires worthless and the long position
 \((S_{T_1} - S_{T_2})_+ \) replicates the option.

• If \(cS_{\tau_1} = S_{\tau_2} \), then the values of these two options at time \(\tau \) are
 identical.
Problems with carrying costs

Write
\[e^\lambda \eta = (e^{\lambda_1 + \xi_1}, \ldots, e^{\lambda_n + \xi_n}), \]
where \(\lambda_i = r - q_i \) (\(q_i \)-dividend yield), \(i = 1, \ldots, n \) (and for simplicity of notation \(T = 1 \)).

The problem in self-dual cases

- For applications usually \(\mathbb{E} e^{\xi_j} = 1, j = 1, \ldots, n \).
- Multiplication by \(e^{\lambda_i}, \lambda_i \neq 0 \), moves the expectation away from one.
- \(e^{\lambda + \xi} \) self-dual with respect to the \(i \)th coordinate \(\Rightarrow \mathbb{E} e^{\lambda_i + \xi_i} = 1 \).
- For semi-static hedging, symmetry is rather needed in \(e^{\lambda + \xi} \) than in \(e^\xi \).
Quasi-self-duality

$\eta = e^\xi$ is quasi-self-dual (with respect to the ith coordinate) if there exist $\lambda \in \mathbb{R}^n$ and $\alpha \neq 0$ such that $(e^{\lambda+i}\xi)^\alpha$ is integrable and self-dual with respect the ith coordinate.

Univariate power-transform: Carr and Lee (2009), based on earlier work of Carr and Chou.

For the multivariate case

$$E[f(S_T)]$$

$$= E\left[f\left(\frac{S_{0i}}{S_{Ti}}(S_{T1}, \ldots, S_{T(i-1)}, S_{0i}, S_{T(i+1)}, \ldots, S_{Tn})\right)\left(\frac{S_{Ti}}{S_{0i}}\right)^\alpha\right],$$

eqc

A similar extension to quasi-swap-invariance is known (useful for non-equal carrying costs).
Finding α in infinitely divisible cases

To ensure that $\mathbb{E} \eta_i = 1$ the value α must satisfy

$$a_{ii} \alpha = a_{ii} - 2\lambda_i + 2 \int_{\mathbb{R}^n} (e^{x_i} - 1 - x_i e^{\frac{\alpha}{2} x_i} 1_{\|x\| \leq 1}) d\nu(x),$$

where $\|x\|^2 = \frac{1}{2} (\|x\|^2 + \|K_i x\|^2)$.

Usually not easy to solve (even for $n = 1$) and solution(s) may not exist.

There are some friendly special cases.
References

See also

 Math. Finance

- Self-duality and geometry: *I. Molchanov and M. Schmutz*, *Geometric extension of put-call symmetry in the multiasset setting*, 2008
 ArXiv math.PR/0806.4506
• I. Molchanov and M. Schmutz, Exchangeability type properties of asset prices, 2010
 Submitted.

• M. Schmutz, Semi-static hedging for certain Margrabe type options with barriers, 2008
 ArXiv math.PR/0810.5146
 Extended version: to appear 2010
 Quant. Finance