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Ingredients of Talk: LMIs and Convexity

A Linear Pencil is a matrix valued function L of the form

L(x) := L0 + L1x1 + · · ·+ Lgxg,

where L0, L1, L2, · · · , Lg are symmetric matrices and
x := {x1, · · · , xg} are g real parameters.

A Linear Matrix Inequality (LMI) is one of the form:

L(x) � 0 means L(x) is PosDef.

Normalization: a monic LMI is one with L0 = I.

The set of solutions

G := {(x1, x2, · · · , xg) : L0 + L1x1 + · · ·+ Lgxg � 0}

is a convex set. Solutions can be found numerically for
problems of modest size. This is called

Semidefinite Programming SDP
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Ingredients of Talk: Noncommutative polynomials

x = (x1, · · · , xg) algebraic noncommuting variables

Noncommutative polynomials: p(x):

Eg. p(x) = x1x2 + x2x1

Evaluate p: on matrices X = (X1, · · ·Xg) a tuple of matrices.

Substitute a matrix for each variable x1 → X1, x2 → X2

Eg. p(X) = X1X2 + X2X1.

Noncommutative inequalities: p is positive means:

p(X) is PSD for all X



Outline

Ingredients: Polynomials and LMIs with Matrix Unknowns

Linear Systems give NonCommutative Polynomial Inequalities

Dimension Free Convexity vs NC LMIs

Comparison to LMIs in Scalar Unknowns

Free RAG
Convex Positivstellensatz
Randstellensatz for Defining Polynomials



Examples of NC Polynomials

The Ricatti polynomial

r((a, b, c), x) = −xbTbx + aTx + xa + c

Here m = (a, b, c) and x = (x).

Evaluation of NC Polynomials
r is naturally evaluated on a 1 + 3 = 4 tuple of matrices

M = (A,B,C) ∈ (Rn×n)3 X = (X) ∈ Sn×n

r((A,B,C),X) = −XBTBX + ATX + XA + C ∈ Sn(R).

Note that the form of the Riccati is independent of n.



POLYNOMIAL MATRIX INEQUALITIES

Polynomial or Rational function of matrices are PosSDef.
Example: Get Riccati expressions like

AX + XAT − XBBTX + CCT � 0

OR Linear Matrix Inequalities (LMI) like

(
AX + XAT + CTC XB

BTX I

)
� 0

which is equivalent to the Riccati inequality.
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dx(t)
dt = Ax(t) + Bv(t)

y(t) = Cx(t) + Dv(t)

A,B,C,D are matrices
x, v, y are vectors

Asymptotically stable ‖
‖
Re(eigvals(A)) ≺ 0 ⇐⇒
ATE + EA ≺ 0 E � 0

Energy dissipating

G : L2→ L2

∫ T

0

|v|2dt ≥
∫ T

0

|Gv|2dt
x(0) = 0

‖
‖
‖
‖
‖
‖
‖

∃ E = ET � 0

H := ATE + EA+

+EBBTE + CTC � 0

E is called a storage function

Two minimal systems

[A,B,C,D] and [a, b, c, d]

with the same input
to output map.

‖
‖
‖
‖
‖
‖

∃M invertible, so that

MAM−1 = a

MB = b

CM−1 = c

Every state is reachable

from x = 0

‖
‖
‖

(B AB A2B · · ·) : `2→ X
is onto



Linear Systems Problems→ Matrix Inequalities

-L2

- Given
- L2

-

�� Find

Many such problems Eg. H∞ control

The problem is Dimension free: since it is given only by signal
flow diagrams and L2 signals.

A Dim Free System Prob is Equivalent to Noncommutative
Polynomial Inequalities

Example:
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GET ALGEBRA --

-

Given
A,B1,C1,D

B2,C2

-

-

� �Find
a b c

D =

(
0 1
1 0

)

DYNAMICS of “closed loop” system: BLOCK matrices

A B C D

ENERGY DISSIPATION:

H := ATE + EA+ EBBTE + CTC � 0

E =

(
E11 E12

E21 E22

)
E12 = E21

T

H =

(
Hxx Hxy

Hyx Eyy

)
Hxy = HT

yx



H∞ Control

ALGEBRA PROBLEM:
Given the polynomials:
Hxx = E11 A + AT E11 + CT

1 C1 + E12
T b C2 + CT

2 bT E12
T +

E11 B1 bT E12
T + E11 B1 BT

1 E11 + E12 b bT E12
T + E12 b BT

1 E11

Hxz = E21 A + aT (E21+E12
T)

2
+ cT C1 + E22 b C2 + cT BT

2 E11
T +

E21 B1 bT (E21+E12
T)

2
+ E21 B1 BT

1 E11
T + E22 b bT (E21+E12

T)
2

+ E22 b BT
1 E11

T

Hzx = AT E21
T + CT

1 c + (E12+E21
T) a

2
+ E11 B2 c + CT

2 bT E22
T +

E11 B1 bT E22
T + E11 B1 BT

1 E21
T + (E12+E21

T) b bT E22
T

2
+ (E12+E21

T) b BT
1 E21

T

2

Hzz = E22 a + aT E22
T + cT c + E21 B2 c + cT BT

2 E21
T + E21 B1 bT E22

T +

E21 B1 BT
1 E21

T + E22 b bT E22
T + E22 b BT

1 E21
T

(PROB) A, B1, B2, C1, C2 are knowns.

Solve the inequality

(
Hxx Hxz

Hzx Hzz

)
� 0 for unknowns

a, b, c and for E11, E12, E21 and E22



More complicated systems give fancier nc polynomials
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Engineering problems defined
entirely by signal flow diagrams

and L2 performance specs
are equivalent to

Polynomial Matrix Inequalities

A more precise statement is on the next slide



Linear Systems and Algebra Synopsis

A Signal Flow Diagram with L2 based performance, eg H∞

gives precisely a nc polynomial

p(a, x) :=




p11(a, x) · · · p1k(a, x)
...

. . .
...

pk1(a, x) · · · pkk(a, x)




Such linear systems problems become exactly:

Given matrices A.
Find matrices X so that P(A,X) is PosSemiDef.

BAD Typically p is a mess, until a hundred people work on it
and maybe convert it to CONVEX in x Matrix Inequalities.

All known successes3 do more: They convert to a LMI in x.

3about 20, plus a few thousand ad hoc compromises
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Convexity vs LMIs

QUESTIONS (Vague) :

WHICH DIM FREE PROBLEMS ”ARE” LMI PROBLEMS.
Clearly, such a problem must be convex and ”semialgebraic”.

Which convex nc problems are NC LMIS?

WHICH PROBLEMS ARE TREATABLE WITH LMI’s?
This requires some kind of change of variables theory.

The first is the main topic of this talk



A cleaner problem

Consider a cleaner problem we consider p(x, a) but with no a:

p(x) :=




p11(x) · · · p1k(x)
...

. . .
...

pk1(x) · · · pkk(x)




WHICH DIM FREE PROBLEMS ”ARE” LMI PROBLEMS?



Linear Pencil

, Linear Matrix Inequality (LMI)

RECALL

I For symmetric matrices L0, L1, . . . , Lg ∈ Ss×s and
x = (x1, . . . , xg), the expression

L(x) = L0 + L1x1 + · · ·+ Lsxg

is called a s× s linear pencil.

If L0 = I, we say that L(x) is monic.

I A linear matrix inequality (LMI) is of the form L(x) � 0.

Its solution set

DL(1) =
{

x ∈ Rg | L(x) � 0
}

=
{

x ∈ Rg | L0 + L1x1 + · · ·+ Lgxg � 0
}

is called a spectrahedron or also an LMI domain.



Linear Pencil, Linear Matrix Inequality (LMI)

RECALL

I For symmetric matrices L0, L1, . . . , Lg ∈ Ss×s and
x = (x1, . . . , xg), the expression

L(x) = L0 + L1x1 + · · ·+ Lsxg

is called a s× s linear pencil.

If L0 = I, we say that L(x) is monic.

I A linear matrix inequality (LMI) is of the form L(x) � 0.

Its solution set

DL(1) =
{

x ∈ Rg | L(x) � 0
}

=
{

x ∈ Rg | L0 + L1x1 + · · ·+ Lgxg � 0
}

is called a spectrahedron or also an LMI domain.



Pencils in Matrix Variables

Given a s× s linear pencil

L(x) = L0 + L1x1 + · · ·+ Lgxg,

it is natural to substitute symmetric matrices Xj for the
variables xj.

I For X = (X1, . . . ,Xg) ∈ (Sn×n)g, the evaluation L(X) is

L(X) := L0 ⊗ In + L1 ⊗ X1 + · · ·+ Lg ⊗ Xg ∈ Ssn×sn.

The tensor product in this expression is the standard (Kronecker)

tensor product of matrices.

I The positivity set of L is

DL(n) := {X ∈ (Sn×n)g : L(X) � 0} DL := ∪nDL(n)
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Convex Matrix Inequalities vs Linear Matrix Inequalities
Let p be a symmetric nc polynomial denote the principal
component of the positivity domain

Dp(n) := {X ∈ (Sn×n)g : p(X) � 0}.

by D◦p (n).

Theorem H-McCullough (Annals 2012)

SUPPOSE p is a nc symmetric noncommutative polynomial with
p(0) = 1 and D0

p bounded.
THEN

D0
p is a convex set for each n

if and only if
there is a monic linear pencil L such that D◦p = DL.

This is also true if p is a symmetric matrix of nc polynomials.
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The (SAD) MORAL OF THE STORY

Advice to engineers from this (and other theorems).
It looks like:

A CONVEX problem specified entirely by a signal flow diagram
and L2 performance of signals is equivalent to some LMI.

Looking for LMIs is what they already do. SAD there is no
other way to get convexity.
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Scalar Unknowns: LMI representations

Comparison to the case
when all unknowns are

scalars.



Which Sets in Rg have LMI REPRESENTATIONS?

QUESTION (Vague):
ARE CONVEX PROBLEMS ALL TREATABLE WITH LMI’s?

DEFINITION: A set C ⊂ Rg

has an Linear Matrix Inequality (LMI) Representation
provided that there are sym matrices L1, L2, · · · , Lg

for which the monic Linear Pencil,
L(x) := I + L1x1 + · · ·+ Lgxg, has positivity set,

DL := {x : L0 + L1x1 + · · ·+ Lgxg is PosSD} ⊂ Rg

equals the set C; that is,

C = DL.



EXAMPLE

C := {(x1, x2) : 1 + 2x1 + 3x2 − (3x1 + 5x2)(3x1 + 2x2) > 0}

has the LMI Rep

C = {x : L(x) � 0} here x := (x1, x2)

with

L(x) =

(
1 + 2x1 + 3x2 3x1 + 5x2

3x1 + 2x2 1

)

Pf: The determinant of L(x) is pos iff L(x) is PosDef.



QUESTION 1
Does this set C which is the inner component of

3

2

1

−1

−2

−3

−1−2−3−4−5−6−7

p = 0

C p ≥ 0

XXXzPPPPPq

x2

x1

have an LMI representation?

p(x1, x2) = (x1
2 + x2

2)(x1
2 + x2

2 + 12x1 − 1) + 36x1
2 > 0

C := inner component of{x ∈ R2 : p(x) > 0}



QUESTION 2

Does this set have an LMI representation?

1

0.5

−0.5

−1

−1 0.5 1

Cp p ≥ 0

x2

x1

p = 0�

p(x1, x2) = 1− x1
4 − x2

4 > 0

Cp := {x ∈ R2 : p(x) > 0} has degree 4.



Rigid Convexity-Line Test

DEFINITION: A convex set C in Rg with minimal degree
defining polynomial p passes the the “line test” means:

For every point x0 in C and almost every line ` through
x0 the line ` intersects the the zero set

{x ∈ Rg : p(x) = 0} of p

in exactly d points 4 where d = degree of p.

4In this counting one ignores lines which go thru x0 and hit the boundary of
C at ∞.



IN R2 THE LINE TEST RULES

THM [Vinnikov + H, CPAM 2007].
IF C is a bounded open convex set in Rg with an LMI
representation, THEN C must pass the line test.

When g = 2, the converse is true, namely, a convex set
which passes the line test has a LMI representation with
symmetric matrices Lj ∈ Rd×d and L0 = I.

Lewis-Parrilo-Ramana showed our determinantal representation
solves a conjecture (1958) by Peter Lax about constant
coefficient linear hyperbolic PDE, one time and 2 space dim.
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Free RAG

Snippets of Free RAG.



Convex (perfect) Positivstellensatz

Suppose:

I L(x) is a monic linear pencil;

I q(x) is a noncommutative polynomial.

Is q(X) PosSemiDef if L(X) is PosSemiDef?

THEOREM (H-Klep- McCullough; Advances 2012)
q � 0 where L � 0 if and only if

q(x) = s(x)∗s(x) +
∑

j

vj(x)∗L(x)vj(x),

where s, vj are vectors of polynomials each of degree ≤
⌊

deg(q)
2

⌋
.

If DL is bounded, then we may take s = 0.
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Arveson -Stinespring vs PosSS
Convex PosSS: Suppose L monic linear pencil and DL is
bounded.
q � 0 on DL iff

q(x) =
∑

j

fj(x)∗L(x)fj(x),

where fj are vectors of polynomials each of degree ≤
⌊

deg(q)
2

⌋
.

Take q(x) = L̃(x) an affine linear nc function, q(0) = I.

Then
⌊

deg(L̃)
2

⌋
= 0, so fj are constants. The PosSS becomes:

Free LMI domination Theorem:
L̃ � 0 on DL if and only if L̃(x) =

∑µ
j V∗j L(x)Vj

if and only if L̃(x) = V∗
(
Iµ ⊗ L(x)

)
V V isometery

( EQUIVALENT to finite dim Arveson Extension plus
Steinspring. )



Recall Real Nullstellensatz addresses

q(X)v = 0 if p(X)v = 0

Now there is good theory of it: Cimpric, McCullough , Nelson -H
(Proc London Math Soc – to appear)

For classical polynomials on Rg there is an algebraic certificate
equivalent to any list of polynomial inequalities-equalities.
For NC polynomials open.

Currently doing mixtures of PosSS and NullSS.
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Randstellensatz for Defining Polynomials: Zariski Nice

Given p a d× d matrix of nc polynomials defining a domain by

D◦p := principal component of {X : p(X) � 0}

with (detailed) boundary

∂̂D◦p := {(X, v) : X ∈ closure D◦p , p(X)v = 0}

Theorem in preparation
SUPPOSE:
p(x) is a d× d symmetric nc polynomial, and
L(x) is a d× d monic linear pencil for which

“the free Zariski closure” of ∂̂D◦L equals “the Zero Set of L”,

THEN



Randstellensatz for Defining Polynomials: Zariski Nice . . .
continued

Theorem (continued)

DL ⊆ Dp and ∂̂D◦L ⊆ ∂̂D
◦
p

if only if

p = L

(∑

i

q∗i qi

)
L +

∑

j

(rjL + Cj)
∗ L (rjL + Cj) ,

where qi, rj are matrices of polynomials, and Cj are real
matrices satisfying CjL = LCj.



Current ventures

Free convex hulls of free semialgebraic sets

Free change of variables to achieve free convexity. – Obsession
(Motivates recent PosSS work)
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Polys in a and x

Partial Convexity of NC Polynomials
The polynomial p(a, x) is convex in x for all A if for each X,Y
and 0 ≤ α ≤ 1,

p(A, αX + (1− α)Y) � αp(A,X) + (1− α)p(A,Y).

The Riccati r(a, x) = c + aTx + xa− xbTbx is concave, meaning
−r is convex in x (everywhere).

Can localize A to an nc semialgebraic set.



Structure of Partially Convex Polys
THM (Hay-Helton-Lim- McCullough)
SUPPOSE p ∈ R〈a, x〉 is convex in x THEN

p(a, x) = L(a, x) + L̃(a, x)TZ(a)L̃(a, x),

where,

• L(a, x) has degree at most one in x;
• Z(a) is a symmetric matrix-valued NC polynomial;
• Z(A) � 0 for all A;
• L̃(a, x) is linear in x. L̃(a, x) is a (column) vector of
. NC polynomials of the form xjm(a).
————————————————————————

This also works fine if p is a matrix of nc polynomials.

This also works fine if A only belongs to an open nc
semi-algebraic set (will not be defined here) .
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Structure of Partially Convex Polys
COR SUPPOSE p ∈ R〈a, x〉 is convex in x

THEN there is a linear pencil Λ(a, x) such that the set
of all solutions to {X : p(A,X) � 0} equals {X : Λ(A,X) � 0}.

Proof: p is a Schur Complement of some Λ by the previous
theorem.

The (SAD) MORAL OF THE STORY
A CONVEX problem specified entirely by a signal flow diagram
and L2 performance of signals is equivalent to some LMI.
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Context: Related Areas
Convex Algebraic Geometry (mostly commutative)
NSF FRG: Helton -Nie- Parrilo- Strumfels- Thomas

One aspect: Convexity vs LMIs.
Now there is a roadmap with some theorems and conjectures.

Three branches:
1. Which convex semialgebraic sets in Rg have an LMI rep?
(Line test) Is it necessary and sufficient? Ans: Yes if g ≤ 2.

2.Which convex semialgebraic sets in Rg lift to a set with an
LMI representation? Ans: Most do.

3. Which noncommutative semialgebraic convex sets have an
LMI rep? Ans: All do. (like what you have seen.), see
Helton-McCullough Annals of Mathematics Sept 2012.

NC Real Algebraic Geometry (since 2000)

We have a good body of results in these areas.
Eg. Positivestellensatz – Saw in Tuesday Morning Tutorial
session.
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