Sheaves on subanalytic sites and \mathcal{D}-modules

Luca Prelli

Toronto, 6 may 2009
1. Sheaves

2. Sheaves on subanalytic sites

3. \mathcal{D}-modules
Categories

Definition: A category \mathcal{C} is the data of a set $\text{Ob}(\mathcal{C})$ of objects of \mathcal{C}, and for any $X, Y \in \text{Ob}(\mathcal{C})$ a set of morphisms $\text{Hom}_\mathcal{C}(X, Y)$, with a composition \circ which is associative and satisfying $f \circ \text{id} = f$ and $\text{id} \circ g = g$.
Definition: A category \mathcal{C} is the data of a set $\text{Ob}(\mathcal{C})$ of objects of \mathcal{C}, and for any $X, Y \in \text{Ob}(\mathcal{C})$ a set of morphisms $\text{Hom}_{\mathcal{C}}(X, Y)$, with a composition \circ which is associative and satisfying $f \circ \text{id} = f$ and $\text{id} \circ g = g$.

Examples of categories
Categories

Definition: A category \mathcal{C} is the data of a set $\text{Ob}(\mathcal{C})$ of objects of \mathcal{C}, and for any $X, Y \in \text{Ob}(\mathcal{C})$ a set of morphisms $\text{Hom}_\mathcal{C}(X, Y)$, with a composition \circ which is associative and satisfying $f \circ \text{id} = f$ and $\text{id} \circ g = g$.

Examples of categories

1. Set: the objects are sets and morphisms are maps between sets.
Categories

Definition: A category \mathcal{C} is the data of a set $\text{Ob}(\mathcal{C})$ of objects of \mathcal{C}, and for any $X, Y \in \text{Ob}(\mathcal{C})$ a set of morphisms $\text{Hom}_\mathcal{C}(X, Y)$, with a composition \circ which is associative and satisfying $f \circ \text{id} = f$ and $\text{id} \circ g = g$.

Examples of categories

1. **Set**: the objects are sets and morphisms are maps between sets.
2. **Mod(k) (k a field)**: the objects are k-vector spaces and morphisms are linear maps.
Definition: A category \mathcal{C} is the data of a set $\text{Ob}(\mathcal{C})$ of objects of \mathcal{C}, and for any $X, Y \in \text{Ob}(\mathcal{C})$ a set of morphisms $\text{Hom}_\mathcal{C}(X, Y)$, with a composition \circ which is associative and satisfying $f \circ \text{id} = f$ and $\text{id} \circ g = g$.

Examples of categories

1. Set: the objects are sets and morphisms are maps between sets.
2. $\text{Mod}(k)$ (k a field): the objects are k-vector spaces and morphisms are linear maps.
3. $\text{Op}(X)$ (X a topological space): the objects are the open subsets of X and the morphisms are the inclusions.
Definition: Given two categories $\mathcal{C}, \mathcal{C}'$, a **functor** $F : \mathcal{C} \to \mathcal{C}'$ is the data of a morphism

$$F_o : \text{Ob}(\mathcal{C}) \to \text{Ob}(\mathcal{C}')$$
Definition: Given two categories $\mathcal{C}, \mathcal{C}'$, a functor $F : \mathcal{C} \to \mathcal{C}'$ is the data of a morphism

$$F_o : \text{Ob}(\mathcal{C}) \to \text{Ob}(\mathcal{C}')$$

and for each $X, Y \in \text{Ob}(\mathcal{C})$, a morphism

$$F_m : \text{Hom}_{\mathcal{C}}(X, Y) \to \text{Hom}_{\mathcal{C}'}(F_o X, F_o Y)$$

commuting with the composition law.
Definition: Given two categories $\mathcal{C}, \mathcal{C}'$, a functor $F : \mathcal{C} \to \mathcal{C}'$ is the data of a morphism

$$F_o : \text{Ob}(\mathcal{C}) \to \text{Ob}(\mathcal{C}')$$

and for each $X, Y \in \text{Ob}(\mathcal{C})$, a morphism

$$F_m : \text{Hom}_\mathcal{C}(X, Y) \to \text{Hom}_{\mathcal{C}'}(F_o X, F_o Y)$$

commuting with the composition law.

Definition: Two categories are **equivalent** if there is a functor F such that F_o is a bijection between the isomorphism classes of objects and F_m is a bijection between the set of morphisms.
What is a sheaf?

Let X be a topological space and let k be a field.
What is a sheaf?

Let X be a topological space and let k be a field.

Definition: A sheaf of k-vector spaces is the data of:

Open sets of X \[\rightarrow \] Mod(k)

U \[\mapsto \] $\Gamma(U; F)$ ($= F(U)$)
What is a sheaf?

Let X be a topological space and let k be a field. **Definition:** A sheaf of k-vector spaces is the data of:

- Open sets of X map to $\text{Mod}(k)$
 - $U \mapsto \Gamma(U; F) \ (= F(U))$
- $(V \subset U) \mapsto (F(U) \to F(V))$ (restriction)
 - $s \mapsto s|_V$
What is a sheaf?

Let X be a topological space and let k be a field. **Definition:** A sheaf of k-vector spaces is the data of:

- Open sets of X \rightarrow $\text{Mod}(k)$
 - $U \mapsto \Gamma(U; F)$ ($= F(U)$)
 - $(V \subset U) \mapsto (F(U) \rightarrow F(V))$ (restriction)
 - $s \mapsto s|_V$

Satisfying the following gluing conditions. Let U be open and let $\{U_j\}_{j \in J}$ be a covering of U. We have the exact sequence

$$0 \rightarrow F(U) \rightarrow \prod_{j \in J} F(U_j) \rightarrow \prod_{j,k \in J} F(U_j \cap U_k)$$
What is a sheaf?

\[0 \rightarrow F(U) \rightarrow \prod_{j \in J} F(U_j) \rightarrow \prod_{j,k \in J} F(U_j \cap U_k) \]

It means that

- if \(s \in \Gamma(U; F) \) and \(s|_{U_j} = 0 \) for each \(j \) then \(s = 0 \)
What is a sheaf?

\[
0 \rightarrow F(U) \rightarrow \prod_{j \in J} F(U_j) \rightarrow \prod_{j, k \in J} F(U_j \cap U_k)
\]

It means that

- if \(s \in \Gamma(U; F) \) and \(s|_{U_j} = 0 \) for each \(j \) then \(s = 0 \)
- if \(s_j \in \Gamma(U_j; F) \) such that \(s_j = s_k \) on \(U_j \cap U_k \) then they glue to \(s \in \Gamma(U; F) \) (i.e. \(s|_{U_j} = s_j \))
Let us consider

\[\mathbb{R}_X : \text{Open sets of } X \rightarrow \text{Mod}(\mathbb{R}) \]

\[U \mapsto \Gamma(U; \mathbb{R}_X) = \{ \text{constant functions on } U \} \]
Let us consider

\[\mathbb{R}_X : \text{Open sets of } X \to \text{Mod}(\mathbb{R}) \]

\[U \mapsto \Gamma(U; \mathbb{R}_X) = \{ \text{constant functions on } U \} \]

\[(V \subset U) \mapsto (\mathbb{R}_X(U) \to \mathbb{R}_X(V)) \quad \text{(restriction)} \]

\[s \mapsto s|_V \]
Examples

Let us consider
\[\mathbb{R}_X : \text{Open sets of } X \rightarrow \text{Mod}(\mathbb{R}) \]
\[U \mapsto \Gamma(U; \mathbb{R}_X) = \{ \text{constant functions on } U \} \]
\[(V \subset U) \mapsto (\mathbb{R}_X(U) \rightarrow \mathbb{R}_X(V)) \text{ (restriction)} \]
\[s \mapsto s|_V \]

- If \(s \) is zero on a covering of \(U \) then \(s = 0 \).
- For example, let \(X = \mathbb{R}, U_1 = (1, 2), U_2 = (2, 3) \). We have \(U_1 \cap U_2 = \emptyset \). The constant functions \(s_1 = 0 \) on \(U_1 \) and \(s_2 = 1 \) on \(U_2 \) do not glue on a constant function on \(U_1 \cup U_2 \).
Let us consider

\[\mathbb{R}_X : \text{Open sets of } X \rightarrow \text{Mod}(\mathbb{R}) \]

\[U \mapsto \Gamma(U; \mathbb{R}_X) = \{\text{constant functions on } U\} \]

\[(V \subset U) \mapsto (\mathbb{R}_X(U) \rightarrow \mathbb{R}_X(V)) \quad \text{(restriction)} \]

\[s \mapsto s|_V \]

⇒ The correspondence

\[U \mapsto \Gamma(U; \mathbb{R}_X) = \{\text{constant functions on } X\} \text{ does not define a sheaf on } X. \]
Let us consider

\[R_X : \text{Open sets of } X \rightarrow \text{Mod}(\mathbb{R}) \]

\[U \mapsto \Gamma(U; R_X) = \{\text{constant functions on } U\} \]

\[(V \subset U) \mapsto (R_X(U) \rightarrow R_X(V)) \text{ (restriction)} \]

\[s \mapsto s|_V \]

⇒ The correspondence

\[U \mapsto \Gamma(U; R_X) = \{\text{constant functions on } X\} \text{ does not define a sheaf on } X. \text{ We have to consider locally constant functions.} \]
Examples

Let us consider

$$\mathcal{C}_X : \text{Open sets of } X \rightarrow \text{Mod}(\mathbb{R})$$

$$U \mapsto \{ \text{continuous real valued functions on } U \}$$
Examples

Let us consider

\[\mathcal{C}_X : \text{Open sets of } X \to \text{Mod}(\mathbb{R}) \]

\[U \mapsto \{ \text{continuous real valued functions on } U \} \]

- If \(s \) is a continuous function and \(s \) is zero on a covering of \(U \) then \(s = 0 \).
- If \(\{ s_i \} \) are continuous functions on a covering \(\{ U_i \} \) of \(U \), such that \(s_i = s_j \) on \(U_i \cap U_j \), then there exists \(s \) continuous on \(U \) with \(s = s_i \) on each \(U_i \).
Let us consider

\[C_X : \text{Open sets of } X \rightarrow \text{Mod}(\mathbb{R}) \]

\[U \mapsto \{ \text{continuous real valued functions on } U \} \]

⇒ The correspondence

\[U \mapsto \Gamma(U; C_X) = \{ \text{continuous real valued functions on } U \} \]

defines a sheaf on \(X \)
Examples

Let us consider

\[C_b^X : \text{Open sets of } X \rightarrow \text{Mod}(\mathbb{R}) \]

\[U \mapsto \{ \text{continuous bounded functions on } U \} \]
Examples

Let us consider

\[C^b_X : \text{Open sets of } X \rightarrow \text{Mod}(\mathbb{R}) \]
\[U \mapsto \{ \text{continuous bounded functions on } U \} \]

For example, let \(X = \mathbb{R} \), \(U_n = (-n, n) \), \(n \in \mathbb{N} \), and \(s_n : U_n \rightarrow \mathbb{R}, x \mapsto x^2 \). Then \(s_n \) is bounded on \(U_n \) for each \(n \in \mathbb{N} \), but \(x \mapsto x^2 \) is not bounded on \(\mathbb{R} \).
Examples

Let us consider

\[\mathcal{C}_X^b : \text{Open sets of } X \to \text{Mod}(\mathbb{R}) \]
\[U \mapsto \{ \text{continuous bounded functions on } U \} \]

⇒ The correspondence \[U \mapsto \Gamma(U; \mathcal{C}_X^b) = \{ \text{continuous bounded real valued functions on } U \} \]
does not define a sheaf on \(X \).
More Examples

Sheaves: holomorphic functions, C^∞ functions, distributions.
More Examples

Sheaves: holomorphic functions, C^∞ functions, distributions.

Not sheaves: L^2 functions, tempered distributions.
More Examples

Sheaves: holomorphic functions, C^∞ functions, distributions.
Not sheaves: L^2 functions, tempered distributions. In fact they do not satisfy gluing conditions.
More Examples

If we consider “less open subsets” and “less coverings” they may become sheaves.
More Examples

Sheaves: holomorphic functions, C^∞ functions, distributions.

Not sheaves: L^2 functions, tempered distributions. In fact they do not satisfy gluing conditions.

If we consider “less open subsets” and “less coverings” they may become sheaves. We need the notion of site.
Let $F \in \text{Mod}(k_X)$ we define the fiber of F at x as

$$F_x = \lim_{U \ni x} F(U) \in \text{Mod}(k)$$
Let $F \in \text{Mod}(k_X)$ we define the fiber of F at x as

$$F_x = \lim_{\longrightarrow} F(U) \in \text{Mod}(k)$$

$U \ni x$

It means that the elements of F_x are equivalence classes, i.e. $f \in F_x$ is represented by $f \in F(U)$ where U is a neighborhood of x.
Let $F \in \text{Mod}(k_X)$ we define the fiber of F at x as

$$F_x = \lim_{\xrightarrow{\longrightarrow}} F(U) \in \text{Mod}(k)$$

It means that the elements of F_x are equivalence classes, i.e. $f \in F_x$ is represented by $f \in F(U)$ where U is a neighborhood of x.

Moreover, given $U_1, U_2 \ni x$ and $f_i \in U_i$, we have $f_1 \equiv f_2$ in F_x if $f_1 = f_2$ on a neighborhood of x $W \subset U_1 \cap U_2$.
Fibers

Two sheaves F, G are isomorphic if

$$F_x \cong G_x$$

for any $x \in X$. More generally a sequence of sheaves

$$0 \to F' \to F \to F'' \to 0$$

is exact if the sequence

$$0 \to F'_x \to F_x \to F''_x \to 0$$

is exact in $\text{Mod}(k_X)$.
The definition of sheaf depends only on
 - open subsets
 - coverings
Topological sites

The definition of sheaf depends only on
- open subsets
- coverings

One can generalize this notion by choosing a subfamily of open subsets \mathcal{T} of X and for each U a subfamily $\text{Cov}(U)$ of coverings if U satisfying suitable hypothesis (defining a site $X_\mathcal{T}$).
One can generalize this notion by choosing a subfamily of open subsets \mathcal{T} of X and for each U a subfamily $\text{Cov}(U)$ of coverings if U satisfying suitable hypothesis (defining a site $X_{\mathcal{T}}$).

Then $F : \mathcal{T} \to \text{Mod}(k)$ is a sheaf on $X_{\mathcal{T}}$ if for each $U \in \mathcal{T}$ and each $\{U_j\}_{j \in J} \in \text{Cov}(U)$ we have the exact sequence

$$0 \to F(U) \to \prod_{j \in J} F(U_j) \to \prod_{j,k \in J} F(U_j \cap U_k)$$
Example

For example, let us consider the site $X_{\mathcal{T}}$ where

- $\mathcal{T} =$ open subsets of X
- $\text{Cov}(U) =$ {finite coverings of U}
For example, let us consider the site X_T where

- $T =$ open subsets of X
- $Cov(U) =$ finite coverings of U

and consider the correspondence $U \mapsto \Gamma(U; C^b_X)$ (continuous bounded functions).
Example

For example, let us consider the site $X_{\mathcal{T}}$ where

- \mathcal{T} = open subsets of X
- $\text{Cov}(U)$ = {finite coverings of U}

and consider the correspondence $U \mapsto \Gamma(U; \mathcal{C}^b_X)$ (continuous bounded functions).

- If $\{s_i\}$ are **bounded** on a finite covering $\{U_i\}$ of U, such that $s_i = s_j$ on $U_i \cap U_j$, then there exists s bounded on U with $s = s_i$ on each U_i.

\Rightarrow The correspondence $U \mapsto \Gamma(U; \mathcal{C}^b_X)$ defines a sheaf on $X_{\mathcal{T}}$.

Luca Prelli
Sheaves on subanalytic sites and \mathcal{D}-modules
Example

For example, let us consider the site $X_{\mathcal{T}}$ where

- \mathcal{T} = open subsets of X
- $\text{Cov}(U)$ = {finite coverings of U}

and consider the correspondence $U \mapsto \Gamma(U; \mathcal{C}^b_X)$ (continuous bounded functions).

\Rightarrow The correspondence $U \mapsto \Gamma(U; \mathcal{C}^b_X)$ defines a sheaf on $X_{\mathcal{T}}$.
The general case

Let X be a topological space and consider a family of open subsets \mathcal{T} satisfying:

\[
\begin{align*}
\text{(i)} & \quad U, V \in \mathcal{T} \iff U \cap V, U \cup V \in \mathcal{T}, \\
\text{(ii)} & \quad U \setminus V \text{ has finite numbers of connected components } \forall U, V \in \mathcal{T}, \\
\text{(iii)} & \quad \mathcal{T} \text{ is a basis for the topology of } X.
\end{align*}
\]
Let X be a topological space and consider a family of open subsets \mathcal{T} satisfying:

\[
\begin{cases}
(i) \quad U, V \in \mathcal{T} \iff U \cap V, U \cup V \in \mathcal{T}, \\
(ii) \quad U \setminus V \text{ has finite numbers of connected components } \forall U, V \in \mathcal{T}, \\
(iii) \quad \mathcal{T} \text{ is a basis for the topology of } X.
\end{cases}
\]

Definition: The site $X_{\mathcal{T}}$ is defined by:

- open subsets: *elements of* \mathcal{T}
The general case

Let X be a topological space and consider a family of open subsets \mathcal{T} satisfying:

(i) $U, V \in \mathcal{T} \iff U \cap V, U \cup V \in \mathcal{T}$,

(ii) $U \setminus V$ has finite numbers of connected components $\forall U, V \in \mathcal{T}$,

(iii) \mathcal{T} is a basis for the topology of X.

Definition: The site $X_\mathcal{T}$ is defined by:

- open subsets: elements of \mathcal{T}
- $\text{Cov}(U)$ (coverings of $U \in \text{Op}(X_\mathcal{T})$): finite coverings of U
Examples

1. $\mathcal{T} = \{\text{open semialgebraic subsets of } \mathbb{R}^n\}$
Examples

1. $\mathcal{T} = \{\text{open semialgebraic subsets of } \mathbb{R}^n\}$
2. $\mathcal{T} = \{\text{open relatively compact subanalytic subsets of a real analytic manifold}\}$, the subanalytic site X_{sa}.
Examples

1. $\mathcal{T} = \{\text{open semialgebraic subsets of } \mathbb{R}^n\}$
2. $\mathcal{T} = \{\text{open relatively compact subanalytic subsets of a real analytic manifold}\}$, the subanalytic site X_{sa}.
3. $\mathcal{T} = \{\text{open definable subsets of } \mathbb{N}^n\}$, given an O-minimal structure $(\mathbb{N}, <, \ldots)$, the site DTOP.
Let F be a presheaf on $X_{\mathcal{T}}$. Assume that

- $F(\emptyset) = 0$
Construction of sheaves on $X_{\mathcal{T}}$

Let F be a presheaf on $X_{\mathcal{T}}$. Assume that

- $F(\emptyset) = 0$
- $\forall U, V \in \mathcal{T}$ the sequence

$$0 \rightarrow F(U \cup V) \rightarrow F(U) \oplus F(V) \rightarrow F(U \cap V)$$

is exact.
Let F be a presheaf on X_T. Assume that

- $F(\emptyset) = 0$
- $\forall U, V \in \mathcal{T}$ the sequence

$$0 \to F(U \cup V) \to F(U) \oplus F(V) \to F(U \cap V)$$

is exact.

Then F is a sheaf on X_T.
Subanalytic sheaves

From now on we will consider the subanalytic site X_{sa}.

- open subsets: relatively compact subanalytic open subsets
From now on we will consider the subanalytic site X_{sa}.

- open subsets: relatively compact subanalytic open subsets
- $\text{Cov}(U)$ (coverings of $U \in \text{Op}(X_{sa})$): finite coverings of U
Why subanalytic sheaves?

Let us consider as an example the presheaf

\[U \mapsto \mathcal{D}b_X^t(U) \]

of tempered distribution over a real analytic manifold \(X \). This is not a sheaf with the usual topology.
Let us consider as an example the presheaf

$$U \mapsto \mathcal{D}b_X^t(U)$$

of tempered distribution over a real analytic manifold X. This is not a sheaf with the usual topology.

For example, if $X = \mathbb{R}$, we can find tempered distributions s_n on $\left\{ \frac{1}{n} < x < 1 \right\}$, $n \in \mathbb{N}$ which do not glue to a tempered distribution s on $\left\{ 0 < x < 1 \right\}$.
Why subanalytic sheaves?

Anyway for U, V open subanalytic relatively compact subsets of X we have the exact sequence
Why subanalytic sheaves?

Anyway for U, V open subanalytic relatively compact subsets of X we have the exact sequence

$$0 \rightarrow \mathcal{D}b^t_X(U \cup V) \rightarrow \mathcal{D}b^t_X(U) \oplus \mathcal{D}b^t_X(V) \rightarrow \mathcal{D}b^t_X(U \cap V)$$

Anyway for U, V open subanalytic relatively compact subsets of X we have the exact sequence

$$0 \to Db^t_X(U \cup V) \to Db^t_X(U) \oplus Db^t_X(V) \to Db^t_X(U \cap V)$$

This implies that $U \mapsto Db^t_X(U)$ is a sheaf on the subanalytic site X_{sa}.
Let X be a complex manifold and let $U \subset X$ be a relatively compact subanalytic open subset, f holomorphic on U is tempered if $\exists M, C > 0$ such that

$$|f(z)| \leq \frac{C}{\text{dist}(z, \partial U)^M}.$$
In the case of subanalytic sheaves we do not have the notion of fibers in the usual sense, i.e. if we consider

\[F_x = \lim_{U \ni x} F(U) \]

i.e. there are \(F \not\cong G \) even if \(F_x \cong G_x \ \forall x \in X \).
In the case of subanalytic sheaves we do not have the notion of fibers in the usual sense, i.e. if we consider

\[F_x = \lim_{U \ni x} F(U) \]

i.e. there are \(F \not\cong G \) even if \(F_x \cong G_x \ \forall \ x \in X \).

Example: Let \(X = \mathbb{R} \) and consider the sheaves \(\mathcal{C}^b_\mathbb{R} \) and \(\mathcal{C}^b_\mathbb{R} \). Then \(\mathcal{C}^b_{\mathbb{R}, x} \cong \mathcal{C}^b_{\mathbb{R}, x} \ \forall \ x \in \mathbb{R} \). Indeed, any continuous function \(f \) in \((x - \varepsilon, x + \varepsilon) \), \(\varepsilon > 0 \) is bounded in \((x - \varepsilon/2, x + \varepsilon/2) \).
Hence if we consider only the fibers associated to the points of x we loose informations about $F \in \text{Mod}(k_{X_{sa}})$.
Fibers

Hence if we consider only the fibers associated to the points of x we lose informations about $F \in \text{Mod}(k_{X_{sa}})$.

We need to consider more points.
Let us consider a countable locally finite covering \(\{ U_n \}_{n \in \mathbb{N}} \) of \(X \), with \(U_n \sim \mathbb{R}^n \) relatively compact and subanalytic.
Let us consider a countable locally finite covering \(\{ U_n \}_{n \in \mathbb{N}} \) of \(X \), with \(U_n \cong \mathbb{R}^n \) relatively compact and subanalytic. In \(U_n \) consider the ultrafilters of globally subanalytic subsets (i.e. subanalytic in \(X \)).
Let us consider a countable locally finite covering $\{U_n\}_{n \in \mathbb{N}}$ of X, with $U_n \sim \mathbb{R}^n$ relatively compact and subanalytic. In U_n consider the ultrafilters of globally subanalytic subsets (i.e. subanalytic in X).

A **neighborhood** of an ultrafilter α is a globally subanalytic open subset U contained in α.
Let us consider a countable locally finite covering \(\{ U_n \}_{n \in \mathbb{N}} \) of \(X \), with \(U_n \cong \mathbb{R}^n \) relatively compact and subanalytic. In \(U_n \) consider the ultrafilters of \textbf{globally subanalytic subsets} (i.e. subanalytic in \(X \)).

A \textbf{neighborhood} of an ultrafilter \(\alpha \) is a globally subanalytic open subset \(U \) contained in \(\alpha \).

We call \(\tilde{X} \) the associated topological space. In \(\tilde{X} \) any covering of a \textbf{relatively compact} subanalytic open subset has a finite subcover.
For example, the points of $\tilde{\mathbb{R}}$ are the following. Let $x \in \mathbb{R}$

1. $\{ S \text{ subanalytic, } S \supseteq x \}$ (the point x)
2. $\{ S \text{ subanalytic, } S \supseteq (x, x + \varepsilon), \varepsilon > 0 \}$ (the point x^+)
3. $\{ S \text{ subanalytic, } S \supseteq (x - \varepsilon, x), \varepsilon > 0 \}$ (the point x^-)
Example

For example, the points of \(\tilde{\mathbb{R}} \) are the following. Let \(x \in \mathbb{R} \):

1. \(\{ S \text{ subanalytic, } S \supseteq x \} \) (the point \(x \))
2. \(\{ S \text{ subanalytic, } S \supseteq (x, x + \varepsilon), \varepsilon > 0 \} \) (the point \(x^+ \))
3. \(\{ S \text{ subanalytic, } S \supseteq (x - \varepsilon, x), \varepsilon > 0 \} \) (the point \(x^- \))

Thanks to these new points we can distinguish \(C_\mathbb{R} \) from \(C^b_\mathbb{R} \) on \(\tilde{\mathbb{R}} \). For example let \(f = x^{-1} \). Then \(f \notin C^b_\mathbb{R}(0, \varepsilon) \forall \varepsilon > 0 \).
Example

For example, the points of \(\tilde{\mathbb{R}} \) are the following. Let \(x \in \mathbb{R} \):

1. \(\{ S \text{ subanalytic}, S \supseteq x \} \) (the point \(x \))
2. \(\{ S \text{ subanalytic}, S \supseteq (x, x + \varepsilon), \varepsilon > 0 \} \) (the point \(x^+ \))
3. \(\{ S \text{ subanalytic}, S \supseteq (x - \varepsilon, x), \varepsilon > 0 \} \) (the point \(x^- \))

Thanks to these new points we can distinguish \(C_{\mathbb{R}} \) from \(C^b_{\mathbb{R}} \) on \(\tilde{\mathbb{R}} \). For example let \(f = x^{-1} \). Then \(f \notin C^b_{\mathbb{R}}(0, \varepsilon) \) \(\forall \varepsilon > 0 \). Hence \(f \notin C^b_{\mathbb{R},0^+} \), but \(f \in C_{\mathbb{R},0^+} \), this implies \(C^b_{\mathbb{R},0^+} \nsubseteq C_{\mathbb{R},0^+} \).
Theorem:

Let X be a real analytic manifold. The categories $\text{Mod}(k_{X_{sa}})$ and $\text{Mod}(k_{\tilde{X}})$ are equivalent.

Hence, if we want to work on fibers on X_{sa}, we have to consider the topological space \tilde{X}.
Theorem:
Let \(f : X \rightarrow Y \) be a morphism of real analytic manifolds. The six Grothendieck operations \(\mathcal{H}om, \otimes, f_*, f^{-1}, f!!, f! \) are well defined for subanalytic sheaves.

L. Prelli *Sheaves on subanalytic sites*, Rendiconti del Seminario Matematico dell’Università di Padova Vol. 120 (2008).
Let X be a complex analytic manifold. We denote by \mathcal{D}_X the sheaf of rings of differential operators. Locally, a section of $\Gamma(U; \mathcal{D}_X)$ may be written as $P = \sum_{|\alpha| \leq m} a_\alpha(z) \partial_\alpha$ with $a_\alpha(z)$ holomorphic on U. We denote by $\text{Mod}(\mathcal{D}_X)$ the sheaf of \mathcal{D}_X-modules.
Complex of solutions

The sheaf \mathcal{O}_X of **holomorphic functions** has a structure of \mathcal{D}_X-module.
Complex of solutions

The sheaf \mathcal{O}_X of holomorphic functions has a structure of \mathcal{D}_X-module.

Definition: If U is open, \mathcal{F} a \mathcal{D}_X-module, P a differential operator, $\text{Sol}_\mathcal{F}(P)$ on U is the complex

$$\Gamma(U; \mathcal{F}) \xrightarrow{P} \Gamma(U; \mathcal{F})$$

Definition: P_1 and P_2 are equivalent if for any

$$\ker P_1 \cong \ker P_2 \quad \text{and} \quad \coker P_1 \cong \coker P_2$$

(i.e. $\text{Sol}_\mathcal{F}(P_1)$ and $\text{Sol}_\mathcal{F}(P_2)$ are quasi-isomorphic).

$$H^0(U; \text{Sol}_\mathcal{F}(P)) = \{ s \in \Gamma(U; \mathcal{F}), \ Ps = 0 \} = \ker P$$

$$H^1(U; \text{Sol}_\mathcal{F}(P)) = \Gamma(U; \mathcal{F})/P\Gamma(U; \mathcal{F}) = \coker P$$
Complex of solutions

The sheaf \mathcal{O}_X of holomorphic functions has a structure of \mathcal{D}_X-module.

Definition: If U is open, \mathcal{F} a \mathcal{D}_X-module, P a differential operator, $\text{Sol}_\mathcal{F}(P)$ on U is the complex

$$
\Gamma(U; \mathcal{F}) \xrightarrow{P} \Gamma(U; \mathcal{F})
$$

$$
\begin{align*}
H^0(U; \text{Sol}_\mathcal{F}(P)) &= \{s \in \Gamma(U; \mathcal{F}), \ Ps = 0\} = \ker P \\
H^1(U; \text{Sol}_\mathcal{F}(P)) &= \Gamma(U; \mathcal{F})/P\Gamma(U; \mathcal{F}) = \text{coker} P
\end{align*}
$$

Definition: P_1 and P_2 are equivalent if for any \mathcal{F} $\ker P_1 \simeq \ker P_2$ and $\text{coker} P_1 \simeq \text{coker} P_2$ (i.e. $\text{Sol}_\mathcal{F}(P_1)$ and $\text{Sol}_\mathcal{F}(P_2)$ are quasi-isomorphic).
Example

Let $\alpha \in \mathbb{C}$, and consider the operators

$$P_{\alpha} = z \partial_z - \alpha \quad P_{\alpha+1} = z \partial_z - \alpha - 1.$$
Example

Let \(\alpha \in \mathbb{C} \), and consider the operators

\[
P_\alpha = z\partial_z - \alpha \quad P_{\alpha+1} = z\partial_z - \alpha - 1.
\]

If \(\alpha \neq -1 \), one can verify that we have morphisms

\[
\text{Sol}_F(P_\alpha) \underoverset{\sim}{z \cdot \frac{\partial}{\alpha+1}}{\longleftrightarrow} \text{Sol}_F(P_{\alpha+1})
\]
Example

Let $\alpha \in \mathbb{C}$, and consider the operators

$$
P_\alpha = z \partial_z - \alpha \quad P_{\alpha + 1} = z \partial_z - \alpha - 1.
$$

If $\alpha \neq -1$, one can verify that we have morphisms

$$
Sol_{\mathcal{F}}(P_\alpha) \xleftrightarrow{z \cdot} Sol_{\mathcal{F}}(P_{\alpha + 1})
$$

$$
\frac{\partial_z}{\alpha + 1}
$$

the above morphisms induce an isomorphism between the homogeneous solutions $\ker P_\alpha$ and $\ker P_{\alpha + 1}$.
Moreover one can prove that the above morphisms induce an isomorphism between $\text{coker} P_\alpha$ and $\text{coker} P_{\alpha+1}$ (i.e. the complexes $\text{Sol}_\mathcal{F}(P_\alpha)$ and $\text{Sol}_\mathcal{F}(P_{\alpha+1})$ are quasi-isomorphic).
Example

Moreover one can prove that the above morphisms induce an isomorphism between $\text{coker} P_\alpha$ and $\text{coker} P_{\alpha+1}$ (i.e. the complexes $\text{Sol}_F(P_\alpha)$ and $\text{Sol}_F(P_{\alpha+1})$ are quasi-isomorphic).

Hence P_α and $P_{\alpha+1}$ are equivalent.
Example

Let \(f \in \mathcal{O}_X(U) \).

The equation \(z \partial_z u = f \) has holomorphic solutions if and only if \(f(0) = 0 \).
Example

Let \(f \in \mathcal{O}_X(U) \).

The equation \(z \partial_z u = f \) has holomorphic solutions if and only if \(f(0) = 0 \).
The equation \(\partial_z u = f \) has always solutions.
Example

Let $f \in \mathcal{O}_X(U)$.

The equation $z\partial_z u = f$ has holomorphic solutions if and only if $f(0) = 0$. The equation $\partial_z u = f$ has always solutions. So, even if the kernels of

$$\mathcal{O}_X(U) \xrightarrow{z\partial_z} \mathcal{O}_X(U)$$

$$\mathcal{O}_X(U) \xrightarrow{\partial_z} \mathcal{O}_X(U)$$

are isomorphic, the cokernels are not.
Example

Let $f \in \mathcal{O}_X(U)$.

The equation $z\partial_z u = f$ has holomorphic solutions if and only if $f(0) = 0$.

The equation $\partial_z u = f$ has always solutions.

So, even if the kernels of

$$
\mathcal{O}_X(U) \xrightarrow{z\partial_z} \mathcal{O}_X(U)
$$

$$
\mathcal{O}_X(U) \xrightarrow{\partial_z} \mathcal{O}_X(U)
$$

are isomorphic, the cokernels are not.

Then $z\partial_z$ and ∂_z are not equivalent.
Let us consider the operators $z(z\partial_z + 1)$ and $z^2\partial_z + 1$.
Example

Let us consider the operators $z(z\partial_z + 1)$ and $z^2\partial_z + 1$. They have z^{-1} and $\exp(z^{-1})$ as homogeneous solutions. If \mathcal{M} denotes the sheaf of meromorphic functions and $U \not\ni 0$, then
Example

Let us consider the operators $z(z\partial_z + 1)$ and $z^2\partial_z + 1$. They have z^{-1} and $\exp(z^{-1})$ as homogeneous solutions. If \mathcal{M} denotes the sheaf of meromorphic functions and $U \not\ni 0$, then

\[
H^0(U, Sol_{\mathcal{M}}(z(z\partial_z + 1))) \cong \mathbb{C} \cdot z^{-1}
\]

\[
H^0(U, Sol_{\mathcal{M}}(z^2\partial_z + 1)) \cong 0 \text{ because } \exp(z^{-1}) \not\in \mathcal{M}(U).
\]
Example

Let us consider the operators $z(z\partial_z + 1)$ and $z^2\partial_z + 1$. They have z^{-1} and $\exp(z^{-1})$ as homogeneous solutions. If \mathcal{M} denotes the sheaf of meromorphic functions and $U \not\ni 0$, then

$$H^0(U, \text{Sol}_{\mathcal{M}}(z(z\partial_z + 1))) \cong \mathbb{C} \cdot z^{-1}$$

$$H^0(U, \text{Sol}_{\mathcal{M}}(z^2\partial_z + 1)) \cong 0 \text{ because } \exp(z^{-1}) \notin \mathcal{M}(U).$$

Hence $z(z\partial_z + 1)$ and $z^2\partial_z + 1$ are not equivalent (even if the holomorphic solutions are).
Equivalence for regular operators

Definition: \(P = \sum_{\alpha \leq n} a_\alpha(z) \partial^\alpha, \ a_\alpha(0) \neq 0, \) is regular at 0 if for each \(j \leq n, \ n - \operatorname{ord}_0(a_n) \geq j - \operatorname{ord}_0(a_j). \)
Equivalence for regular operators

Definition: \(P = \sum_{\alpha \leq n} a_\alpha(z) \partial^\alpha, \ a_\alpha(0) \neq 0 \), is regular at 0 if for each \(j \leq n \), \(n - \text{ord}_0(a_n) \geq j - \text{ord}_0(a_j) \).

Theorem: Let \(P \) and \(Q \) be regular at 0. The following are equivalent.

1. \(P \) e \(Q \) are equivalent.
Equivalence for regular operators

Definition: \(P = \sum_{\alpha \leq n} a_\alpha(z) \partial^{\alpha}, \ a_\alpha(0) \neq 0, \) is regular at 0 if for each \(j \leq n, \ n - \text{ord}_0(a_n) \geq j - \text{ord}_0(a_j). \)

Theorem: Let \(P \) and \(Q \) be regular at 0. The following are equivalent.

1. \(P \) and \(Q \) are equivalent.
2. The kernels and cokernels of

\[
\mathcal{O}_X \xrightarrow{P} \mathcal{O}_X \quad \mathcal{O}_X \xrightarrow{Q} \mathcal{O}_X
\]

are isomorphic (i.e. \(\text{Sol}_{\mathcal{O}_X}(P) \) is quasi-isomorphic to \(\text{Sol}_{\mathcal{O}_X}(Q) \)).
Definition: \(P = \sum_{\alpha \leq n} a_\alpha(z) \partial^\alpha, \ a_\alpha(0) \neq 0 \), is regular at 0 if for each \(j \leq n \), \(n - \text{ord}_0(a_n) \geq j - \text{ord}_0(a_j) \).

Theorem: Let \(P \) and \(Q \) be regular at 0. The following are equivalent.

1. \(P \) and \(Q \) are equivalent.
2. The kernels and cokernels of
 \[O_X \xrightarrow{P} O_X, \quad O_X \xrightarrow{Q} O_X \]
 are isomorphic (i.e. \(\text{Sol}_{O_X}(P) \) is quasi-isomorphic to \(\text{Sol}_{O_X}(Q) \)).

In particular the holomorphic solutions are sufficient to establish if two regular equations are equivalent.
The sheaf \mathcal{O}_X^t of tempered holomorphic functions has a structure of $\rho!\mathcal{D}_X$-module. ($\Gamma(U; \rho!\mathcal{D}_X)$ are differential operators $\sum_{|\alpha| \leq m} a_\alpha \partial_z^\alpha$ with a_α holomorphic in \overline{U})
Example

Let us consider the operators $z^2 \partial_z + 1$ and $z^3 \partial_z + 2$. Their solutions are respectively $\exp(z^{-1})$ and $\exp(z^{-2})$.

Theorem (G. Morando): There exists an open subanalytic U such that $\exp(z^{-1}) \in \mathcal{O}^t_X(U)$ and $\exp(z^{-2}) \notin \mathcal{O}^t_X(U)$.
Example

Let us consider the operators $z^2 \partial_z + 1$ and $z^3 \partial_z + 2$. Their solutions are respectively $\exp(z^{-1})$ and $\exp(z^{-2})$.

Theorem (G. Morando): There exists an open subanalytic U such that $\exp(z^{-1}) \in \mathcal{O}_X^t(U)$ and $\exp(z^{-2}) \notin \mathcal{O}_X^t(U)$.

In particular for such U we have

\[
H^0(U; \text{Sol}_{\mathcal{O}_X^t}(z^2 \partial_z + 1)) \cong \mathbb{C} \cdot \exp(z^{-1})
\]

\[
H^0(U; \text{Sol}_{\mathcal{O}_X^t}(z^3 \partial_z + 2)) \cong 0.
\]
Example

Let us consider the operators $z^2 \partial_z + 1$ and $z^3 \partial_z + 2$. Their solutions are respectively $\exp(z^{-1})$ and $\exp(z^{-2})$.

Theorem (G. Morando): There exists an open subanalytic U such that $\exp(z^{-1}) \in \mathcal{O}_X(U)$ and $\exp(z^{-2}) \notin \mathcal{O}_X(U)$.

In particular for such U we have

$$H^0(U; \text{Sol}_{\mathcal{O}_X}(z^2 \partial_z + 1)) \cong \mathbb{C} \cdot \exp(z^{-1})$$

$$H^0(U; \text{Sol}_{\mathcal{O}_X}(z^3 \partial_z + 2)) \cong 0.$$

Hence thanks to tempered holomorphic solutions we can distinguish irregular differential operators which cannot be distinguished with holomorphic solutions.
Sheaves on subanalytic sites and \mathcal{D}-modules

Luca Prelli

Toronto, 6 may 2009