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Preface by the Director of the Centre of Mathematical Medicine, Fields

Institute

The resounding success of the first Fields-MITACS Industrial Problems Workshop in

2006 (FMIPW), paved the way for the OCCAM-Fields-MITACS Biomedical Problem Solv-

ing Workshop that took place June 22-26, 2009. This was the first Mathematics-in-Medicine

Study Group (MMSG) meeting to be held on Canadian soil, and it’s unmitigated success

ensures that it will, no doubt, become a regular feature at Fields and in Canada, in future

years.

MMSGs are workshops intended to foster interaction between mathematicians and

biomedical researchers. These were pioneered in the UK, with a now over 10 year dis-

tinguished history. Biomedical researchers/scientists/clinicians from experimental labora-

tories/hospitals/universities/companies are invited to present problems of current interest;

these problems may come from a very wide range of subject areas, the only prerequisite

is that these problems should be amenable to mathematical modelling and anlaysis (in

a broad sense). MMSGs have served to establish strong links between clinicians, exper-

imentalists and mathematicians, and to engage a new generation of mathematicians and

experimentalists in this exciting interdisciplinary field. The stated objectives of the work-

shop (in the tradition of Industrial Study Groups) were fourfold : (1) to introduce math-

ematicians/modellers to the rich source of problems arising in one of the “last frontiers”

for mathematics, the biomedical sciences, (2) to effectively aid clinicians and biomedical

researchers to exploit and incorporate current mathematical/computational tools, (3) to

engage and train a new generation of mathematicians in the interdisciplinary field of math-

ematical medicine/biology, and finally (4) to provide a natural opportunity and ambience,

conducive to fostering and encouraging long term interdisciplinary collaborations.

Quite clearly, the meeting succeeded admirably on all counts. For those who have never

had the good fortune or opportunity to participate in a Study Group meeting of this na-

ture, this Proceedings volume will give a polished but sanitized account of what actually

transpired over the course of five exhilarating days in June 2009. Although the core of the

ideas and models presented in this volume, were culled during these five intense days of

discussions and dialogue, nothing can capture the energy and enthusiasm that engulfed the

Medical Sciences Building at the University of Toronto, during this short but invigorating

period of time. Roughly half of the seventy five attendees were experienced Study Group

participants, of which a significant number were seasoned veterans from the UK. Incredibly,

although no-one is constrained to work on any particular problem, in “steady state” each

of the problems had roughly a sixth of the total number of participants, all enthusiastically

working towards a clearer formulation or resolution of their particular problem. In retro-

spect, much of the smooth functioning of the workshop, should probably be attributed to

the deftness and experience with which Huaxiong Huang, Sean Bohun, Nilima Nigam and

Chris Breward (amongst others), shepherded the appropriate expertise to where it was most

required. Lunches and coffee/tea breaks are provided on site, and many groups (engrossed

in their problems) worked late into the nights, well past the daily briefings that took place at

5:30pm each day. The six problems presented, spanned a very broad spectrum of questions
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of biomedical interest : The first problem on “Constitutive Models for Tumour Classifica-

tion” presented by Corina Drapaca (Penn State) posed the question of how to distinguish

between normal and abnormal tissue (in particular, how to differentiate between benign and

malignant tumours) by developing an appropriate constitutive theory. The second problem,

presented by Miles Johnston (Sunnybrook & Womens Hospital Research Institute) focussed

on possible molecular mechanisms underlying the pathogenesis of hydrocephalus and the

possibility of incorporating these in a mathematical model to predict ventricular distension

resulting from hydrocephalus. Problem three, presented by Svetlana Komarova (McGill)

posed the question of the identification of mediators of mechanotransduction between bone

cells. Bone mass and architecture are apparently regulated by mechanical forces leading

to increase in bone mass in response to excessive loading, or decrease in bone mass in the

absence of physical activity (or loading). The objective here was to develop a theoretical

framework which could explain the means by which mechanical stimulation is communi-

cated among bone cells. The fourth problem, presented by D. Bassett and J. Barralet

(Strathcona Anatomy & Dentistry, McGill) was concerned with the formation of calcium

carbonate crystals in a gas diffusion process, where various characteristics of the crystals

suggest an underlying process regulating crystallization. Problem five was presented by

Sushrat Waikar (Brigham & Women’s Hospital, Boston) and addressed a question associ-

ated with haemodialysis. Although the process is well understood, what was unclear was

the overall effect on net blood sodium concentration levels post treatment. The focus for

this problem was on the development of a fundamental model to address this issue. The

sixth and final problem, presented by Mustafa Al-Zoughool (Ottawa) and Susie El Saadany

(Public Health Agency, Canada) addressed a particular public health concern. Variant

Creutzfeldt Jakob Disease (vCJD) or “mad cow” disease is characterized by long incuba-

tion periods, spongiform changes and astrogliosis. The focus here was on the development

of appropriate mathematical models for estimating the risk of vCJD transmission.

This volume is a detailed record of the progress made on these problems during the

five critical days of the meeting, followed up and embellished over subsequent months by

various group members. However, it cannot unfortunately capture the frenetic, energised

and enthusiastic spirit that pervaded the meeting. Participants grabbed quick meals and

worked late into the nights (fuelled by coffee and tea) to present and demonstrate the

significant progress that had been made over the week, almost uniformly on all six problems.

In wandering through the various groups and group discussions, I was struck by the probing,

fearless questions and different perspectives brought to bear on each of the problems - it

certainly brought home the old Chinese adage “He who asks a question may be a fool for

a minute, he who does not, remains a fool forever”! This volume is by no means the final

story - it represents the first steps taken in addressing questions that are of significant public

and/or research interest, but to borrow Lao Tzu’s words “A journey of a thousand miles

begins with a single step”. The meeting and the collaborations established, will hopefully

develop into a longer and even more productive journey. What seems transparently clear

from the meeting, is that this type of endeavour is not a straightforward path with the

journey clearly mapped out. It combines both scientific method as well as more creative and

artistic traits, and a successful exponent or practitioner must also use analogy in addressing

such a variety of often seemingly disparate problems. How does one effectively train a
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new generation of researchers to embrace and flourish in this type of “problem solving”

interdisciplinary research environment - this is probably the million dollar question! - a

first step is certainly to participate in one of these Math-in-Medicine Study Groups. As

many seem to have discovered to their ultimate benefit, once bitten there is no escape!

Siv Sivaloganathan

Director, Centre of Mathematical Medicine, Fields Institute
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Constitutive Models for Tumour Classification

Problem Presenter: Corina S. Drapaca (Pennsylvania State University)

Contributors: D. Aruliah (UOIT), R.D. Donaldson (Simon Fraser University), C.S. Dra-
paca (Pennsylvania State University), G. Lewis (UOIT), A. Sanchez (University of Water-
loo), V. Takeva-Volkov (UOIT)

Report prepared by: D. Aruliah, R.D. Donaldson, C.S. Drapaca1 and A. Sanchez

Abstract. The aim of this paper is to formulate new mathematical models that
will be able to differentiate not only between normal and abnormal tissues, but,
more importantly, between benign and malignant tumours. We present preliminary
results of a tri-phasic model and numerical simulations of the effect of cellular
adhesion forces on the mechanical properties of biological tissues.

1 Introduction

Diagnostic radiology is an exciting and rapidly expanding multi-disciplinary field of
clinical medicine which links medicine to science and engineering. It enables noninvasive
imaging and investigation of structure and function of the human body, and a unique insight
into disease processes in vivo. One such imaging technique, called Magnetic Resonance Elas-
tography (MRE), is used to measure the elasticity of biological tissues subject to mechanical
stress [8, 9]. The resulting strains are measured using magnetic resonance imaging and the
related elastic modulus is computed from models of tissue mechanics. The elastic modulus
contains important information about the pathology of the imaged tissues. Thus, MRE can
help in tumour detection, determination of characteristics of disease, and in assessment of
rehabilitation.

It was noticed experimentally that most biological tissues have incompressible viscoelas-
tic features: they have a certain amount of rigidity that is characteristic of solid bodies,
but, at the same time, they flow and dissipate energy by frictional losses as viscous fluids do
[3, 4]. The incompressibility assumption for soft tissues is based on the fact that most tissues
are made primarily of water. In addition, since the displacements in MRE are very small
(on the order of microns), a linear constitutive law is usually assumed. However, despite the
richness of the data set, the variety of processing techniques and the simplifications made

1csd12@psu.edu

c©2009
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2 Constitutive Models for Tumour Classification

Figure 1.1 (a) Benign tumour: the fibrous connective tissue capsule (orange) separates
the inside benign cells (black boundaries) from the outside normal cells (yellow). (b)
Malignant tumour: the irregularly-shaped cancer cells (red boundaries) are anisotropic
and non-localized.

in the biomechanical model, it remains a challenge to extract accurate results at high res-
olution in complex, heterogeneous tissues from the intrinsically noisy data. Therefore, any
improvement in the MRE data processing with the help of biomechanics and computational
methods will be of significant importance to modern medicine.

The aim of this paper is to formulate new mathematical models that will be able to
differentiate not only between normal and abnormal tissues, but, more importantly, between
benign (not cancerous) and malignant (cancerous) tumours. As it can be seen in Figure
1.1, benign tumours are localized, self-contained (encapsulated), with smooth boundaries,
and tend to be more isotropic. On the other hand, malignant tumours are not localized,
not self-contained, have irregular boundaries, and are anisotropic. Recent advancements in
molecular biology [2] show that the cell-cell and cell-extracellular matrix adhesion forces
play an important role in the localization of the tumours, with malignant tumours having
a much poorer adhesion to the surroundings than benign tumours. It is important to
notice that the cell-cell adhesions are rearranged dynamically during tissue development
and tumour metastasis but the few existing mathematical models of the cell-cell adhesions
are all static models. The modeling of the adhesion forces in normal tissues and tumours
is still an open problem in mathematical biology.

In order for the MRE method to correctly classify the tumours of a given tissue as benign
or malignant, the mathematical models of these two classes of tumours need to incorporate
the differences between them. In the present paper we focus on mathematical models that
incorporate information about microstructure and cellular adhesion forces. We pursued the
following three approaches: (i) the simulation of the time-harmonic linear elastic models to
examine coarse scale effects and adhesion properties, (ii) the investigation of a tri-phasic
model, with the intent of upscaling this model to determine effects of electro-mechanical
coupling between cells, and (iii) the upscaling of a simple cell model as a framework for
studying interface conditions at malignant cells. The model used in simulation (i) is inspired
by the dynamic MRE method where shear periodic forces are applied on the tissue [7].
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2 Preliminary qualitative experiments

As a first step in developing a constitutive model that distinguishes benign and malig-
nant cells, we consider a simple model of elastic waves propagating through inhomogeneous
media. We start with a simple scalar PDE model (2.1) of transverse periodic waves propa-
gating through an inhomogeneous, almost incompressible, linearly elastic tissue:

∂2u

∂t2
− div (µ(x, y)∇u) = 0, (x, y) ∈

(
−1

2
,
1
2

)2

, (2.1a)

u

(
x,−1

2

)
= cos(ωt), x ∈

[
−1

2
,
1
2

]
, (2.1b)

∂u

∂t
+
√
µ
∂u

∂n
= 0, x = ±1

2
, y =

1
2
. (2.1c)

The quantity u is the transverse displacement due to propagation of elastic waves and the
quantity µ(x, y) is one of the Lamé coefficients, and n is the outward unit normal. Based on
the fact that longitudinal waves propagate at much higher speeds than shear waves through
biological tissues, we neglected any longitudinal effects. The boundary condition (2.1b) is
the periodic force acting on the top of the domain that causes the transverse waves. The
boundary condition (2.1c) is an absorbing (Sommerfeld) boundary condition to prevent
reflection of waves. We generate simple finite-difference solutions of this wave equation to
help us distinguish useful modelling criteria. We experiment with a simple geometry (a
large tumour as in Figure 2.3) and a more complicated one (a cluster of smaller tumour
cells as in Figure 2.4).

We assume that the motion within the tissue is time-periodic with a frequency equal to
that of the forcing oscillations, ω. This allows the system (2.1) to be transformed into the
frequency domain:

ω2U + div (µ∇U) = 0, (x, y) ∈
(
−1

2
,
1
2

)
×
(
−1

2
,
1
2

)
, (2.2a)

U = 1, y = −1
2
, (2.2b)

√
µ
∂U

∂n
+ ıωU = 0, x = ±1

2
, y =

1
2
, (2.2c)

where U is the Fourier transformed displacement field at frequency ω.
The Sommerfeld condition (2.2c) introduces artifacts along the edges when waves are not

traveling perpendicularly to the boundary. To combat this, the simulations were performed
on a larger domain and then trimmed to remove the artifact. This effect is shown in Figure
2.1. Since most of the artifact is removed by trimming in this extreme case when waves are
traveling parallel to the boundary, it is expected that this procedure will perform adequately
when inclusions are introduced that deflect the travelling waves.

The system (2.2) was discretized on a rectangular grid, and converted into the following
matrix problem:

LÛ = R, (2.3)

where Û is a vectorized version of the displacement field, and L is a sparse matrix repre-
senting the discrete version of the left-hand operator with right-hand terms R from Sys-
tem (2.2). This was solved in Matlab using the backslash operator, which implements a
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Figure 2.1 Left: Expanded domain with Sommerfeld conditions applied on the left, right
and bottom sides. Right: trimmed domain to remove artifacts caused by the Sommerfeld

conditions.

Table 2.1 Simulation Parameters

Grid Size 500× 500 points
ω 100 Hz

µbackground 250
µinclusion 750

modified Sparse Cholesky Factorization method. The real component of the solution then
represents the displacement field at time t = 0.

The lengths of the domain were scaled to be a unit square. The background stiffness of
the material was then scaled to admit six full wavelengths, which corresponds to experiments
performed on agar-agar gels in the MRE Lab at Mayo Clinic. The shear modulus for
tumourous regions was set to three times that of the background to agree with the agar-
agar experiments. Simulation parameters are summarized in Table 2.1.

Recall that benign tumours tend to adhere well to the surrounding normal tissue as
compared to malignant tumours. Thus, for the full-adhesion simulations of benign tumours,
we assume that there is a smooth, continuous transition between the background and tumour
tissues. While the waves in Figure 2.3 change their wavelengths when passing through the
stiffer tumourous regions (for reference see Figure 2.2 for the case without an inclusion), the
waves in Figure 2.4 penetrate between the cluster of smaller tumours without a significant
change of wavelengths. That is, there is a higher chance that the latter case will avoid
detection when using the MRE technique.
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Figure 2.2 Propagation of elastic waves with no inclusions.

Figure 2.3 Propagation of elastic waves through a large tumour with perfect adhesion.
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Figure 2.4 Propagation of elastic waves through a diffuse tumour with perfect adhesion.

To simulate a no adhesion property for malignant tumours, we impose a zero Neumann
condition on the tumour-background tissue interface. To reduce complexity, normal deriva-
tives along the interface were estimated using a first-order finite difference scheme. Because
of this zero Neumann condition, the tumour regions are not affected by motions in the
background material as seen in Figures 2.5 and 2.6.

In order to account for adhesive effects more realistically, we propose the following
improved interface conditions to model cellular adhesions:

µ

[
∂U

∂n

]+

−
= α[U ]+−, (2.4)

µ

[
∂U

∂τ

]+

−
= 0, (2.5)

where ‘+’ indicates values in the background region, ‘−’ indicates the tumour region, n
is the normal direction at the interface from background to tumour, τ is the tangential
direction, and α is an experimental jump parameter. Interface derivatives were estimated
using first-order finite differencing. With this jump condition, points along the interface
between background and tumour tissue must be repeated in Û in order to admit the two
values U+ and U− at each interface point. Results are presented in Figure 2.7.

These preliminary experiments support the conjecture that adhesion effects can be ob-
served in the measured displacement field and hence motivate a deeper exploration of multi-
scaling models that incorporate them.
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Figure 2.5 Propagation of elastic waves through a large tumour with no adhesion.

Figure 2.6 Propagation of elastic waves through a diffuse tumour with no adhesion.
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Figure 2.7 From left to right: α = 0 (second image), α = 106 (third image), and contin-
uous boundary U− = U+ (α =∞) (forth image)

.

3 A tri-phasic model

Inspired by [12], we assume that a biological tissue is a mixture of an intrinsically
incompressible, isotropic, porous-permeable-charged linear elastic solid phase containing the
extracellular matrix and the (linear viscoelastic) solid cells, an intrinsically incompressible,
isotropic, Newtonian viscous fluid phase containing the interstitial fluid, and an ion phase
with, for now, two monovalent ion species: anion (-) and cation (+). The solid phase and
the ion phase are electrically charged, while the fluid phase and the tissue as a whole are
electrically neutral.

The constitutive equations are [5, 12]:

σ = −pI + λseI + 2µsε, (3.1)
µw = µw0 + [p−RT (c+ + c−)Φ +Bwe]/ρw, (3.2)
µ+ = µ+

0 + (RT/M+)ln(γ+c
+) + Fcψ/M+, (3.3)

µ− = µ−0 + (RT/M−)ln(γ−c−)− Fcψ/M−, (3.4)

where the first equation is Hooke’s law for the linear elastic phase, and the last equations are
the constitutive equations for the fluid phase and the ion phase. We have denoted by p the
fluid pressure, σ the stress tensor in the elastic solid, ε the strain tensor in the elastic solid
with e = tr(ε) λs, µs the Lamé coefficients which depend on solid volume fraction and ion
concentrations c+, c−, R is the universal gas constant, T is the absolute temperature, Bw
is a coupling coefficient, µw is the chemical potential of the fluid phase, µw0 is the reference
chemical potential of the fluid, Φ is the osmotic coefficient, ρw is the true mass density of
the fluid, ψ is the electric potential, γ+, γ− are the activity potential coefficients, µ+, µ− are
the electro-chemical potentials of the ion species with µ+

0 , µ
−
0 the corresponding reference

electro-chemical potentials, M+,M− are the molar weights of the ionic species, and Fc is
the Faraday constant.
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The governing equations are:

div σ = ρs
∂vs

∂t
, (3.5)

div vs + div Jw = 0, (3.6)
∂(φwc+)

∂t
+ div J+ + div (φwc+vs) = 0, (3.7)

∂(φwc−)
∂t

+ div J− + div (φwc−vs) = 0, (3.8)

where φw is the porosity of the tissue and the water and ion fluxes relative to the solid
phase are given by:

Jw = φw(vw − vs), (3.9)
J+ = φwc+(v+ − vs), (3.10)
J− = φwc−(v− − vs), (3.11)

with vs,vw,v+,v− the velocities of the corresponding phases. The governing equations
need to be solved for the solid displacement and the water and ion fluxes. The boundary
conditions are continuity of these unknown quantities across the boundaries between phases.
It is important to notice that the continuity equations of the ions will need to be changed
such that they model abnormal diffusion processes happening in a tissue when tumours
appear and start to grow. We will address these modeling issues in our future work.

We assume further that a biological tissue is locally homogeneous at the macroscopic
scale and its microstructure is made of periodic pores. Each electroneutral pore is saturated
with the same amount of each of the three phases. The upscaling homogenization must be
done in both spatial and temporal scales, since mechano-chemical processes at the micro-
scale are faster than those at the macro-scale. For simplicity, we can take the Laplace
transform of the governing equations and do only the homogenization in space for the
Laplace transformed quantities. We introduce the small parameter α = x/X << 1 with x
the pore length scale, and X the macroscopic scale length, and assume that

f(x,X;α) = f0(x,X) + αf1(x,X) + α2f2(x,X) + . . . ,

where f is any of the Laplace transforms of us,Jw,J+,J−. Then the corresponding αn-
order boundary value problems, n = 0, 1, 2, . . . will have to be solved. We plan to report
on the solutions to these problems in our further publications.

4 Up-scaling a malignant tumour model

We assume that malignant tumours are characterised by their cells’ dispersion, lack of
adhesion, and higher stiffness relative to surrounding normal tissue. As such, we develop an
elastomeric model for malignant tumours based on a two-scale homogenization, where our
aim is to present the macro-scale effect rendered by elastomeric interactions of individual
tumour cells with normal tissue at the micro-scale.

Figure 4.1 gives a schematic of the classical two-scale homogenization approach. We
assume some small length scale ε, in our case representing the size of a single malignant tu-
mour cell. Assuming a small-scale pattern, we solve a so-called cell- or unit-problem at this
scale, and use the solution to the unit-problem to present a PDE model with average pa-
rameters, effective at scales much larger than ε. From the perspective of resolving malignant



10 Constitutive Models for Tumour Classification

Figure 4.1 Schematic of up-scaling the dispersed malignant tumour model. From the
periodic microscopic model at the left, we solve a pair of unit-problems [centre], and
discover elastomeric parameters describing the average behaviour of the tissue at the large
scale [right].

tumours, our expectation is that the parameters in the PDE up-scaled from this malignant
cell model will differ greatly from those parameters representing a benign tumour.

Although we outline the development below, further details on two-scale homogenization
for divergence-free systems can be found in several texts, see for example [6, 1].

4.1 Two-scale expansion. We examine a two-dimensional malignant cell model, where-
upon the malignant cell is a circle in the centre of an ε-sized square, the remainder of the
square representing healthy cells, see Figure 4.2. Our model is a PDE describing linear
elastomerics in the time-harmonic case:

div(µ∇u) + ω2ρu = 0, x ∈ Ω,[
µ
∂u

∂n

]+

−
= 0, x ∈ Λ,

[u]+− = 0, x ∈ Λ,

(4.1)

In our setting, we recall that only the second of the Lamé parameters, µ, (also the shear
modulus) appears, owing to the remarkable difference between shear and compression wave
speeds, and our subsequent detection only of shear waves in tissue. Parameters ω and ρ
are the driving frequency and tissue density, respectively, and the solution u : Ω → C is
understood to be the complex amplitude of the time-harmonic wave over the domain Ω,
representing the excited tissue. At Λ, the interface between the malignant cell and its
healthy surroundings, we assign two boundary conditions. These conditions represent the
strength of the attachment of the malignant cell to other tissue, understood in reality to
be quite poor. The notation [·]+− represents the jump in the argument from one side of Λ
to the other. The boundary conditions in (4.1) represent a cell that is well-attached to its



Constitutive Models for Tumour Classification 11

Figure 4.2 Unit cell geometry for up-scaling stiffness. The up-scaled stiffness parameter
µ∗ depends on the elastomeric stiffness parameter µ within and without of the malignant
cell, as well as on the boundary conditions at the cell interface.

surroundings. In contrast, setting

µ
∂u

∂n
= 0, x ∈ Λ+, (4.2)

where Λ+ represents the face of the boundary incident on the healthy cells, represents a
malignant cell completely unadhered to the surrounding tissue. We examine these two
extremes here, and suggest alternative boundary conditions which compromise between
these two extremes at the end of this section. In any case, the up-scaled stiffness parameter
µ∗, the effective stiffness at scales much larger than ε, will depend on the stiffness within
and without of the malignant cell circle, as well as on the boundary conditions at the cell
interface.

The up-scaling begins by assuming a two-scale solution,

uε(x) = u(x, x/ε) = u(x, y) ∼ u0 + εu1 + ε2u2 + . . . , (4.3)

where uε is periodic in y, based on the observation that the shear modulus µ = µ(x/ε) =
µ(y). We refer to our ε-domain as Y, which has unit area, and over which we have periodic
boundary conditions. Applying this expansion to our model (4.1), we have

ε−2 [divy(µ∇yu0)] (4.4)

+ ε−1 [divy(µ(∇xu0 +∇yu1)) + divx(µ∇yu0)] (4.5)

+ ε0
[
divx(µ(∇xu0 +∇yu1)) + divy(µ(∇xu1 +∇yu2)) + ρω2u0

]
(4.6)

+O(ε) = 0. (4.7)
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The O(ε−2)-term, combined with the periodic boundary conditions, gives u0 = u0(x). Since
∇yu0 = 0, the O(ε−1) equation is

−divy(µ∇yu1) = divy(µ∇xu0(x)). (4.8)

That is, the adjustment u1 depends linearly on u0(x), and we can write

u1(x, y) =
2∑
i=1

wi∂xiu0, (4.9)

where
−divy(µ∇ywi) = divy(µei) (4.10)

together with boundary conditions on Λ form the unit-problem for the homogenization. ei
are unit basis vectors.

In the O(1)-term in (4.7), we apply the Y-periodicity of the solution, observing that∫
Y

divy(µ(∇xu1 +∇yu2)) =
∫
∂Y
µ(∇xu1 +∇yu2)T n̂ = 0. (4.11)

Thus, substituting ∇xu0(x) =
∑2

i=1 ei∂xiu0, the linear dependence of u1 on ∇xu0 gives the
O(1) equation

divx

[
2∑
i=1

(∫
Y
µ(ei +∇ywi)

)
∂xiu0

]
+ ρω2u0 = 0. (4.12)

Finally, observing that as a weak solution to the unit-problem, the wi satisfy∫
Y

(ei +∇ywi)Tµ∇ywj = 0, (4.13)

we can rewrite (4.12) as
div(µ∗∇u0) + ρω2u0 = 0, (4.14)

where
µ∗ij =

∫
Y

(ei +∇ywi)Tµ(ej +∇ywj) (4.15)

is the up-scaled shear modulus. The up-scaled modulus is clearly symmetric, and it is
possible to show that provided µ(y) > 0, then the operator resulting from µ∗ is uniformly
elliptic. Although it is common practise to normalize this integral by the volume of the unit
cell, we have chosen Vol(Y) = 1 in this case.

Note that in general, even if µ is a scalar at the scale of the unit-problem, representing
an isotropic shear modulus, expression (4.15) shows that it may not be scalar when up-
scaled. In our setting, however, we have chosen the inclusion in our unit-problem to be
circular. This avoids setting any preferred direction in our problem, and hence we expect
our up-scaled shear modulus to be isotropic.

We have ignored any contribution of the Helmholtz term to the up-scaling calculation.
It could happen, however, that for specific frequencies, ω ∼ C/ε for some constant C. In this
setting, we would have to consider the effect of resonance at the scale of the unit problem,
where the unit problem becomes an eigenvalue problem

−div(µ∇φ) + (ρω2 − λ)φ = 0. (4.16)

See the lecture notes [10] for further details. Indeed, there is current research [13] in this
area with respect to cancer treatments, where shear waves are tuned to resonate with and
burst apart malignant cells. We do not pursue this case further here.
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Figure 4.3 Numerical domain for the unit-problems. We discretize the unit-problem
containing a tumour cell as a circular inclusion [left] using triangular finite elements [right].

4.2 Numerical results. We next examine two specific cases where we numerically
solve unit-problems to up-scale the elastomeric effects of dispersed cells. In the first case,
we solve 

−div(µ∇wi) = div(µei), x ∈ Y,[
µ
∂u

∂n

]+

−
= 0, x ∈ Λ,

[u]+− = 0, x ∈ Λ,
wi are Y-periodic.

(4.17)

This unit-problem represents the case where the malignant cell is well-adhered to the sur-
rounding tissue. We are aware that this case represents the opposite of our understanding
of the biology, and we provide it for comparison with the following, more realistic model.

The second case we consider is
−div(µ∇wi) = div(µei), x ∈ Y,

µ
∂u

∂n
= 0, x ∈ Λ+,

wi are Y-periodic.

(4.18)

This represents a tumour cell completely unadhered to its surroundings. Although an ex-
treme representation, it is straightforward to implement, and will suggest the effect bound-
ary conditions present at the micro-scale can have on the up-scaled shear modulus.

In both cases, we choose µ = µ0 = 1 in the healthy tissue, and µ = µ1 = 3 in the
malignant cell. A ratio of µ0 : µ1 = 1 : 3 is consistent with laboratory measurements of the
shear modulus of healthy and cancerous tissue. Figure 4.3 shows the unit cell, discretized
using triangular finite elements. We use Jonathan Shewchuk’s Triangle program [11] to
produce the triangulation.
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Figure 4.4 Well-adhered [left] and poorly-adhered [right] model unit-problems con-
trasted. Note that no information reaches the interior of the model cell in the case where
the cell is poorly-adhered to its surroundings. Only the solutions to the x-direction unit-
problem are shown: the y-direction solutions are simply these solutions rotated 90-degrees.

Table 4.1 Results of two contrasting unit problems. The shear modulus of the well-
adhered cell is nearly double that of the case where the model cell is poorly-adhered to its
surroundings.

Well-adhered problem (4.17) µ∗ = 1.22
Poorly-adhered problem (4.18) µ∗ = 0.672

Figure 4.4 contrasts the unit-problems for the well-adhered and poorly-adhered cases.
(We show only the x-direction problems in each case. The y-direction problems are identical,
only rotated 90-degrees.) The difference in the two problems is striking, showing the lack
of flow of any information to the interior of the model cell in the case where the cell is
poorly-adhered. This surely has an effect on the up-scaled shear modulus, as we see in the
final results.

Table 4.1 summarizes our results, computing the integrals in (4.15) from the solutions
in Figure 4.4. As anticipated by our choice of circular inclusion in the unit-problem, the
up-scaled shear modulus is isotropic and we report only the diagonal values of (4.15). In
summary, the case where the cell is poorly-adhered has a shear modulus half that of the well-
adhered case. This indicates that the adherence of the malignant cells to the surrounding
healthy cells can distinguish them from other cells, despite the small-scale dispersion of the
malignant cells.

4.3 Further work. Following the homogenization framework, we propose several ex-
tensions to this up-scaling. The two most important modifications to the above model are
to the boundary conditions at the malignant-normal cell interface, Λ, above, and to the
choice of the shape of Λ.

Boundary conditions: We propose modeling the interface between normal and malig-
nant cells according to the schematic of Figure 4.5. The schematic shows the cross-linking
structures present between all cells, but in fewer number and stiffness between malignant
cells and their surroundings. This reduced number of cross-links is precisely what reduces
the adhesion between infected and normal cells, and affects a spring constant relating the
normal stresses to the displacements of the cells, just as for one-dimensional Hooke’s springs.
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Figure 4.5 Model of the interface between normal and malignant cells. The density
and strength of the cross-links, represented as wiggly lines, determines an effective spring
constant relating normal stresses on each surface. Not shown is the visco-elastic effect of
the fluid between the surfaces.

Furthermore, not shown in the schematic, the thin layer of pseudo-fluid between in-
fected and normal cells gives a visco-elastic relationship between the two surfaces, such that
the tangential stresses on the two surfaces are related to the relative strain rate of the sur-
faces. Combining the normal, n, and tangential τ , stress effects, we suggest the boundary
conditions [

µ
∂u

∂n

]+

−
= −α [u]+− , (4.19)[

µ
∂u

∂τ

]+

−
= −iωβ [u]+− . (4.20)

Note the imaginary number i =
√
−1 in the tangential condition, corresponding to a time-

derivative for representing the strain rate.
The separation distance between cells, ε in Figure 4.5, is assumed sufficiently small

that the constants α, β effectively summarize the adhesive properties of the malignant cell.
Although the adhesion constants depend on properties of the normal-malignant interface
we change the strain rate experimentally by tuning the driving frequency ω. Such tuning
may allow us to take advantage of the particular adhesion coefficients in order to better
detect malignant cells in the up-scaled shear stress.

Owing to the additional data structure required to represent this solution (two values for
u are required on each mesh vertex on Λ) implementing this condition, and understanding
its contribution to the up-scaled constitutive law, will have to remain future work for the
time being.

Random cell orientation: Although the choice of a spherical malignant cell is realistic
insofar as it predicts no anisotropy in the up-scaled constitutive law, malignant cells are
more likely to be football-shaped, such as that depicted in Figure 4.6, with orientation or
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Figure 4.6 A more realistic malignant cell model shape. To avoid anisotropy in the up-
scaled constitutive law, the orientation or other features of the cell geometry will have to
be chosen in a random manner.

other features of the cell geometry being random. Such stochastic homogenization, where
the aim is to compute the statistics of the constitutive law from the statistics of, in our
case, the cell geometry, has been studied, and appears, for example, in lecture notes [10].
However, this is beyond the scope of our present investigation, and further study is required
to see the effects of up-scaling a randomized unit problem.

5 Conclusion

The aim of this paper was to formulate new mathematical models that will be able
to differentiate not only between normal and abnormal tissues, but, more importantly,
between benign and malignant tumours. We pursued the following three approaches: (i)
the simulation of the time-harmonic linear elastic models to examine coarse scale effects
and adhesion properties, (ii) the investigation of a tri-phasic model, with the intent of
upscaling this model to determine effects of electro-mechanical coupling between cells, and
(iii) the upscaling of a simple cell model as a framework for studying interface conditions
at malignant cells. Each of these approaches has opened exciting new directions of research
that we plan to study in the future.
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Abstract. This report investigates a new possible molecular mechanism for the
pathogenesis of hydrocephalus. New research by Dr. Miles Johnston [4] has found
that the injection of anti β1 integrin antibodies into the ventricle of rats causes a
drop in parenchymal pressure and causes the cerebral ventricles to enlarge which is
characteristic of hydrocephalus. We investigate intramantle pressure gradients as
a possible force to enlarge the ventricles and we propose a new poroelastic model
incorporating the effect of the antibodies to determine if they are a possible mech-
anism for hydrocephalus.

1 Introduction

Hydrocephalus is a condition of the brain characterized by an accumulation of cere-
brospinal fluid (CSF) in the brain and the resulting expansion of the cerebral ventricles and
compression of the brain parenchyma. The four ventricles of the brain (two lateral, one
third and one fourth ventricle) are located in the centre of the brain tissue and CSF flows
from the lateral ventricles through the aqueducts to the third and fourth ventricles into the
subarachnoid space. CSF also flows through the brain tissue into the subarachnoid space
where it circulates with the spinal CSF and is absorbed by the arachnoid villi.

There are two classes of hydrocephalus: the first class, non-communicating hydro-
cephalus, occurs when there is an obstruction to the normal flow and circulation of CSF
causing it to accumulate in the ventricles. Due to the obstruction (such as a tumour) a large

1kpwilkie@uwaterloo.ca

c©2009

19



20 A Mechanism for Ventricular Expansion in Hydrocephalus

pressure gradient exists between the ventricles and the subarachnoid space surrounding the
brain parenchyma. This large pressure gradient is the cause of the ventricular expansion
that occurs in this class of hydrocephalus.

Communicating hydrocephalus, the second class of hydrocephalus, occurs when there
is no impediment to the normal flow of CSF from the ventricles, but when there is an
imbalance between the production and absorption of CSF. Large pressure gradients cannot
exists across the parenchyma in this class and so there is no obvious mechanism to explain
the ventricular enlargement that occurs. This lack of a physical mechanism for ventricular
expansion in communicating hydrocephalus was the focus of our study group.

1.1 Previous investigations. Linninger et al. [3] placed pressure sensors (transduc-
ers) in the ventricular CSF, the brain parenchyma, and the CSF of the subarachnoid space
and showed that no significant difference was visible between the measured pressures before
and after inducing kaolin hydrocephalus in dogs. However, it is possible that small, and
perhaps transient, pressure differences do exist between the ventricular CSF and the brain
parenchyma or subarachnoid space which were below the sensitivity of the transducers and
which could provide a possible mechanism for ventricular enlargement.

In 2002, Peña et al. [5] numerically simulated hydrocephalus using a finite element
method to solve Biot’s equations of consolidation [1], now known as poroelasticity theory.
They showed that a drop in parenchymal pressure coupled with a reduced elastic modulus
produced the ventricular enlargement characteristic of hydrocephalus. In order to maintain
a low pressure region inside the parenchyma, they assumed that CSF was absorbed by
the parenchyma, which was represented mathematically by inserting sink terms into Biot’s
equations. No physical explanation of the reduced elasticity or of the absorption process
was given.

Recent experiments by Wiig et al. [8] showed that the dissociation of α1β1 integrins in
the skin results in a significant reduction in the local interstitial fluid pressure. Nagra et
al. [4] showed that this reduction in local pressure also occurs in brain parenchyma which
suggests that β1 integrin dissociation may provide a possible mechanism for the pathogenesis
of hydrocephalus.

In Johnston’s experiments [4], either antibodies to β1 integrins or IgG/IgM isotype
controls were injected into the lateral ventricle of adult rats. The ventricular or parenchy-
mal pressures (measured 500-600 µm from the anterior horn of the lateral ventricle) were
recorded with a servo-null micropipette (2 µm tip) before and after the antibodies or con-
trols were injected in one group of rats. These measurements showed that following the
injection of antibodies, the parenchymal pressure decreased relative to the pre-injection
value. This drop in parenchymal pressure was not observed when controls were injected.

The remaining rats were sacrificed two weeks post injection and the brains were fixed
with 10% formalin before coronal sections were obtained. The rats that received controls
presented no ventricular enlargement but the rats that received anti β1 integrin antibodies
presented considerable ventricular enlargement.

Dr. Miles Johnston presented these results to the OCCAM-Fields-Mitacs workshop and
proposed the following questions to our study group.

Question 1: Can one predict a ventricle size given a defined pressure gradient between
the ventricles and the periventricular area?

Question 2: What is the smallest pressure gradient that would expand the ventricles?
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These questions are difficult to answer accurately due to the dependence of tissue defor-
mation on the material properties of brain parenchyma, which are difficult to determine
experimentally and which vary in the reported literature. The second question is also diffi-
cult to answer since it is not quantitative in nature. Any applied pressure gradient would
expand the ventricles by some amount, however small that expansion may be.

This study addresses two objectives that aim to answer or extend the concepts of interest
to Dr. Johnston.

Objective I: To determine the percentage of ventricular volume increase that occurs
due to an intramantle pressure gradient of 400 − 500 Pa and investigate the depen-
dence of this increase on the pressure distribution through the brain parenchyma.

Objective II: To formulate a model to investigate the hypothesized macroscopic me-
chanical effects of anti β1 integrin antibodies on brain parenchyma to determine if
they are sufficient to induce hydrocephalus.

2 Intramantle Pressure Gradients - Objective I

To predict the ventricular volume increase given a prescribed pressure difference between
the ventricles and the periventricular area (intramantle gradient), by defining a pressure dis-
tribution across the parenchyma, we use previous studies to define governing equations for
our specific problem. In previous models of hydrocephalus [7, 2, 6] differential equations
are used to describe the radial displacements of brain parenchyma in a simplified geometry,
shown in Figure 1. In all three models, the brain is assumed to have a spherical or cylin-
drical geometry, and displacement and pressure distributions are assumed to be radially
symmetric, allowing the differential equation to be solved in one-dimension.

These models are based on Biot’s theory of consolidation [1] which describes the be-
haviour of porous elastic media under loads. The main limitation of Biot’s theory is that
it is based on linear elasticity, which is only applicable for small strains. To account for
large strains, nonlinear elasticity should be used, however this is mathematically much more
complicated.

The poroelastic model developed by Levine [2] is implemented to address the first ob-
jective in this study. MAPLE and MATLAB are used to solve the equations derived by
Levine [2] describing parenchymal displacement in the spherical brain given a defined pres-
sure distribution. The steady pressure profile was also determined according to Levine’s
theory [2].

2.1 Equations for displacement. Levine’s equation for radial displacement is ob-
tained from the quasi-static version of Biot’s equations [1] assuming the displacement func-
tion u and pressure distribution P are radially symmetric. If we write u(r) for the radial
displacement at radius r, the following equation (given by Levine [2]) relates radial dis-
placement and pressure:

∂2u

∂r2
+

2
r

∂u

∂r
− 2u
r2

=
(1− 2ν)α
2G(1− ν)

∂P

∂r
, (2.1)

where G is the shear modulus and ν is the Poisson’s ratio of the saturated poroelastic solid.
The parameter α, according to Biot [1], represents the ratio of the volume of fluid squeezed
out to the volume change of the parenchyma if the parenchyma is compressed while allowing
fluid to escape. In the following, the brain tissue is assumed to be incompressible. If the
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Figure 1: Schematic of the spherical brain. The brain is assumed to be a sphere, with a concentric spherical
void in the middle representing the ventricles. CSF may either flow through the parenchyma or out through
a channel representing the foramena and aqueduct. For our purposes, we consider the channel to be small
enough that it does not affect the displacements near it. This allows for radially symmetric functions and
reduces the number of dimensions in the problem.

parenchyma is compressed, the volume loss must be solely due to fluid loss or pore shrinkage.
Thus, in the following, we assume that α = 1.

Boundary conditions at the inner and outer boundaries of the brain are defined for (2.1).
At the inner boundary, located at r = ri, equivalent normal forces must act on the fluid
phase and the solid phase. Assuming zero rate of strain within the ventricle this translates,
in the radial formulation of Levine2, as:

(α− 1)P (ri) =
[
2G

∂u

∂r
+

2Gν
1− 2ν

(
∂u

∂r
+ 2

u

r

)]
r=ri

. (2.2)

At the outer boundary, r = ro, there are two possible boundary conditions. One option
is to impose the same condition on the forces at the outer boundary as at the inner boundary.
This gives the boundary condition:

(α− 1)P (ro) =
[
2G

∂u

∂r
+

2Gν
1− 2ν

(
∂u

∂r
+ 2

u

r

)]
r=ro

. (2.3)

This condition describes hydrocephalus in infants where the unfused skull may deform to
accommodate the enlarged brain.

Levine imposes the following condition describing adult hydrocephalus:

u(r0) = 0, (2.4)

2It is our opinion that Levine has a mistake at this stage. On the left hand side of the Equation (2.2)
Levine would have −P (ri) according to equation (14) of [2], but this disagrees with both Equation (12) from
[7] and Equation (4.3) from [6]. Levine seems to neglect the −αP term in the first of the equations (12) in
[2]. Equation (2.2) is what we believe to be correct.
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which enforces zero displacement at the outer boundary due to the rigid skull preventing
radial expansion of the outer surface of the brain. This boundary condition, however,
excludes contraction of the outer surface of the brain which means the brain behaves like
it is welded to a perfectly rigid skull at the outer boundary.

If the model always predicts positive radial displacement then this is not a problem,
since the boundary condition prevents expansion. However, in some cases the pressure
distributions cause negative radial displacement near the outer boundary, indicating that
the imposed boundary condition is preventing contraction of the outer surface of the brain.

The appropriate course may be to solve for the displacement using the boundary con-
dition (2.3) and then, if u(ro) > 0, apply a corrective radial traction at the outer boundary
such that u(ro) = 0. The magnitude of the corrective traction will correspond to the force
exerted on the brain by the skull. The end result should be equal to that obtained by
replacing (2.3) with (2.4).

2.2 Equations for pressure. The models in [7, 2, 6] all include a differential equation
describing the pressure distribution in the brain. They are based on the static or quasi-
static assumption that the volume fraction of the brain occupied by CSF at each point does
not vary in time, and that the flow of fluid in the brain obeys Darcy’s law. Levine [2] writes
these equations as:

Vr(r) = −k′∂P
∂r

, (2.5)

Vab = k̂P, (2.6)

∂ζ

∂t
= k′

(
∂2P

∂r2
+

2
r

∂P

∂r

)
− k̂P. (2.7)

Here, Vr(r) is the radial flow of CSF, which corresponds to φv(r), where φ is the volume
fraction of CSF at a given point and v(r) is the radial velocity of the fluid at the same point.
Equation (2.5) is Darcy’s law where k′ is the hydraulic permeability of the parenchyma.
Equation (2.6) is Starling’s law which relates the volume of CSF absorbed per unit volume
of the parenchyma per unit time (Vab) to the pressure difference across the capillary wall.
Here k̂ is the absorbtion coefficient. This equation assumes that blood pressure and net
colloid osmotic pressures sum to zero, leaving P as the driving force behind the transfer of
fluid from the interstitium into the capillaries. Equation (2.7) gives an expression for the
increment of fluid content, ζ = ζ(r, t), in the parenchyma (ζ = φ − φ0, if φ0 is the initial
volume fraction of fluid in the parenchyma). The two factors affecting the volume fraction
of fluid are the absorbtion of fluid by capillaries and the divergence of the fluid flow.

In the quasi-static case, where
∂ζ

∂t
= 0, we have

d2P

dr2
+

2
r

dP

dr
− k̂

k′
P = 0. (2.8)

The boundary conditions specified by Levine [2] are:

P (ri) = Pv and P (ro) = 0,

where Pv is the ventricular pressure. However, in communicating hydrocephalus the ven-
tricular space and the subarachnoid space are connected via the cerebral aqueduct, so the
boundary conditions should be closer to

P (ri) = P (ro) = Pv. (2.9)



24 A Mechanism for Ventricular Expansion in Hydrocephalus

2.3 Radial displacement and ventricular expansion. It is probable that the ab-
sorbtion and permeability coefficients vary spatially and thus by choosing k̂ and k′ appro-
priately, one may obtain a pressure profile of any desired shape. For now, these coefficients
are assumed to be constant and their ratio is defined as k = k′/k̂. Equation (2.8) is solved
subject to (2.9) to obtain pressure profiles for various values of the ratio k.

Figure 2 illustrates the dependence of this pressure distribution on the ratio k as well
as the dependence of the parenchymal displacement (determined by (2.1) with boundary
conditions (2.2) and (2.4)) on the pressure profile. When absorption is equal to permeability
(k = 1), pressure drops only slightly mid-parenchyma which causes the negligible deforma-
tion seen in Figure 2b. When absorption dominates permeability (k � 1), significant drops
in pressure occur mid-parenchyma and small negative displacements result near the outer
surface of the brain.
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Figure 2: (a) Pressure profiles obtained by solving (2.8) with (2.9) for various values of k, and (b) the
corresponding displacements obtained by solving (2.1) with boundary conditions (2.2) and (2.4). The red
dotted curves are for k = 1 and the blue solid and green dashed curves are for k � 1 (G = 8 kPa and
ν = 0.35).

If a small pressure gradient from the ventricles to the subarachnoid space was applied as
well as the given pressure distribution through the parenchyma, the negative displacements
near the outer boundary may be changed to positive displacements. A small pressure
gradient, less than 1 mmHg, would be below the sensitivity of the transducers used by
Linninger et al. [3], and thus would not have been observed in their measurements.

To investigate the dependence of displacement on the shape of the pressure distribution
through the parenchyma, two types of pressure profiles were constructed, inverted spike
profiles and trough profiles. The constructed pressure profiles and their corresponding
displacements according to (2.1) with (2.2) and (2.4) are shown in Figure 3. The pressure
spikes cause the majority of the parenchyma to move inward while the ventricle walls move
outward creating compression in the middle of the parenchyma. The trough profiles cause
the majority of the parenchyma to move outward while a region near the outer boundary
moves inward, again creating compression of the parenchyma.
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Figure 3: Hypothetical spike (a) and trough (c) pressure profiles and the corresponding displacements, (b)
and (d) respectively, obtained from (2.1) with (2.2) and (2.4) (G = 8 kPa and ν = 0.35).

Assuming a spherical ventricle, the percentage change in volume due to the trough
pressure profiles from Figure 3c are given by the formula:

Percentage Change = 100
∆V
V

= 100
(r + dr)3 − r3

r3
.

Thus, at the ventricle wall, the percentage increase in volume due to a drop of 400 Pa is
3.2% and the percentage increase in volume due to a drop of 800 Pa is 6.7%, approximately
double the increase caused by a 400 Pa drop. These percentages, however, depend on the
values of G (8 kPa) and ν (0.35) used in the computation of displacement.
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2.4 Discussion. The ventricular enlargements predicted by this model are small com-
pared to the expansion seen in Johnston’s animal experiments [4]. There are two possi-
ble explanations for this discrepancy. First, the material parameters of the animal brain
parenchyma were not known and so rough estimates of the values were used. And second,
the expansion seen in the animal experiments occurred over a time scale of two weeks. The
displacements predicted by this model are equilibrium solutions, but the time scale on which
this occurs is not known and may in fact be quite small depending on the material prop-
erties of the parenchyma. Thus, it is possible that large displacements may occur if these
pressure distributions reoccur transiently and in response to each transient the parenchyma
actively restructures its extracellular environment.

3 The Physical Mechanism - Objective II

To investigate the potential role of anti β1 integrin antibodies in reducing the interstitial
fluid pressure observed in the parenchyma, we hypothesize that the dissociation of the β1

integrins creates a drop in local parenchymal pressure by changing the mechanical properties
of the tissue, such as the elasticity, permeability, and absorption coefficients.

More specifically, the antibodies bind to the β1 integrins that protrude from cell mem-
branes. Tissue cells are attached to the extracellular matrix (ECM) via integrins, and this
forms the tight and rigid matrix structure of the tissue. When the integrins are blocked by
the antibodies, the ability of cells to adhere to the ECM is reduced, increasing cell motility
and decreasing the rigidity of the tissue structure, see Figure 4. We hypothesize that when
cell adhesion decreases, the matrix relaxes slightly which creates a local drop in pressure
and reduces the elasticity of the tissue.

Figure 4: Schematic of the effect of antibodies on the extracellular matrix as cells lose their ability to bind
to the matrix.

3.1 Deriving the model. To test this hypothesis, we develop a model on a macro-
scopic scale that considers the concentration of antibodies in the parenchyma and their
overall effect on the tissue mechanics. To account for the flow of CSF (and thus antibodies)
through the tissue the theory of linear poroelasticity based on Biot’s theory of consolida-
tion [1] is applied to the problem. In the model, material parameters that are assumed to be
affected by the β1 integrin antibodies, such as elasticity and permeability, have spatial and
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temporal dependence determined by the antibody concentration history. The concentration
of antibodies is governed by a convection-diffusion equation.

Let Ω ⊂ R3 be the domain of the parenchyma, then on Ω conservation of momentum
at steady-state, neglecting the inertia terms, gives,

∇ · τ = 0. (3.1)

Here, τ is the total stress tensor and is defined by

τij = σij − pδij , (3.2)

where σ is the effective stress tensor and p is the hydrostatic pressure. The effective stress
is defined by

σij = λekkδij + 2Geij , (3.3)

where λ = λ(x, t) and G = G(x, t) are the Lamé parameters of elasticity which depend on
space and time due to the antibody concentration history through the parenchyma. The
strain is assumed linear:

eij =
1
2

(
∇~u+∇~uT

)
, (3.4)

with ~u the displacement of the material and (·)T the transpose operator.
Combining (3.1)–(3.4) gives the following equation of motion:

0 = −∇p+ (λ+G)∇(∇ · ~u) +G∇2~u

+(∇ · ~u)∇λ+ (∇~u+∇~uT ) · ∇G.
(3.5)

The first line in (3.5) is the standard equation of motion in linear poroelasticity and the
second line arises due to the spatial variability of λ and G.

Darcy’s law relates the velocity of the fluid through the porous material to the gradient
of the pressure:

φ ~W = −k′∇p. (3.6)

Here, φ is the porosity (or the fluid volume fraction which is equivalent in a saturated
media), ~W is the filtration of the fluid (defined to be the velocity of the fluid relative to the
solid phase), and k′ = k′(x, t) is the hydraulic permeability.

Remark 3.1 In order for CSF pressure to be equal in the ventricle and the subarachnoid
space and to be lower inside the parenchyma, an absorption process must occur in the
parenchyma to remove the fluid. One possible explanation is that the anti β1 integrin
antibodies degrade the blood brain barrier so that CSF is readily absorbed by the capillaries.
This theory, however, is not complete since it only considers hydrostatic pressure gradients
as the driving force for CSF into the capillaries.

A more complete explanation for parenchymal absorption is that the antibodies alter
the osmotic pressure gradient that exists across capillary walls. By altering the osmotic
gradient, CSF can be absorbed into the capillaries even when hydrostatic pressure gradients
appear to be inconsistent with such absorption.

Applying conservation of mass to the fluid and solid phases gives

φt +∇ ·
(
φ( ~W + ~ut)

)
= −Q(x, t) and (1− φ)t +∇ · ((1− φ)~ut) = 0,
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where Q(x, t) represents absorption of CSF by the capillaries (due to osmotic pressure
gradients) and depends on space and time due to the antibody concentration. Adding these
two equations gives

∇ · (φ ~W + ~ut) = −Q(x, t).
Taking the divergence of Darcy’s Law (3.6) and substituting into the above equation gives
a second equation relating pressure to displacement:

∇k′ · ∇p+ k′∆p = ∇ · ~ut +Q(x, t). (3.7)

Finally, the concentration of antibodies in the parenchyma is governed by the convection-
diffusion equation:

ct +∇ · (c ( ~W + ~ut)) = D∆c− αc, (3.8)
where D is the diffusion constant and α is an absorption constant. The initial condition
c(0) = 0 is prescribed meaning that for all ~x the antibody concentration is zero at t = 0.

The remaining model parameters satisfy the following evolution equations and initial
conditions:

k′t = νc k′(0) =
k

η
(3.9)

λt = −γH(λ− λcrit)c λ(0) = λ0 (3.10)

Gt = −µH(G−Gcrit)c G(0) = G0 (3.11)

Qt = ρH(Qcrit −Q)c Q(0) = Q0 (3.12)

φt = −∇ ·
(
φ( ~W + ~ut)

)
−Q(x, t) φ(0) = φ0 (3.13)

where ν, γ, µ, and ρ are positive constants, k is the initial permeability of the parenchyma,
η is the viscosity of the CSF, H(·) is the Heaviside function, the subscript crit denotes the
critical value (maximum or minimum), and the subscript 0 denotes the initial value.

We assume the same spherical geometry as Figure 1, and thus prescribe boundary
conditions at the ventricle boundary, r = ri, and the subarachnoid space boundary, r = ro.
The pressure in the parenchyma should equal the pressure in the ventricle, pi, at r = ri and
it should equal the pressure in the subarachnoid space, po, at r = ro, or:

p(ri) = pi and p(ro) = po.

Note that for communicating hydrocephalus, pi should approximately equal po.
The boundary condition for displacement arises due to the continuity of stress at each

boundary. That is, the effective stress at each boundary is zero:

σijnj = 0 at r = ri and at r = ro.

Note that this case represents infant hydrocephalus where the cerebral plates have yet to
fuse and so the skull may enlarge. For adult hydrocephalus, where the skull is rigid, the
outer boundary condition should be changed to u(ro) = 0.

Finally, the boundary conditions for the concentration of antibodies are:

c(ri) = c0e−θt and c(ro) = 0.

The inner condition represents an exponentially decaying source of antibodies in the ven-
tricle which approximates the bolus injection draining through the aqueduct. The outer
condition represents absorption of the antibodies through the normal CSF absorption mech-
anisms (arachnoid villi or lymphatic drainage).
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3.2 Sensitivity to permeability and absorption. Equations (3.5) and (3.7) are
coupled equations for displacement and pressure. By assuming a quasi-static state, ~ut = 0,
the equations are decoupled giving a single equation determining the pressure:

∇k′ · ∇p+ k′∆p = Q(x, t). (3.14)

The quasi-static state assumes the pressure distribution changes and the solid deforms in
response to the pressure change. In reality, the deformation of the solid affects the pressure,
but this simplifying assumption is made here to decouple the problem.

An indication of the modelling attempt is obtained by solving (3.14) with prescribed
hydraulic permeability and absorption as either constants or linear functions of r. The
linear functions used are k′ = 0.05(1 − r) and Q = 800(1 − r) and the constants used are
k′ = 0.05(1 − 0.2) and Q = 800(1 − 0.2) for 0.2 ≤ r ≤ 0.8. These functions and values are
not physical and were chosen for simplicity. Figure 5 shows these results.
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Figure 5: Pressure distributions through the parenchyma assuming constant permeability or variable
permeability for either constant absorption (a) or variable absorption (b).

As shown in the simulated pressures in Figure 5, variable permeability slightly lowers
the minimum of the pressure curve and absorption strongly affects the shape of the pressure
profile. This results from (3.14), since the only solution with Q(x, t) = 0 is p = pi = po.
Thus, absorption in the parenchyma significantly affects the pressure distribution through-
out the brain tissue but permeability does not, so hydraulic permeability, k′(x, t), may be
assumed constant to further simplify the model.

4 Conclusions and Future Work

In working to complete the two objectives outlined in this report, we have identified
the pressure distribution throughout the parenchyma and the material parameters of brain
tissue as important factors. Future work addressing Objective I would investigate incor-
porating the compressibility of brain tissue (α < 1) into the model and would perform
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a sensitivity analysis on how the percentage volume change of the ventricles varies with
respect to the model parameters (G and ν in the linear elasticity case as well as k′ and k̂).

Objective II presents a new model capable of simulating the effect of the antibodies on
brain tissue. Future work would include solving the model presented in Section 3.1 and
comparing the displacement results to those discussed in Objective I which were obtained
from Levine’s model [2]. A first approach would be to use the quasi-static state assumption
to decouple the model equations for pressure and displacement and to assume constant
permeability. A finite element scheme may be necessary to solve the fully coupled model.
The large number of model parameters that must be determined from experimental data
and the fact that the model is based on linear elasticity are the main limitations of the
proposed model.

This preliminary investigation seems to indicate that our assumed mechanical alter-
ations resulting from the injection of anti β1 integrin antibodies provides the necessary
environmental changes in the parenchyma for the pathogenesis of hydrocephalus. A drop
in interparenchymal pressure combined with the required increase in CSF absorption by
the parenchyma creates the necessary conditions for ventricular enlargement. Add to this,
the possibility that antibodies may decrease the elasticity of brain tissue and even more
favourable conditions for hydrocephalus are created.

References

1. M.A. Biot, General theory of three-dimensional consolidation, J. App. Phys. 12 (1941), no. 2, 155–164.
2. D. N. Levine, The pathogenesis of normal pressure hydrocephalus: A theoretical analysis, Bull. Math.

Biol. 61 (1999), 875–916.
3. A.A. Linninger, C. Tsakiris, D.C. Zhu, M. Xenos, P. Roycewicz, Z. Danziger, and R. Penn, Pulsatile

cerebrospinal fluid dynamics in the human brain, IEEE Trans. Biomed. Eng. 52 (2005), no. 4, 557–565.
4. G. Nagra, L. Koh, I. Aubert, M. Kim, and M. Johnston, Intraventricular injection of antibodies to β1-

integrins generates pressure gradients in the brain favoring hydrocephalus development in rats, Am. J.
Physiol. Regul. Integr. Comp. Physiol. 297 (2009), no. 5, R1312–1321.

5. A. Peña, N.G. Harris, M.D. Bolton, M. Czosnyka, and J.D. Pickard, Communicating hydrocephalus: the
biomechanics of progressive ventricular enlargement revisited, Acta Neurochir. Suppl. 81 (2002), 59–63.

6. A. Smillie, I. Sobey, and Z. Molnar, A hydrostatic model of hydrocephalus, J. Fluid. Mech. 539 (2005),
417–443.

7. G. Tenti, S. Sivaloganathan, and J. M. Drake, Brain biomechanics: Steady-state consolidation theory of
hydrocephalus, Can. Appl. Math. Q. 7 (1999), no. 1, 93–110.

8. H. Wiig, K. Rubin, and R.K. Reed, New and active role of the interstitium in control of interstitial fluid
pressure: Potential therapeutic consequences, Acta Anaesthesiol. Scand. 47 (2003), no. 2, 111–121.



Proceedings of the OCCAM–Fields–MITACS Biomedical Problem Solving Workshop, 2009

Mediators of mechanotransduction between bone cells

Problem Presenter: Svetlana V. Komarova (McGill University)

Contributors: Luciano Buono (UOIT), Svetlana V. Komarova (McGill University), Mon-
serratt Lopez (McGill University), Robert M. Miura (NJIT), Adam Pan (University of
Toronto), Mary Pugh (University of Toronto), Sanjive Qazi (Gustavus Adolphus College),
David J.N. Wall (University of Canterbury, NZ), Thomas J.W. Wright (Hospital for Sick
Children)

Report prepared by1: S.V. Komarova, M. Lopez, R.M. Miura, S. Qazi, and D.J.N. Wall.

1 Introduction

Mechanical forces are known to regulate the function of tissues in the body, including
bone. Bone adapts to its mechanical environment by altering its shape and increasing its size
in response to increases in mechanical load associated with exercise, and by decreasing its
size in response to decreases in mechanical load associated with microgravity or prolonged
bed rest [8]. Changes in bone size and shape are produced by a cooperative action of two
main types of the bone cells - osteoclasts that destroy bone and osteoblasts that build
bone [7]. These cell types come from different developmental origins, and vary greatly
in their characteristics, such as size, shape, and expression of receptor subtypes, which
potentially may affect their responses to mechanical stimuli [4]. The objective of this study
is to compare the responses of osteoclasts and osteoblasts to mechanical stimulation.

2 Experimental Setup

Bone marrow cells were isolated and plated on a glass-bottom culture dish. The cultures
were treated for 4-8 days with ascorbic acid to induce osteoblast differentiation and with
RANKL to induce osteoclast differentiation. On the days of the experiments, each dish was
first loaded with calcium-sensitive dye fura-2, then the dye was washed out and the dish
was placed on the microscope stage. A single cell in the field was identified as an osteoblast
or osteoclast based on its morphological features - osteoblasts are small spindle-shaped
mononucleated cells and osteoclasts are large cells of 30-60 µm in diameter that contain more
than 2 nuclei. Changes in emission at 510 nm following alternating illumination at 340 and
380 nm were recorded, from which cytosolic free calcium concentrations [Ca2+]i were later
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calculated based on a calibration. For each experiment, after 10 s of basal recording, a single
osteoclast or osteoblast (primary cell) was gently touched by a micropipette (mechanical
stimulation) and changes in [Ca2+]i in the primary cell as well as other cells in the field
(secondary cells) were recorded over 80-120 s. In response to the mechanical stimulation, the
primary cell exhibited an increase in [Ca2+]i that was fast at the onset and then declined
relatively slowly. In the neighbouring cells, delayed elevations in [Ca2+]i were observed
consistent with a release of a mediator(s) from a primary cell. To examine if the nature
of a mediator can be identified from these experiments, 3 independent recordings with
an osteoblast as the primary cell and 5 independent recordings with an osteoclast as the
primary cell were analyzed.

3 Analysis and Modelling

3.1 Data analysis of osteoblast and osteoclast recordings. For each experiment,
the following information was available:

1. The geographic location of different cells.
2. The temporal dependence of [Ca2+]i in the primary and secondary responders.

From these data we have assessed the following parameters:

1. The distance R between the centroids of the primary (stimulated) and each of the
secondary cells.

2. The time t between the onset of [Ca2+]i elevation in the primary cell and in each of
the secondary responders.

3. The apparent diffusion coefficient (R2/t) for each secondary responder.
4. The maximum amplitudes of [Ca2+]i in the primary and secondary responses.
5. The frequency and power of the oscillatory component present in the secondary

responders.

Analysis of covariance (ANCOVA) was performed to assess the significance of the dis-
tance and the experimental factors on the apparent diffusion coefficient. In the model,
the distance factor was the co-variate on the experimental factor, and an interaction term
was included to determine if any effect of distance was dependent on the experiment. We
log transformed the apparent diffusion coefficient measurement for each cell response to
homogenize the group variance and normalize the scatter around the line of best fit. The
null hypothesis was that the apparent diffusion coefficient will not be different between
experiments and will be consistent for all cell responses for all distances from the source.
To test for significance of the departure from the null hypothesis, an F -test with an F -
distribution was used to compare statistical models. The probability value P of less than
0.05 was deemed significant [2]. We have found that if the primary cell was an osteoblast,
then the three different experiments demonstrated similarity in the apparent diffusion coef-
ficient (R2/t; ANCOVA, F2,44 = 0.25, P = 0.78). In contrast, the experiments in which an
osteoclast was the primary cell demonstrated significant difference in R2/t between different
experiments (F4,22 = 4.25, P = 0.011), while R2/t remains consistent within experiments
(Figure 1A; ANCOVA Interaction term, F4,22 = 1.22, P = 0.33).

We further investigated the dependence of R2/t on distance from a primary cell, and
found that in osteoblast experiments, it positively correlated with the distance (Figure 1B;
F1,44 = 8.68, P = 0.005). This dependence was weaker or non-existent in different experi-
ments in which the primary cell was an osteoclast (ANCOVA Distance factor, F1,22 = 0.024,
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P = 0.88). We also investigated multiple peaks in [Ca2+]i present in a high number of sec-
ondary responders. These peaks may result either from internally-driven oscillations or from
a superposition of signals from different sources (suggesting that some of the secondary re-
sponders may in turn release the mediator). Fourier analysis demonstrated that the period
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Figure 1 Data analysis of signal propagation initiated by mechanical stimulation. A) An
estimate of the diffusion coefficient for 3 experiments in osteoblasts (left) and 5 experiments
in osteoclasts (right). B) The relationship between the estimated diffusion coefficient and
distance from the primary cell in the 3 osteoblasts experiments. C) The normalized power
of the Fourier transform of the oscillatory secondary responses for frequencies above 1Hz.
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between the peaks was similar in all of the experimental recordings, strongly supporting
the presence of self-sustained oscillations in the secondary responders. In addition, we have
found that the probability of observing an oscillatory component increases with the distance
from the primary cell (Figure 1C).

Together with the increase in apparent diffusion rate, this allowed us to formulate a
hypothesis that a single mediator is released from a primary cell, and subsequently starts to
degrade and thus move faster as it travels further away from the source, resulting in a change
in the apparent diffusion coefficient as well as the pattern of induced responses. Since a
different set of data indicated that ATP is one of the potential mediators of these responses,
we conjectured that ATP is released from a source cell and is degraded to ADP by extra-
cellular nucleotidases. Whereas ATP mainly acts through P2X ligand gated ion channels,
ADP only acts on P2Y G-protein coupled receptors, which accounts for the appearance of
oscillations in secondary cells.

3.2 Model for combining ATP degradation and diffusion dynamics. Model
assumptions are that:

1. ATP is released by a primary cell and can be degraded to ADP, which in turn degrades
to AMP by extracellular nucleotidases.

2. ATP, ADP, and AMP diffuse by radial 2-dimensional diffusion with the diffusion
coefficients inversely proportional to the square roots of their molecular weights,
respectively.

3. ATP is released in a continuous manner over the duration of an experiment.

Then the chemical reactions are modeled by

∂a1

∂t
= D1∆a1 − k1a1, (3.1)

∂a2

∂t
= D2∆a2 + k1a1 − k2a2, (3.2)

∂a3

∂t
= D3∆a3 + k2a2 − k3a3, (3.3)

where a1, a2, a3 are concentrations of ATP, ADP, and AMP, respectively; D1, D2, D3 are
diffusion constants for ATP, ADP, and AMP, respectively [3], k1 is a rate constant for the
ATP to ADP degradation reaction, k2 is a rate constant for the ADP to AMP degradation
reaction, k3 is a rate constant for the AMP to adenosine degradation reaction, and ∆ =
∂2/∂r2. The parameters values were chosen based on the following experimental data:
measured ATP diffusion coefficient, D1 = 180 µm2/s, and estimated rate constants for the
ATP to ADP and ADP to AMP reactions given by k1 = 0.5 and k2 = 0.4, respectively [5].
D2 and D3 were estimated based on the molecular weights of ATP, ADP, and AMP. We
assumed that initially nucleotides are released in proportion to their concentrations in the
cell, 100:10:1 for ATP:ADP:AMP [1].

When the simulations were performed for the model describing diffusion of nucleotides
only (k1 = k2 = k3 = 0), we observed that the main propagating species is ATP (Fig-
ure 2A). When we introduced the degradation of ATP to ADP (k1 = 0.5, k2 = k3 = 0), the
balance between the nucleotides changed as they travelled from the source, resulting in ADP
becoming the main propagating species at longer distances (Figure 2B). Finally, when we
added the degradation of ADP to AMP (k1 = 0.5, k2 = 0.4, k3 = 0), then AMP became the
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Figure 2 Changes in concentrations of ATP (red), ADP (blue), and AMP (green) at
distances of 20 µm (left column), 70 µm (middle column), and 120 µm (right column)
from the source, obtained from the model (3.1)-(3.3) describing: A) diffusion only (dashed
lines in all figures); B) diffusion of ions and degradation of ATP to ADP; and C) diffusion
of ions and degradation of ATP to ADP and ADP to AMP.
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main propagating species at longer distances (Figure 2C). Thus, the model predicts that in-
troduction of degradation of ATP to ADP is a plausible explanation for the experimentally
observed increase in the value of the apparent diffusion coefficient (Figure 1B).

3.3 Model for osteoclast mediator propagation. To account for the differences
observed in different experiments in which an osteoclast was stimulated, we hypothesized
that since osteoclasts are vastly different in size, it is possible that the amounts of mediators
released in the different experiments are quite different. This would result in significantly
different contributions to the reaction time, i.e., the time needed to accumulate the required
amount of a signalling molecule on the cell membrane, and to the propagation time in some
of the experiments. To assess how large differences in the amount of released mediator may
influence the results, the following model was built. The model assumptions are:

1. Only one mediator (with concentration C = C(r, t)) is released by a primary cell.
2. The mediator diffuses by 2-dimensional radial diffusion.
3. There is a threshold concentration of a mediator needed to induce a response in a

secondary cell. This threshold is the same for all secondary cells.
4. The mechanical stimulation of different cells results in significantly different amounts

of the mediator being released.
5. The mediator is released in a continuous manner over the duration of an experiment.
The model is simply the diffusion equation in polar coordinates with no angular depen-

dence given by

D

(
∂2C

∂r2
+

1
r

∂C

∂r

)
− ∂C

∂t
=
C0

D

δ(r)
r
H(t) (3.4)

where D is the diffusion coefficient, δ(r)/r is the two-dimensional delta distribution, and
H(t) is the Heaviside function. This has the solution

C(r, t) =
C0

4πD
Ei
(
−r2

4tD

)
(3.5)

where Ei is the exponential integral

Ei(−x) = −
∫ ∞

x

e−t

t
dt, x > 0. (3.6)

With the substitutions x = 1/4πD and α = r2/t, this can be rewritten as:

C

C0
= xEi(α1,2πx) (3.7)

where α1 and α2 correspond to two values of α in each experiment. From each of two
experiments, we then can compute

β(x) =
C1

C2
=

Ei(α1πx)
Ei(α2πx)

(3.8)

where C1 and C2 correspond to the values of C for α1 and α2, respectively. The function
β(x) is plotted in Figure 3 for different values of D (180 µm2/s for ATP, 210 µm2/s for
ADP). The model predicts that if the propagating species is ATP, with diffusion coefficient
of 180 µm2/s, then two specific ratios of C1/C2 will be predicted and observed at the
same value of D in the experiments. Since ATP can be experimentally measured [6], the
hypothesis can be tested in the future.
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Figure 3 The function β(x) is plotted for 2 sets of experiments in each of which α1 and
α2 were measured. If ATP is the main mediator of the response, then the C2/C1 ratio
also can be estimated for each experiment and they should intersect the β(x) axis at the
locations corresponding to the known value for the diffusion coefficient of ATP.

4 Conclusions

This study has allowed us to conclude the following:

1. A mediator is released from a single source cell.
2. The response to the mediator changes with distance.
3. The value of the apparent diffusion coefficient increases with distance.
4. A plausible proposed mechanism is that ATP is released and degrades to ADP.
5. Future experiments are required to confirm that ATP is the mediator as suggested.
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1 Introduction

Calcium carbonate, CaCO3, is one of the three most common biominerals, the other two
being calcium phosphate and silica. When crystallised, CaCO3 forms diverse morphologies
with different mechanical, electrical and optical characteristics. This variety of morpholo-
gies makes calcium carbonate useful in industry. When biomineralization occurs, various
proteins are found in mineralized tissues such as bone, teeth and shells. The presence of
these proteins in the biomineralization process is known to effect the characteristics of the
final crystal.

The problem posed is to describe the crystallization of calcium carbonate in a gas
diffusion process. This process, which will be described in detail below, mimics the biomin-
eralization of CaCO3. It relies on the decomposition of ammonium carbonate to produce
carbon dioxide and ammonia gas in a closed environment. The crystallization is achieved
via the diffusion of carbon dioxide gas into a solution filled with calcium chloride.

It is well known that, in the absence of other agents, calcium carbonate will crystallize
into its most stable form: rhombohedral microcrystals of calcite, see Figure 1 (left). In
the experiments presented to the group, an external compound, a serum protein which we
denote by P , was introduced to the solution of calcium carbonate. It is known that the
serum protein, which is highly phosphorylated, is similar to those found in bone, serum
and milk, and inhibits the formation of large calcium carbonate crystals. The aim of the
experiment is to explore the effect of the serum protein on the crystallization process.

In the presence of serum protein under the conditions of our experiments, aggregate
structures, such as fibres, cones, plate-like floating shapes and fibre bundles, were observed.
These structures were formed as calcium carbonate fibre crystals bound together.

The crystals were found in the following configuration: the aggregate structures were
formed in the aqueous solution, attached to the surface of the liquid. The cone tips and the
binding point of the bundle were also attached to the surface, while the rest of the structure
was suspended in the solution. Calcite was formed attached to the bottom of the vessel.
Nanofibres were found loose at the bottom of the vessel after drying.

Figure 1 The image to the left shows rhombohedral calcite crystals. The presence of
serum protein changes the morphology as illustrated by the image to the right which
shows a beautiful set of crystallized cones.

Some global characteristics were observed. For example, in any one experiment, the
cone-like shapes appear to be similar, in that they had a similar angle at each apex, even
when embedded within each other. The lower boundary of the crystals, i.e. where the
crystal stops growing, appear to be constant along separate aggregate structures. (See



Control of Calcium Carbonate Crystallization by a Serum Protein 41

Figure 1, right picture and Figure 4, right picture.) This suggests the existence of a global
regulatory process.

In the present report, we propose a mechanism for the formation of calcium carbonate
fibres and crystals in the complex structures described above. Also, we present two sys-
tems of partial differential equations (pdes) which we use to simulate the growth of these
aggregate structures. From the simulations, we attempt to understand the impact of the
concentrations and diffusion of the various substances on this regulatory process.

2 The experimental gas-diffusion process

2.1 Methodology. A simple gas diffusion method was used to precipitate calcium
carbonate. It was carried out in a closed desiccator at room temperature. The serum
protein was dissolved in 100 mM CaCl2 aqueous solution and 1 ml of solution was placed
in the reaction vessel. The reaction vessel was then covered with parafilm and punctured
six times with a needle. Crushed ammonium carbonate was placed in a dish, covered with
parafilm, then punctured in the same way, placed in the bottom of the desiccator. Typically
the reaction was allowed to stand for three days, as this was deemed to be when the reaction
had reached completion; however, some samples were kept for shorter (one day) and longer
(twenty days) times. See Figure 2 for an illustration of the physical setup. Upon completion
of the crystallization, the calcium carbonate was removed, dried and examined by X-ray
diffraction, scanning and transmission electron microscopy (SEM and TEM).

Figure 2 Experimental apparatus for the gas diffusion process.

2.2 Chemical reactions. The ammonium carbonate sublimation chemical reactions
are

(NH4)2CO3(s) � NH3(g) + CO2(g) + H2O(g) (2.1)

CO2(g) + H2O(l) → CO2−
3 + 2H+ (2.2)

NH3(g) + H2O(l) → NH+
4 + OH− (2.3)
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Carbon dioxide was released to the desiccator, and then dissolved in the solution forming
dissolved carbon dioxide as well as carbonate ions (CO2−

3 ) and H3O
+. According to the

diffusion equation, under these experimental conditions, it should take around five hours
for these ions to diffuse to the bottom of the vessel. Carbonate ions then react, in the
presence of protein, with the Ca2+ ions to form CaCO3 in the aqueous solution, according
to the reactions

CaCl2 → Ca2+ + 2Cl− (2.4)

Ca2+ + CO2−
3 � CaCO3. (2.5)

The protein is about 200nm long, it has a molecular weight of about 60 kDa, and it is
highly phosphorylated. It is amphiphilic since its ends are hydrophobic whilst its centre is
slightly hydrophilic. If present at high enough concentration in water, it forms micelles. In
the presence of CaCO3, in order to minimise energy, its ends will be in contact with CaCO3

rather than water, thus we might expect the polymer to interact with crystal surfaces once
the crystals grow to a large enough size.

2.3 Summary of experimental results. Two types of structures were observed after
the crystallization process: nanofibres and aggregated structures (the former appear to be
the building blocks of the latter). Nanofibres were between 1 and 2 μm wide, while the size
of the aggregated structures were hundreds of times larger (up to 0.5 mm).

At low concentrations of the serum protein (between 0.1 mg/ml and 0.5 mg/ml), only
nanofibres were observed. Cones and bundles of fibres were only found at protein concentra-
tions above 1 mg/ml, see Figure 3 (right) and Figure 4 (left and right). At concentrations
lower than 0.1 mg/ml, the fibrous structure was lost — see the left panel of Figure 3.

Figure 3 These pictures show the effect of low concentration of protein. On the left,
the concentration is lower than 0.1 mg/ml (fibrous structure is lost); on the right, the
concentration is 1 mg/ml.

The formation of the nanofibres and the aggregated structures is not simultaneous. It
was observed that there are three phases of calcium ion uptake: 6 hours, 36 hours and 72
hours from the start of the reaction. The first detectable structures appear after around
fifteen hours. Bundles and cones appear later, in the last phase of the experiment. Also,
some calcite was crystallized at the bottom at the earliest stage of the experiment. These
crystals were found attached to the vessel. Some nanofibres precipitated to the bottom,
unattached to the vessel. (See Figure 4, left picture.) This suggest that the nanoparticles
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Figure 4 Individual fibres and an example of the bundling of fibres. The concentration
of protein is 1 mg/ml.

were formed and assembled in the intermediate phase of the experiment. The remaining
fibres fell down after drying.

We visualise cones as hanging vertically downwards from an upper point. The viscosity
of the aqueous solution had a role to play as well. If we take a vertical transversal cut of one
of the conical shapes, the line that defines the exterior of the crystal will not be straight in
general; its concavity depends on the viscosity. Namely, as the viscosity increases, the cones
appear to be more ‘spread out’ and have a larger angle at the tip. The shape of the bundles
follows a similar pattern. However, the changes in viscosity did not alter the general shape
of the aggregated structures, nor their global behaviours. See Figure 5.

Figure 5 Changes in the opening angle of the fibre cones as a function of the viscosity of
the aqueous solution.

The position of the water surface turned out to be important as well. A variation of
the standard experiment was done in a very thin pipette, which was small enough that,
if turned upside down, the water surface is preserved by surface tension, and the solution
does not drop down. Two pipettes with the solution of protein and CaCl2 were placed in
the desiccator, one upside down and the other upright. The first did not show growth of
crystals, while the other did. Other variations, such as rocking the containers, resulted in
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the absence of crystals as well. This could simply be due to the fragility of the crystal
structures.

This biomineralization-like process starts out with the diffusion of carbon dioxide into
the protein solution. Since no other material is getting in or out the vessel, the time
scales of the uptakes of the structures described above imply that they depend only on the
concentration of each component. Therefore understanding these concentrations is one of
the keys to understanding the interactions with respect to the crystallization process. This
aggregation process is independent of the way the nanoparticles and the fibres are bound
together.

Based on these observations, many interesting phenomena can be subjected to modeling.
For instance, as observed before, The mechanism responsible for the crystallization must
be responsible for the banding structure and the way clusters are formed, as well as the
assembly of the self-similar structures in layers.

Our objective is to model the formation of calcium carbonate, with and without the
protein. Then, considering the appropriate terms in the system, we simulate the uptakes of
nanoparticles, the fibres and finally the crystal growth.

3 Mathematical modelling

3.1 Proposed mechanism. In this section, we propose a mechanism for the formation
of the crystals. The two systems of pdes that we present below describe this process. The
key stages in the process are as follows:

1. Carbon dioxide dissolves into solution of water with calcium chloride and serum
protein.

2. Carbonate ions combine with calcium ions to form calcium carbonate (which is in-
soluble).

3. Calcium carbonate, in the absence of a serum protein, forms large crystals, that is,
the growth of crystals is not limited.

4. Calcium carbonate, in the presence of the serum protein, form nanoparticles. Though
we do not model their shape or configuration, it is assumed that their morphology
makes the nanoparticles bind into rather large filaments [9, 10]. This indicates some
sort of growth-limiting effect of the serum protein.

5. When the concentration of nanoparticles reaches a critical level, they aggregate, or
self-assemble, to form fibres. In the experiments, the serum protein was never fully
consumed.

6. The fibres assemble to form sheets, bundles and cones. It is not clear whether this
occurs after fibre-formation or whether the two processes occur simultaneously.

Our system of equations describes the three time stages of the problem, namely the
diffusion of calcium and carbonate ions into the solution, the nucleation and growth of
CaCO3 crystals which may occur with interaction with the serum protein and, finally, the
arrangement of the nanoparticles into crystallized superstructures.

3.2 Calcium carbonate formation and nanoparticles. We construct a system of
pdes that are one-dimensional in space, with the z-coordinate measuring depth from the top
of the vessel; thus z = 0 corresponds to the top of the vessel. Here u and v are respectively
the concentrations of calcium ions and carbonate ions at depth z and time t.

The initial conditions are as follows: first, there is no flow of any element or compound
through the bottom of the vessel z = L. In addition, at the top of the vessel, we assume
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Table 1 Summary of parameter values.

Parameter Description Value

L Depth of container 6.75 mm
u0 Initial concentration of calcium in vessel 50 ppm
vair Carbon dioxide concentration in air above vessel 387 ppm
h Constant for dissolution of CO2(g) 2 × 10−5 mol m−2s−1

α Stoichiometic constant for crystal-protein ratio 3
P0 Initial concentration of serum protein 1 mgml−1

a Inverse of diameter of nanoparticle Xp 1 nm
k1 Reaction rate for Ca+CO3 → CaCO3 1 × 10−5

k2 Reaction rate for αX+P→ Xp 1 × 10−2

k3 Rate of fibre growth in model system 1 1
̂k3 Rate of fibre growth in model system 2 2 × 10−5

̂k4 Rate of sidebranching in model system 2 2 × 10−4

ε Rate of new fibre nucleation in model system 2 2 × 10−3

D1 Diffusion constant for calcium ions, u 2 cm2s−1

D2 Diffusion constant for carbonate ions, v 2 cm2s−1

D4 Diffusion constant for microcrystals, X 1 cm2s−1

D5 Diffusion constant for nanoparticles, Xp 1 cm2s−1

a Robin condition for the diffusion of CO2(g), with no carbon dioxide in the solution at
time t = 0 and a positive atmospheric concentration, vair. We will also assume uniform
concentrations of calcium and protein initially in the solution. Hence we have

u(z, 0) = u0, uz(0, t) = 0, vz(0, t) = h(vair − v(0, t)), (3.1)

v(z, 0) = 0, uz(L, t) = 0, vz(L, t) = 0 (3.2)

with the constant of dissolution of CO2(g) given in Table 1.
We apply the law of mass action to the governing chemical equations (2.5), which can

be written chemically as u+ v
k1−→ X, to obtain the following system of coupled non-linear

equations

∂u

∂t
= D1

∂2u

∂z2
− k1uv,

∂v

∂t
= D2

∂2v

∂z2
− k1uv, (3.3)

where D1 and D2 are the diffusion coefficients for calcium and carbonate ions respectively,
and k1 is the reaction term for the calcium and carbonate ions to combine and form the
insoluble crystal, X, whose concentration we denote by X(z, t).

Denoting the protein concentration by P (z, t), the boundary and initial conditions for X
and P describe the fact that neither can escape from the top or bottom of the reaction vessel.
Whilst there is no crystal present at t = 0, the protein is present, at some concentration,
P0 distributed uniformly, hence we have

Xz(0, t) = 0, Xz(L, t) = 0, X(z, 0) = 0, (3.4)

Pz(0, t) = 0, Pz(L, t) = 0, P (z, 0) = P0. (3.5)

The second set of pdes describe the formation of CaCO3 when they interact with the serum
protein, which is present at concentration P (z, t). The chemical model we wish to describe
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is αX + P
k2−→ Xp, where Xp denotes a nanocrystal of calcium carbonate which is large

enough to have adsorbed at least one protein molecule onto its surface. Hence,

∂P

∂t
= D3

∂2P

∂z2
− k2X

αP,
∂X

∂t
= D4

∂2X

∂z2
− k2X

αP + k1uv, (3.6)

where D3 and D4 are the diffusion coefficients, k2 is the combined reaction term for the
nucleation and growth of a calcium carbonate crystal and its subsequent combining with
protein. Rather than go to the complexity of modelling clusters of the full range of sizes,
we go straight to an approximation in which many particles are assumed to interact to form
a much larger complicated structure. This can be derived in a more rigorous fashion, as
analysed in other work [3, 5], and has been used successfully in a number of applications
from surfactant flow [1, 2] to other models of nucleation, competition and inhibition [4, 11].

The third part of the model has been approached in two different ways, these are
presented in the next two subsections. The first model’s growth occurs only at the tips,
whilst the second takes into account the possibility that fibres may branch as they grow,
giving rise to triangular surfaces.

3.3 Formation of fibre nanocrystals and fibres: system 1. We assume that fibres
are initiated at the top surface and grow vertically downwards, so a fibre of length q ends
at a depth z = q. Let Xp be the concentration of nanoparticles and Y (z, t) the number of
fibres of length z ending at depth z at time t. We assume that nanoparticles can move by
diffusion, but that fibres are fixed. Nanoparticles are created by the process αX +P

k2→ Xp

discussed above, hence Xp is determined by an equation similar to (3.6):

∂Xp

∂t
= D5

∂2Xp

∂z2
+ k2X

αP − k3aXpY, (3.7)

where D5 is the diffusion coefficient of the nanoparticles Xp, k2 is as before, and k3 is the
reaction term for the nanoparticles and calcium carbonate fibres. The derivation of an
equation for Y (z, t) is more complex.

The quantity Y (z, t) can only change if there are fibres that end at z − δ (for some
small δ � 1). Because fibres grow downwards, we must have Y (z − δ) > Y (z). In a
discrete approximation to the system, we let Y (nΔz, kΔt) be the number of fibres of length
nΔz at time kΔt. In the next time interval, a particle Xp will be added with probability
which depends linearly on the concentration Xp, hence we denote this probability by pXp.
Incorporation of tips of length nΔz is done at the expense of tips located at (n − 1)Δz.
Thus we have

Y (nΔz, (k+1)Δt) = Y (nΔz, kΔt) − pXpY (nΔz, kΔt) + pXpY ((n−1)Δz, kΔt). (3.8)

Taking the limits Δz → 0, Δt → 0 with Δz ∼ Δt, and defining k3 = p limΔt→0(Δz/Δt),
we obtain

∂Y

∂t
= −k3Xp

∂Y

∂z
. (3.9)

Hence fibres grow at the rate k3Xp, with k3 having units of [k3] = length per concentration
per time. For (3.7) we require the units of k3aXpY to match that of ∂Xp/∂t. Therefore the
units of the constant ‘a’ must be inverse length. In fact 1/a can be thought to correspond
to the diameter of an Xp nanoparticle.

In this system, fibres grow only at the tip, that is, there is no side-branching. In this
formulation, k3 is the reaction term for the nanoparticles and the tips’ aggregated structure.
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3.4 Formation of fibre nanocrystals and fibres: system 2. In this formulation,
as well as fibres growing from the surface downwards with growth only occurring at their
lower ends, we permit the formation of new fibres anywhere in the vessel where there
are sufficient nanoparticles (Xp), and we allow growing fibres to sidebranch, so that the
aggregated structures become wider at the bottom than the top.

Let Xp(z, t) be as before, but now Y (z, t) is the mass of fibres at depth z; we assume
that two nanoparticles colliding can initiate the growth of a new fibre – which will be a small
effect, hence the rate constant is taken to be ε. More important is the extensional growth
of existing fibres, which occurs with a rate constant ̂k3 ([̂k3] = length per concentration per
time) and the side-branching which occurs at a rate ̂k4 ([̂k4] = per concentration per time).
Side-branching causes the crystals to become wider further down the vessel. In accordance
with (3.7) and (3.9) one has in this case

∂Xp

∂t
= D5

∂2Xp

∂z2
+ k2X

αP − ̂k3aXpY − εX2
p − ̂k4XpY, (3.10)

∂Y

∂t
= −̂k3Xp

∂Y

∂z
+ εX2

p − ̂k4XpY, (3.11)

where the first term of the latter equation stands, as before, for the growth of the fibres.
Typically we expect ε < ̂k4 < ̂k3a. The boundary conditions for (3.10)–(3.11) are all zero
flux and the initial conditions are also zero, namely

Xp,z(0, t) = 0, Xp,z(L, t) = 0, Xp(z, 0) = 0, (3.12)

Yz(0, t) = 0, Yz(L, t) = 0, Y (z, 0) = 0. (3.13)

3.5 Diffusion constants and other observations. Now we face the problem of
estimating the constants for the various processes. These rates are known for the formation
of calcium carbonate in alkaline environments, but not for environments where the serum
protein is present; in these cases they have to be inferred. Rate constants are extracted
from time dependent concentration profiles determined from experiment. Such profiles are
depicted in Figure 6.

In the case of α, we set a value of 3, instead of 300, since for large α the equations
become too stiff for the numerical method used. However, we can infer the results for large
α. This will be detailed below. We also estimated the rest of the unknown coefficients,
using similar principles.

4 Results

The systems of pdes were solved using MatLab 7.5. The graphs below show the concen-
tration of each component in the time-space phase plane. The color scale goes from blue to
red, where blue signifies the absence of the component, and red the highest concentration.

4.1 Formation of fibre nanocrystals and fibres: system 1. Here we solve equa-
tions (3.1)–(3.9). First we present the solution of the system in the absence of protein, see
Figure 7. The concentrations of calcium, carbonate ions, and calcium carbonate crystals
conform to experimental observation. That is, nearly uniform production of calcium car-
bonate microcrystals with carbonate diffusing into solution from the position z = 0. We
now compare Figures 7 and 8, the latter having protein in the solution. In both cases,
the concentration of calcium decays through the experiment but is always nearly uniform
through the vessel, the concentration of carbonate starts at zero and increases, initially
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Figure 6 This graph shows the concentration of Ca2+ in the solution plotted against time
for the cases with (red) and without (blue) protein. Without protein the concentration
falls very slowly whereas with protein there is a significant decrease at about t = 10. The
green data points are more careful measurements which compensate for the build up of
CaCO3 on the probes. These values are acquired less frequently (isolated data at t =

10, 25, 50).

from the top of the vessel, and always has a significant gradient from top to bottom of the
vessel. The concentration of calcium carbonate has similar behaviour, although with a less
pronounced gradient.

In Figure 8, we see the concentration of nanocrystals, fibres and the consumption of
the protein in accordance with the first system of pdes, where the initial concentration
of the protein is not zero. In this simulation, the protein is consumed uniformly, but the
nanocrystals at the top of the vessel are used first in the assembly of aggregated structures
(fibres). In this case the assembly of nanocrystals into fibres occurs so rapidly that we
see the formation of fibres from the top of the vessel, and never observe any significant
concentration of nanocrystals, except for midway through the simulation when there is a
small concentration at the bottom of the vessel. They cannot attach to fibres, because at
this point in the simulation there are only fibres at the top of the vessel. Note that fibres
grow monotonically.

Now we test the results of the simulation by varying the concentration of protein, and
find results consistent with the experimental observations described above. At lower protein
concentrations, it will take longer for the crystals (X) to interact with protein forming the
nanoparticles Xp. Hence the formation of fibres would also be delayed; see Figure 9 top. An
additional process in the experiment which has yet to be built into our models is that the
crystals would grow larger before having their growth inhibited by the protein, and hence
there would be fewer, but larger nanoparticles to form the fibres. On the other hand, if the
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Figure 7 Solution of (3.1)–(3.9) without the addition of any protein. In this situation
calcium chloride forms throughout the length 0 < z < L.

concentration of protein is higher, the increase in fibre density occurs sooner, due to the
more rapid formation of the Xp nanoparticles; see Figure 9 bottom.

As pointed out above, we have set α to 3, instead of 300, since for large α the equations
become too stiff for the numerical method used. This parameter, determines the size of
the nanoparticle. If its value increases, more calcium carbonate would be needed to form
the aggregated structures. However, the global behaviour of the system would remain
unaffected, and differences in timescales caused by changing α can be compensated for by
simultaneously changing k2.

4.2 Formation of fibre nanocrystals and fibres: system 2. Here we solve equa-
tions (3.1)–(3.6) and (3.10)-(3.13). Considering the possibility of branching allows us to
describe other characteristics that we could not see using the first system. For a small
amount of side branching the concentration profiles of the various species are not supris-
ingly quite similar to Figure 8 and are omitted for brevity. When nucleation of new fibres
is significant in the model, we obtain a much clearer front in the formation of fibres as
evidenced in Figure 10.

4.3 Effect of variations in viscosity. Recall that the viscosity of the aqueous solu-
tion did not alter the growth of the fibres, but did change the shape of the conical aggregate
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Figure 8 Solution of (3.1)–(3.9) with the addition of a small amount of serum protein.
Notice that the protein depletes uniformly in space. Nanocrystals form throughout but
are incorporated into fibres starting at the top of the vessel.

(which we are not concerned with in this model). Since our model has no viscosity param-
eter, we model the change by changing the diffusion constants, and noting that these are
given by D = kBT/6πaη, where kB is Boltzmann’s constant, T is temperature, a is the ra-
dius of the diffusing particle and η is the viscosity. Hence a doubling viscosity corresponds
to reducing all the diffusion constants by a factor of two. Changing the viscosity had no
appreciable effect for system 1 or system 2 with small side branching. However for system 2
with significant side branching, the crystallization front of both the nanoparticles and fibres
is smoothed out by this change in viscosity; see Figure 11.

5 Discussion

We have formulated a model for the concentrations of the various species of ion, protein,
microcrystals, and larger scale crystal complexes present in the system as a function of depth
in the vessel, which describes their variation through the time course of the experiment. The
models have the form of a coupled system of partial differential equations with parameters
which we have derived from crude calculations based on experimental data. The ordering
of events, and predicted form of the solution matches well with the observed data, although
the model lacks the spatial resolution to describe the precise geometry of structures formed.
We speculate that this structure may be related to the properties of the actual molecular
level details of the protein present in solution.
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Figure 9 The effect of varying the initial protein concentration. Above the initial protein
is 0.5 units, and below the initial protein is 2 units. Compare these with Figure 8, where
the concentration is 1 unit.

We predict the presence of a diffusive wave of calcium carbonate which travels down
through the reaction vessel. Serum protein interacts with these particles to form mic-
ocrystals coated in protein that then self-assemble into bundles of fibres which occasionally
undergo side-branching. Side-branching forces the growing surface to become wider the
further down the vessel it grows, causing an inverted cone-shaped structure to form.

Our model does not capture the geometry of the described aggregation phenomena
beyond the fibres; namely, the ensemble of bundles and cones is not described. However,
we can derive some conjectures that are consistent with the models described above, and
the experimental data. For instance, at moderate concentrations of protein, fibres should
grow in bundles, with a distribution of lengths. At intermediate concentrations, the fibres
should grow to a length where secondary effects (competition of nucleation vs. increasing
electrostatic energy) inhibit further growth. Under these conditions, cones will appear.
Finally, for large concentrations of protein, nucleation should proceed on the inner surfaces
of cones, and banding should appear. There are thus many questions which this report
leaves open for further study.
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Figure 10 Solution to (3.1)–(3.6) and (3.10)-(3.13) when there is a significant amount of
side branching. Compare to Figure 8 where no side branching occurs.
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micelles, Proc. Roy. Soc. Lond. A 452 (1996), 2079–2102.

[6] S. Hayashi, K. Ohkawa, Y. Suwa, T. Sugawara, T. Asami and H. Yamamoto, Fibrous and helical calcite
crystals induced by synthetic polypeptides containing O-phospho-L-serine and O-phospho-L-threonine,
Macromolecular Bioscience 8 (2008), 46–59.

[7] X. Liu, B. Liu, Z. Wang, B. Zhang, and Z. Zhang, Oriented vaterite CaCO3 tablet-like arrays miner-
alized at air/water interface through cooperative regulation of polypeptide and double hydrophilic block
copolymer, J. Phys. Chem. C 112 (2008), 9632–9636.

[8] T. Somasundaram, M. in het Panhuis, and R.M. Lynden-Bell, A simulation study of the kinetics of
passage of CO2 and N2 through the liquid/vapor interface of water, J. Chem. Phys. 111 (1999), 2190–
2199.



Control of Calcium Carbonate Crystallization by a Serum Protein 53

Figure 11 Solution to (3.1)–(3.6) and (3.10)-(3.13) with a solution of twice the viscosity
which is simulated by halving all of the diffusion coefficients. The smoothing out of the
crystallization fronts is evident when compared to Figure 10.

[9] T. Wangu, A. Reinecke, and H. Cölfen, In situ investigation of complex BaSO4 fiber generation in the
presence of sodium polyacrylate. 2. crystallization mechanisms, Langmuir 22 (2006), 8986–8994.

[10] T. Wangu and H. Cölfen, In Situ investigation of complex BaSO4 fiber generation in the presence of
sodium polyacrylate. 1. kinetics and solution analysis, Langmuir 22 (2006), 8975–8985.

[11] J.A.D. Wattis and P.V. Coveney, Generalised nucleation theory with inhibition for chemically reacting
systems, J. Chem. Phys. 106 (1997), 9122–9140.





Proceedings of the OCCAM–Fields–MITACS Biomedical Problem Solving Workshop, 2009

Sodium Flux during Haemodialysis

Problem Presenter: Dr. Sushrat Waikar (Brigham and Women’s Hospital, Boston, MA
and Harvard Medical School).

Contributors: C. Sean Bohun (UOIT), Chris Breward (Oxford), Radina Droumeva (SFU),
Ian Griffiths (Oxford), Matt Hennessy (UOIT), Huaxiong Huang (York), Matt Kloosterman
(UOIT), Adam Pan (Toronto), Chris Raymond (Delaware), Don Schwendeman (RPI), Jen-
nifer Siggers (Imperial College London), B.S. Tilley (Olin College of Engineering), Marcus
Tindall (University of Reading), Jonathan Wattis (University of Nottingham), Jonathan
Whiteley (Oxford), Robert Whittaker (Oxford), JF Williams (SFU)

Report prepared by: B.S. Tilley1
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removal on the net sodium concentration in the blood after treatment is not clear.
In this report, we focus on formulating a fundamentally-based model to address
this question. We consider the formulation near the membrane at the pore scale
in order to determine effective jump conditions in ionic concentrations, electric po-
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1 Introduction

Kidney disease is treated worldwide by the use of surgical transplantation and more
often, due to lack of donor organs, dialysis. The overall aim of dialysis is to remove waste
products, such as urea, from the patient’s blood. Dialysis is performed using a dilayzer
machine, whereby blood is taken from the patient, and passed through the dialyzer where
filtration occurs, before being returned to the patients bloodstream in a continual process.
A single dialysis session can last anywhere up to four hours.

The process, however, is by no means perfect. Patients post-dialysis show a wide varia-
tion in the concentration of certain solutes within their blood, for instance sodium. Sodium
imbalance, for instance excess, can lead to higher water retention which can have adverse
health effects. With end stage renal disease increasing by between 5% and 10% per year
worldwide, there is an ever increasing need to more fully understand and improve the dialy-
sis process. In this report we present a number of mathematical models which go some way
towards providing a deterministic model of dialysis by focusing on the mechanisms involved
in the filtration of waste products from the blood in a dialyzer.

A typical dialyzer is illustrated in Figure 1. The machine works by passing blood
through perforated tubes encased in a cassette within the dialyzer. As blood flows in
one direction down the tubes (radius∼200μm), dialysate, the filtration fluid, is passed in
the opposite direction, thus forming a counter-current flow regime between the two fluids.
The two flows are connected by a number of smaller channels (radius∼5μm), which allows
exchange of solutes between the blood and dialysate. The exchange of solutes is driven by
both diffusion and convection through the channels. Details on the geometry of the tubes,
the size of the interconnecting channels, channels per tube and other details relevant to the
problems discussed in this report are detailed in Table 1.

Dialysate is designed to filter the blood during the dialysis process (which can take
anywhere up to four hours) without altering the solute concentrations within it. As such
the dialysate contains the main solutes found within blood (e.g. potassium-K+, sodium-
Na+, and chlorine-Cl−). The unfiltered blood contains these same solutes as well as urea
(to be filtered), along with blood cells and various negatively-charged proteins that are not
filtered.

Whilst it is relatively simple to understand the basic elements of dialysis, the effect
of the physical processes (fluid flow, solute transport) within a dialyzer requires detailed
quantitative understanding of each process in order to accurately understand the overall
blood filtration effects. As such the problem is ripe for mathematical modelling, with
a number of models formulated to date. We briefly review here the different modelling
approaches. For further details the reader should consult the recent review of [3].

Mathematical modelling approaches fall in to two main areas: (i) compartmental ordi-
nary differential equation (ODE) which model the patient-dialyzer system; and (ii) models
which describe the spatial variation in solute concentration fluid flow within a dialyzer using
the theory of partial differential equations (PDEs). Both model types are generally param-
eterised by comparing and/or fitting model outcomes to experimental and/or patient data.
Their main use then is in predicting the effective removal of urea from the blood stream and
the solute concentration at the end of the process. Sodium is a common solute of interest
given the issue of overhydration and the resultant health issues.

Compartmental models include descriptions of the fluid (blood plasma, dialysate) and
solutes within the patient/dialyzer system, and focus on key issues, for instance urea or
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Figure 1 A schematic representation of a typical dialyzer (left) and the geomet-
rical layout of a cassette showing the porosity of the tubes (right).

specific solute clearance. The basic urea model [3] considers a single compartment into
which urea passes and is then separated into a fluid of volume V and urea of concentration
C. Urea is then removed from the compartment at a constant rate. This leads to a single
ODE which can be solved analytically to determine the change in urea concetration over
time. More complicated models consider different compartmentalisations. For instance [9]
built on the work of [10] and considered a three compartment model: intracellular (rep-
resenting fluid inside patient cells), interstitial (representing fluid outside cells) separating
the cell from the final compartment, the blood plasma. The dialysate only affects the blood
plasma. Each compartment is separated by a ‘membrane’. In the intracellular to extracel-
lular compartments this is equivalent to that of the cell membrane, whereas the interstitial
to blood plasma membrane represents resistance of solute flow between these regions. Sim-
ilar models have been used to fit to experimental data regarding the profile of solutes from
patients and experimentation on dialyzers [6].

A similar model [12] used three compartments for the body fluids (plasma, interstitial
and intracellular, as mentioned above) and tracked transport of the main solutes between
these compartments and between the blood and dialysate. The authors claim that the
required parameters for the model can be determined a priori based on the body weight
and measured pre-dialysis plasma concentration values for patients, and that their model’s
predictions agreed fairly well with the results from multiple dialysis sessions for six pa-
tients. They suggest using the model to tailor dialysis sessions (i.e. by varying the length
of the dialysis session and/or the concentrations of various ions in the dialysate solution)
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to the needs of individual patients. The desirability of implementing such a scheme, and
some of the difficulties of doing so in an actual clinical setting, are discussed in [14]. Pro-
filed hemodialysis is an even more ambitious scheme for minimizing the unpleasant side
effects of dialysis by varying operational parameters of the dialysis machine (e.g. sodium
concentration in dialysate) as a function of time [9].

In [13], some of the issues involved in building a compartmental model of the dialysis
process are discussed. Starting from a simple one compartment model, several more detailed
models with successively more compartments are built and investigated. All of the models
considered in this reference only track one concentration, that of the main ‘toxic substance’
(presumably urea) that the dialysis treatment is designed to remove from the blood.

There are considerably fewer models of dialysis which include descriptions of the varia-
tion in fluid flow and solute concentrations within a dialyzer (see the introduction to [5] for
a brief review). Such models are generally solved numerically. Ding et al. [4] modelled a
hollow fiber hemodialyzer as two interpenetrating porous regions, of differing porosity, con-
taining blood and dialysate respectively. The two regions are separated by a thin porous
membrane. The fluid flow of blood and dialysate were considered to be governed by the
Navier-Stokes equations, with the concentration of dialysate and blood modelled by quasi-
steady state diffusion-convection equations in each region. The membrane flow is described
by a difference in the pressure between the blood and dialysate regions and the concentra-
tion of the blood and dialysate. Ding et al. [4] obtained numerical solutions to their system
of equations to predict the spatial variation in urea along the length of the dialyzer. This
was compared with experimental data and shown to be in good agreement. Similar porous
media models have been formulated and solved by Nordon and Shindhelm [7] and Osuga et
al. [8].

Of interest here is to understand the dominant mechanisms of solute transport from
the blood to the dialysate under normal operating conditions. The pore-scale processes
within the membrane, which include advection from the flow of liquid from the blood to the
dialyzer, electrodiffusion effects due to the induced electric fields from the ions themselves,
and reverse osmosis effects due to the concentration jump across the membrane, are key to
understanding this transport. Inherent in this understanding is the characteristic lengths
and other scales related to this problem. In Table 1, we list the characteristic geometric
parameters of the cartridge, the tubing, and the typical pore scales of the semi-permeable
membrane, and we list the diffusion and concentration values in Table 1. In Table 1 we
list the effective flow values during normal operating conditions, along with some typical
nondimensional quantities based on the values in Table 1. Since the dialysate and the blood
contains concentrations of charged species, we list some characteristic electrical parameters
in Table 1,

In this report, we focus on three distinct problems. The first problem relates to the
dependence of the solvent and solute transport through the pores in the semi-permeable
membrane (see Section 2). The second problem, discussed in Section 3, considers the
plasma/fluid transport through the membrane due to pressure differences in the blood and
dialysate regions. Finally, in Section 4, we consider a simple one-dimensional model of
solute transport across the membrane. We conclude in Section 5.

2 The problem in a single pore

The dialysis process of removing fluid, urea and potassium ions from the patient’s
plasma is controlled by the transport properties of the membrane. To understand these
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Table 1 Geometrical quantities from literature, many from [17].

Quantity Symbol Value
Dialyser length ld 0.2 m
Dialyser radius rd 0.02 m
Number of tubes Nt 12,000
Tube radius rt 10−4 m
Number of pores per unit area nppua 1013 m−2

Length of pore (wall thickness) lp 15 × 10−6 m
Pore radius rp 5 × 10−9 m
Cross-sectional area of dialyser Ad = πr2d 1.3 × 10−3 m2

Inner area - single tube Ati = πr2t 3.1 × 10−8 m2

Outer area - single tube Ato = π(rt + lp)2 4.2 × 10−8 m2

Area of inner tube surface As = 2Ntπrtld 1.5 m2

Fraction of cross-sectional area
occupied by tubes φt = NtAto/Ad 0.40

Scaled distance between neighbouring tubes dt =
√

2π/(
√

3φt) − 2 1.0
(assumes triangular lattice)
Number of pores Np = 2Ntπrtldnppua 1.5 × 1013

Area of pore Ap = πr2p 7.9 × 10−17 m2

Pore fraction of tube surface area φp = πr2pnppua 7.9 × 10−4

Nondim distance between neighbouring pores dp =
√

2π/(
√

3φp) − 2 66
(assumes triangular lattice)

Table 2 Flux/flow quantities.

Quantity Symbol Value
Fluxes:
Flux of blood Qb 400 × 10−6/60 m3/s
Flux of dialysate Qd 800 × 10−6/60 m3/s
Blood filtration rate Qp 10−3/3600 m3/s
Flow:
Average blood velocity Ub = Qb/(NtAti) 0.0018 m/s
Average diastolate velocity Ud = Qd/(Ad(1 − φt)) 0.0018 m/s
Average velocity in pore Up = Qp/(NpAp) 2.3 × 10−4 m/s
Reynolds number of the blood Reb = 2Ubrt/νb 0.88
Reynolds number of the diastolate Red = Ud rt dt/νd 0.45
Péclet number of sodium

(or potassium) in blood PeNab = 2Ubrd/DNa 3.5 × 105

Péclet number of sodium
(or potassium) in pore PeNap = Uplp/DNa 1.8

properties fundamentally, we need to investigate the ion and fluid transport through a
single pore. During the workshop, we considered only transport of the ions by a prescribed
pressure field, which is described in Section 2.1 below. In general, however, the flow in
these membranes is driven by concentration gradients local to the membrane in the bulk.
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Table 3 Electrical quantities from literature, many from [17].

Quantity Symbol Value
Electric constants:
Proton charge e 1.602 × 10−19 C
Permittivity of free space ε0 8.85 × 10−12 A2s4kg−1m−3

Relative permittivity εR 80
Boltzmann’s constant kB 1.38 × 10−23 J/K
Faraday’s constant F = Na e 9.4 × 104 C/mol
Debye lengthscale

√

ε0εRkBT/(4π eF cNa) 1.2 × 10−9 m

Table 4 Diffusion and viscosity quantities from literature, many from [17].

Quantity Symbol Value
Diffusion and viscosity:
Kinematic viscosity of blood νb 4 × 10−6 m2/s
Kinematic viscosity of dialysate νd 4 × 10−6 m2/s
Diffusion coefficient of sodium DNa 2 × 10−9 m2/s
Diffusion coefficient of potassium DK 2 × 10−9 m2/s
Diffusion coefficient of urea Durea 1.8 × 10−9 m2/s
Operating Temperature T 300 K
Avogadro’s number Na 6.023 × 1023

Sodium concentration in blood cNa 140 mmol/l= 1.4 × 102 mol/m3

Table 5 Typical pressure drops measured in the cartridge during dialysis [15].

Pressure drop Value in literature (Pa)
Blood along tubes 2,666
Dialysate 6,666
Across pores (Δpp) 40,000–49,400

We perform an analysis by Anderson and Malone [2], extended to electrolytes, to include
osmotic effects. In this case, the flow field and concentration fields are necessarily coupled.
This work is found in Section 2.2. Simple examples of these field equations are presented
in each section.

The rationale for this extension is based on the following argument. Fournier [15] gives
the blood and dialysate gauge pressures as 117,300 Pa and 74,600 Pa respectively and the
pressure drops as 2,666 Pa and 6,666 Pa respectively, meaning the pressure drop across
the pores varies between 40,000 Pa and 49,400 Pa. These values are compared in Table 2.
This shows that the comparison is quite bad, particularly in the pores. However, both the
calculated and the actual values do suggest that the pressure drop across the pores is much
larger than that along the length of the dialyzer. We may also calculate the permeability
(volume flux per unit area per unit pressure drop) across the walls of the tubes, which for
Δpp = 45kPa gives

Qp

2πrtldNtΔpp
≈ 4.1 × 10−12 m2s/kg. (2.1)
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Figure 2 Geometry of pore problem investigated in Section 2.

Values of the permeability of biomaterials are given as 10−14–10−9 m2s/kg, and in dialyzers
are between 2 × 10−12 and 4 × 10−11 m2s/kg, so these values are consistent with purely
pressure-driven flow.

The geometry of the pore problem is shown in Figure 2. The membrane surface on the
blood side is at z = 0, and we focus on one pore of radius rp and length lp.

2.1 Pressure-driven flow. The governing equations for the axisymmetric ion trans-
port are given by [16]

∂ci
∂t

+ u · ∇ci = ∇ · (Di∇ci) + ∇ · (cizikie∇φ) , (2.2)

ε∇2φ = −4π
∑

i

F cizi, (2.3)

w =
1
2
w0

(

1 − r2

r2p

)

, (2.4)

where u = u r + w z, φ is the electric potential, F is Faraday’s constant (see Tables 1 and
1), and (2.2)–(2.3) apply on an axisymmtric domain 0 < r < rp and 0 < z < lp. Equation
(2.2) represents the transport of species i through the pore, where i = 1, 2, . . . N denote
distinct species, and where ci is the molar concentration of species i. The second term
on the left-hand side represents advection of charge through the pore. The two terms on
the right-hand side of (2.2) (from left to right) represent diffusion of charge through the
pore and electrodiffusion, respectively. Each species in general has its own rate of diffusion,
Di = kBTki, where kB is Boltzmann’s constant, T is the temperature of the solution, ki is
species mobility. In addition, each i-ion has a net charge zie, where e is the fundamental
charge of an electron (see Table 1 for specific values). We assume the flow of the solute
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within the pore is pressure-driven Stokes flow in cylindrical coordinates, which results in
the quadratic profile shown in (2.4).

Electrodiffusion is driven by gradients in the electric potential φ. This potenial is found
through (2.3), which represents Gauss’s law in electrostatics, where ε is the relative dielectric
permittivity of the solvent. Note that the net charge density ρ =

∑

i eF zi ci is the quantity
that drives potential gradients.

Boundary conditions for this problem are no flux conditions at r → 0 and r = rp,

r → 0 : r
∂ci
∂r

→ 0 , r
∂φ

∂r
→ 0, (2.5)

r = rp :
∂ci
∂r

=
∂φ

∂r
= 0 . (2.6)

We are interested in finding effective jump conditions from above and below the pore,
and so we assume Dirichlet boundary conditions at z = 0 and z = lp

z = 0 : ci = C
(+)
i , φ = Φ(+), (2.7)

z = lp : ci = C
(−)
i , φ = Φ(−) . (2.8)

We scale r on rp, z on lp, t on lp/wo, u on wo, ci on Co, and φ on kBT/e to arrive at
the following nondimensional problem

δ2Pei

(

∂Ci

∂t
+

1
2
(

1 − r2
) ∂Ci

∂z

)

=
1
r

∂

∂r

(

r
∂Ci

∂r

)

+ δ2
∂2Ci

∂z2
+

1
r

∂

∂r

(

ziCi
∂φ

∂r

)

+ δ2
∂

∂z

(

ziCi
∂φ

∂z

)

, (2.9)

1
r

∂

∂r

(

r
∂φ

∂r

)

+ δ2
∂2φ

∂z2
= − 1

λ2

∑

i

zi Ci, (2.10)

where δ = rp/lp � 3 × 10−4 is the aspect ratio of the pore, Pei = wolp/Di ≈ 1.8 is the
Péclet number for each species, and λ = λD/rp is the Debye length ratio, where the Debye
length is given by λD =

√

(εkB T )/(4πeFCo). The boundary conditions (2.5)–(2.8) have
the same form with this scaling

r → 0 : r
∂ci
∂r

→ 0 , r
∂φ

∂r
→ 0, (2.11)

r = 1 :
∂ci
∂r

=
∂φ

∂r
= 0, (2.12)

z = 0 : ci = C
(+)
i , φ = Φ(+), (2.13)

z = 1 : ci = C
(−)
i , φ = Φ(−) . (2.14)

Although the Debye length scale is on the same order of magnitude as the pore radius,
we can consider the problem in the limit of small aspect ratio δ → 0. We use a regular
asymptotic expansion for each of the quantities

Ci = ni0 + δ2ni2 + . . . , φ = φ0 + δ2φ2 + . . . . (2.15)
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At leading order, we find that

1
r

∂

∂r

(

r
∂ni0

∂r

)

+
1
r

∂

∂r

(

rzini0
∂φ0

∂r

)

= 0, (2.16)

1
r

∂

∂r

(

r
∂φ0

∂r

)

= − 1
λ2

∑

zi ni0 , (2.17)

subject to the no-flux boundary conditions in r. We can integrate (2.16) directly in terms
of r, and note that

∂ni0

∂r
+ zini0

∂φo

∂r
= 0 , (2.18)

since the fluxes are zero at r = 0, 1 for all 0 < z < 1. A second integration of (2.18) gives
the Nerst relation between concentration and potential

ni0(r, z, t) = Ai(z, t)e−zi φo(r,z,t) . (2.19)

Hence, the leading order problem to consider for the potential problem gives

1
r

∂

∂r

(

r
∂φo

∂r

)

= − 1
λ2

∑

i

ziAi(z, t)e−ziφo , (2.20)

subject to no-flux boundary conditions (2.11)–(2.12). Note that the trivial solution ∂φo/∂r =
0, or for φ independent of r gives the electro-neutrality constraint.

At this stage, we must make a choice in order to solve for (2.20). The simplest choice
is to prescribe electro-neutrality ab initio,

∑

i

zi ni0 =
∑

i

ziAi(z, t)e−ziφo = 0 , 0 < r < 1 , (2.21)

which gives that φo = φo(z, t) to leading order, and

ni0(z, t) = Ai(z, t)e−ziφo(z,t) .

To find the values of ni0, φo, we go to the O(δ2) problem

Pei

[

∂ni0

∂t
+

1
2
(

1 − r2
) ∂ni0

∂z

]

=
1
r

∂

∂r

(

r
∂ni1

∂r

)

+
∂2ni0

∂z2
+

1
r

∂

∂r

(

zini0
∂φ1

∂r

)

+
∂

∂z

(

zini0
∂φo

∂z

)

, (2.22)

1
r

∂

∂r

(

r
∂φ1

∂r

)

+
∂2φo

∂z2
= − 1

λ2

∑

i

zi ni1 , (2.23)

subject to the no-flux boundary conditions (2.11)–(2.12). With these conditions, we can
find the effective equation for each ni0 as a function of φo,

Pei

(

∂ni0

∂t
+

1
4
∂ni0

∂z

)

=
∂2ni0

∂z2
+

∂

∂z

{

zini0
∂φo

∂z

}

. (2.24)

The case of monovalent ions is a classical derivation if the Peclet numbers are the same
[1, 16]. If zi = ±1 and Pei = Pe, then we can define a conductivity σ and a charge density
ρE as

σ =
∑

i

z2
i ni0 , ρE =

∑

i

zi ni0 = 0 .
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By electro-neutrality, the charge density is zero, and we can add all of the equations in
(2.24) to obtain

Pe

(

∂σ

∂t
+

1
4
∂σ

∂z

)

=
∂2σ

∂z2
, (2.25)

while multiplying each (2.24) by zi and adding the remainder of the equations gives the
relation for the voltage potential

∂

∂z

(

σ
∂φo

∂z

)

= 0 , (2.26)

which states that the current density is uniform in the axial direction of the pore. If we
prescribe the conductivity along the blood side of the membrane σ = σb at z = 0 and at
the dialysate side of the membrane σ = σd at z = 1, then we can analytically find the local
conductivity and electric potential in the pore

σ =
ePe − ePe z

ePe − 1
σb +

ePe z − 1
ePe − 1

σd , (2.27)

φ0 = JE
ePe − 1

σb ePe − σd

(

z − 1
Pe

log σ
)

+ ζ . (2.28)

With (2.27) and (2.28) we can find relations for the net conductivity flux through the pore,
along with the net jump in voltage potential

Qσ = Peσ − ∂σ

∂z
= Pe

ePeσb − σd

ePe − 1
, φ0|z=1

z=0 = JE
ePe − 1

ePe σb − σd

{

1
Pe

log
[

σd

σb

]

+ 1
}

.

(2.29)
Unfortunately this argument does not generalise easily to a larger number of solutes of
general valency.

2.1.1 Nonzero Pore Charge Density. In this section, we consider the case when the
electro-neutrality condition in (2.21) is relaxed. The leading-order problem is then fully
nonlinear in terms of the species concentration and the electric potential. The classical
approach to this problem can be found in standard texts (e.g [1]), where the potential is
fixed along the pore wall at the ζ-potential. We focused on the case when the membrane
acts as an electrical insulator. In order to simplify the analysis, we consider the situation
when advection transport is small compared to diffusive transport.

We then consider the nonlinear problem, where both z and r are scaled on the pore
radius,

∇2Ci + zi∇ · [Ci∇φ] = 0 (2.30)

∇2φ = − 1
λ2

∑

i

ziCi = −α
∑

i

ziCi (2.31)

on the domain 0 < z < lp/rp � 3 × 103 and 0 < r < 1, subject to zero normal derivative
conditions

∂Ci

∂n
=
∂φ

∂n
= 0 ,

on the boundary. Note that there is no time-dependence on Ci, φ at this order.
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If (2.19) holds, and we consider a monovalent mixture, we can then lump the positive
species p and the negative species n as

p =
∑

zi=1

Ci , n =
∑

zi=−1

Ci .

If we define
C+ =

∑

zi=1

Ci(0)e−φ(0) , C− =
∑

zi=−1

Ci(0)eφ(0) ,

and with a shift in the potential by φ∗ = [log (C−/C+)] /2, we find the following nonlinear
eigenvalue problem for the shifted potential φ

∇2φ = −γ sinhφ . (2.32)

The two simplest classes of solutions for this problem are purely axial solutions and
purely radial solutions. For purely axial solutions, let us consider the simplest problem
with Dirichlet boundary conditions

d2φ

dz2
+ γ sinhφ = 0 , 0 < z <

lp
rp
, (2.33)

φ(0) = φ0 , lim
z→lp/rp

φ = φ1 . (2.34)

Equation (2.33) can be integrated once, and from the constant of integration, we find the
relation between the field strength to the difference in potential

(

dφ

dz

)2
∣

∣

∣

∣

∣

z=0

−
(

dφ

dz

)2
∣

∣

∣

∣

∣

z→lp/rp

= 2 γ [cosh φ1 − cosh φo] . (2.35)

From this relation, we note that the classical results arise depending on the value of γ. In
the limit γ � 1, then φ1 = φ0, or the pore acts like a conductor. In the limit γ 	 1, then
|φz|z=0 = |φz|z→lp/rp

, which corresponds to a continuous electric field along the membrane,
or the membrane acts like a perfect dielectric.

The purely radial problem
1
r

d

dr

[

r
dφ

dr

]

= −γ sinhφ(r)

needs to be solved numerically. The eigenvalue γ is found by optimizing over the unknown
reference potential φ(0).

2.2 Modified Solvent Flow. Osmosis through a semi-permeable membrane is de-
scribed directly in elementary chemistry courses for nonelectrolytes. A membrane is de-
signed to allow solvent molecules to pass through, but prohibit the transport of larger
solute molecules. Due to the estimates in kinetic theory, the number of impacts per mol-
ecule on either side of the membrane is approximately the same, but the side which has
a lower concentration of solute will have a larger number of solvent molecules striking the
membrane. Since the solvent molecules can pass through, this results in a net flow of solvent
from the low concentration side of the barrier to the higher concentration side. From [2],
the accepted equation for the volume flux of solvent in such a system is given by

Qp = Lp ΔP∞ − LΠ ΔΠ∞ ,

where Qp is the volume flux of the solute, Lp is a hydraulic coefficient, and the notation
ΔP∞ denotes the jump in bulk values of the hydraulic pressure P across the membrane.
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Table 6 Typical osmotic pressure drops found from bulk plasma and dialysate values,
assuming that there are no electrical effects. Note the bias in the hydrostatic pressure
given in Table 2.

Species Plasma (meq/L) Dialysate (meq/L) ΔΠ (kPa)
Sodium 140 140 0
Potassium 5 3 5
Chloride 114 110 10
Bicarbonate 20 35 −37
Urea 40 0 99

The additional term corresponds to the “osmotic pressure” Π = RT C∞, and LΠ is a
conductivity coefficient. For a perfect semi-permeable membrane, LΠ = Lp. Note that the
scale for Π is on the order of 0.35MPa, which is about one order of magnitude larger than
the characteristic hydraulic pressure scale. In the case when the membrane is “leaky”, or
some solute is allowed to pass through the membrane, Lp > LΠ. Note that these leaky
membranes are the standard approach to simple models of the dialysis process with spatial
variation (see [4]).

Note that the dialysis process is designed for the removal primarily of urea from the
blood. The osmotic pressures for urea, based on its concentration, is below the hydraulic
pressure difference between the blood and the dialysate (see Table 2.2). This suggests that
the membranes used in dialysis are leaky, and the coefficient LΠ needs to be determined
based on the concentration and electric potential effects within the pore. In principle, there
should be a single model that describes the flow of solvent in this situation for the mixture
of charged species, and we focus on this topic in this section.

We follow [2] in theme, but consider the case of charged species to find how the con-
centration gradients determine the fluid velocity in the pore. We begin by considering the
the momentum and continuity equations for fluid flow in the pore, assuming fluid inertial
effects are negligible (see [1])

∇ · u = 0, (2.36)
−∇p+ μ∇2u + ρEE = 0, (2.37)

on 0 < r < rp, 0 < z < lp, where u = ur +wz is the velocity field in the pore, p is the fluid
pressure, μ is the dynamic viscosity, ρE =

∑

i zi eF Ci is the charge density, and E = −∇φ
is the electric field.

We scale r on rp, z on lp, w on wo = δ [CoFkBTrp/μ], p on po = μwolp/r
2
p, and consider

the same asymptotic series expansion as in Section 2.1. For each of the concentration fields,
Nerst’s relation (2.19) holds (written here in dimensional form for clarity)

Ci = CoAi(z, t)e−zi F (φ(r,z,t)−Φ+)/RT .

Note that from this form, the osmotic pressures can be found formally as

Πi = RT Ci = −zi F
∫

Cidφ ,

which suggests that the Ai(z, t) are effectively the nondimensional partial osmotic pressure
of species i in the pore.
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From the leading order r-momentum equation, we have
∂p

∂r
+
∑

i

zinoi
∂φ

∂r
= 0 , (2.38)

which has a first integral that gives

p(r, z, t) = Po(z, t) −
∑

i

Ai(z, t)e−ziφ(r,z,t) . (2.39)

To consider the z-momentum equations, we note that
∂p

∂z
=
∂Po

∂z
−
∑

i

(

∂Ai

∂z
− ziAi

∂φ

∂z

)

e−ziφ ,

which results in the following problem for the axial fluid velocity w
1
r

∂

∂r

(

r
∂w

∂r

)

=
∂Po

∂z
−
∑

i

∂Ai

∂z
e−ziφ(r,z,t) , (2.40)

with limr→0 r∂w/∂r = 0 and w = 0 along the pore wall r = 1. Formally, the solution can
be written in terms of the following integral

w =
∫ 1

r

1
r2

∫ r2

0
r1

(

∂Po

∂z
−
∑

i

∂Ai

∂z
e−ziφ(r1,z,t)

)

dr1 dr2 .

To solve for u, we use the continuity equation (2.36) with the expression of w above.
Requiring that both u = 0 along r = 0 and r = 1 gives a constraint for Po in terms of the
electric potential φ. However, in this general form, the transport equations for n0i along
with Gauss’s equation for φ are highly coupled.

As a simple example, let us assume electro-neutrality in the pore, which gives φ = φ(z, t).
Note that the pressure p = p(z, t) still has the osmotic terms in its expression, and the
expression for w in this case becomes

w =
r2 − 1

4

(

∂Po

∂z
−
∑

i

∂Ai

∂z
e−ziφ(z,t)

)

. (2.41)

From (2.36), we find that u is given by

u = −
(

r3

16
− r

8

)

∂

∂z

{

∂Po

∂z
−
∑

i

∂Ai

∂z
e−ziφ

}

, (2.42)

and the requirement that u = 0 along r = 1 gives the following Reynolds equation for Po

∂

∂z

(

∂Po

∂z
−
∑

i

∂Ai

∂z
e−ziφ

)

= 0 . (2.43)

One integration gives that the flow rate through the pore is constant, or

Qp = − 1
16

(

∂Po

∂z
−
∑

i

∂Ai

∂z
e−ziφ

)

. (2.44)

A second integral, if possible, would give the leaky flux relation for solvent in terms of the
bulk hydraulic pressure and the bulk concentrations of each species. Note, however, that
the constant flow rate then gives a velocity profile of the form (2.4), which suggests that
the results of Section 2.1 hold for this particular example.
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3 Porous-Medium Membrane Model

In this section, the motion of the fluid through the cartridge is assumed to be pressure
driven. Opposing pressure gradients are imposed at both ends of the device in order to force
the blood and the dialysate to travel in opposite directions. Furthermore, the reference
pressure of the blood exceeds the pressure of the dialysate, resulting in fluid from the
blood flowing through the membrane and into the dialysate solution. The red blood cells
are unable to penetrate the membrane and as a result, their concentration in the fibre
increases. The goal of this section is to compute the large scale flow within a single fibre
and the surrounding dialysate. Using this fluid velocity profile, the concentration of red
blood cells in the fibre can be obtained. How the concentration of solute varies with the
removal of the plasma is left for a later work.

3.1 A Simple Model. To describe the essential features of the large scale flow, we
consider the two dimensional motion of fluid that is confined between two adjacent regions.
These regions are separated by a permeable membrane (see Figure 3). One of these regions
represents the interior of the fibre where the blood flows. The other represents the exterior
region of dialysate solution. We apply symmetry conditions along z = ±rt. For simplicity,
we assume that the “radius” of the dialysate region is equal to the radius of the fibre.
Changing this value should not have a significant quantitative effect on the dynamics of the
system. The length of the fibre, ld, is much greater than the radius rt in the cartridge, and
this fact will be used to simplify the governing equations. Since the flow is pressure driven,
we further assume that the pressure is prescribed at both ends of both regions.

The fluid in both regions is assumed to be modelled by the steady, incompressible,
Navier-Stokes equations. In two spatial dimensions, these can be written as

ρ (u · ∇)u = −∂p
∂x

+ μ∇2u, (3.1a)

ρ (u · ∇)w = −∂p
∂z

+ μ∇2w, (3.1b)

∂u

∂x
+
∂w

∂z
= 0 , (3.1c)

where u = u(x, z)x + w(x, z)z is the fluid velocity vector written in terms of components
along the standard Cartesian unit vectors, ρ is the fluid density, p is the hydrodynamic
pressure, μ is the dynamic viscosity of the fluid, and ∇ is the gradient operator in Cartesian
coordinates. The velocity of the blood and of the dialysate is denoted by u1 and u2,
respectively. Similarly, the pressure in the blood and in the dialysate is labelled as p1 and
p2. For simplicity, the density of the two fluids, as well as their viscosities, are assumed to
be equal. The concentration of red blood cells, b(x, z), is governed by a steady advection-
diffusion equation

∇ · J = 0, J = u1 b−D∇b, (3.2)

where J = J(x, z) is the flux of red blood cells and D is the diffusion coefficient. This
equation only holds in the interior of the fibre, since red blood cells cannot pass through
the membrane.
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Porous membrane

Dialysate: u2

P11

P21 P22

P12Blood: u1, b

z = 0

z = rt

z = −rt

x = 0 x = ld

Figure 3 Model geometry. The top region corresponds to the interior of the fibre where
the blood is flowing, whereas the bottom corresponds to the dialysate region exterior to
the fibre. The length and the radius of the fibre are denoted by ld and rt, respectively.
Governing equations will model fluid velocities u1 and u2 in the blood and dialysate
regions, respectively, as well as the blood cell concentration b inside the fibre. The Pij

denote prescribed fluid pressures at the ends of the system.

The symmetry of the system implies that there is a stress-free condition and a no-flow
condition on the fluid velocities at the center of the regions,

∂u1

∂z
= w1 = 0, z = rt,

∂u2

∂z
= w2 = 0, z = −rt.

Along the membrane, there is a no-slip condition on the horizontal fluid velocities , u1 =
u2 = 0 along z = 0. Since fluid can pass through this membrane, the vertical velocity
is governed by Darcy’s law at z = 0, which states that the vertical fluid velocity at the
membrane is proportional to the pressure difference across it

w1 = w2 =
k

μ

p2 − p1

lp
, z = 0, (3.3)

where k and lp are the permeability and the thickness of the membrane, respectively. The
permeability is assumed to be constant, which implies that none of the pores in the mem-
brane become blocked by red blood cells. It is further assumed that the pressure at the
ends of each region is prescribed,

pi = Pi1, x = 0,
pi = Pi2, x = ld,

(3.4)

for i = 1, 2. To obtain the correct flow, the following inequalities are assumed to be true

P21 < P22 < P12 < P11.

These are needed to ensure that the blood and the dialysate flow in opposite directions and
they allow the water from the blood to cross the membrane.

It is assumed that the concentration of red blood cells entering the device is a fixed
constant b0. Furthermore, there is zero flux of red blood cells at z = 0 and z = rt. The
condition at z = 0 arises because red blood cells cannot pass through the membrane and
the condition at z = l is from the symmetry. In summary, the boundary conditions for the
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concentration are given by
b = b0, x = 0,

J · n = 0, z = 0, rt,

where n is a unit vector normal to the boundary. Although the equation which governs the
concentration (3.2) is second order in x, further analysis will show that only one boundary
condition is required.

3.2 Scaling and Nondimensionalization. One of the characteristic properties of
each fibre is its length. Typically, a fibre is approximately one hundred times longer than it
is wide. Therefore, we define the small parameter ε = rt/ld 	 1 and rescale the governing
equations. In particular, we scale the physical dimensions by x → ldx, z → rtz, where the
new, nondimensional, domain is from 0 ≤ x ≤ 1, −1 ≤ z ≤ 1. The velocity components
and the pressure are scaled according to

u→ Ub u, w → εUb w, p→ μUb

rtε
p,

where Ub is the mean velocity of the blood through the device. With these new variables,
the Navier-Stokes equations (3.1b) become

ε2Re (u · ∇)u = −∂p
∂x

+ ε2
∂2u

∂x2
+
∂u

∂z
, (3.5)

ε4Re (u · ∇)w = −∂p
∂z

+ ε2
(

ε2
∂2w

∂x2
+
∂2w

∂z2

)

, (3.6)

∂u

∂x
+
∂w

∂z
= 0, (3.7)

where the Reynolds number is defined as

Re =
ρUb ld
μ

.

From Table 1, Re ∼ O(1). Therefore, to leading order, the pressure along the z direction
is constant, and the pressure gradient in the x direction is balanced by viscous diffusion in
the z direction. The boundary conditions essentially remain unchanged, except for scaling
the constant values in (3.4) and scaling Darcy’s law in (3.3) to become

w = K(p2 − p1),

where K = k/rtlpε
2 ∼ O(1).

The concentration can be rescaled according to b→ b0 b, resulting in the nondimensional
advection-diffusion equation

ε2Pe (u1 · ∇)b = ε2
∂2b

∂x2
+
∂2b

∂z2
, (3.8)

where the Péclet number for the blood cells is given by

Peb =
Ub ld
D

∼ O(ε−2).

Thus, to leading order, the advection of red blood cells is balanced by their diffusion in the
z direction. The boundary conditions simplify to become b = 1 at x = 0 and

ε2Pew b− bz = 0, z = 0, 1.
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As can be seen from (3.8), the second order derivative in x drops out. Indeed, only a single
boundary condition in x is needed to obtain a solution at leading order.

3.3 Solution. To leading order, (3.6) suggests that p = p(x). In addition, (3.5) gives
the following velocity profiles in the axial direction in each region

u1 =
dp1

dx

(

z2

2
− z

)

,

u2 =
dp2

∂x

(

z2

2
+ z

)

.

Conservation of mass (3.7), along with the no-flow conditions at z = ±1 gives the vertical
velocity component in each domain

w1 =
d2p1

dx2

(−z3

6
+
z2

2
− 1

3

)

,

w2 =
d2p2

dx2

(−z3

6
− z2

2
+

1
3

)

.

Applying the condition on w at z = 0 shows the pressure must satisfy the system of ordinary
differential equations given by

d2p1

dx2
= 3K (p1 − p2),

d2p2

dx2
= 3K (p2 − p1).

Each solution takes the form pi(x) = ai,1e
√

6Kx + ai,2e
−√

6Kx + ai,3x+ ai,4. The coefficients
are cumbersome functions of both K and the pressure’s boundary conditions, and showing
them here would provide no further insight.

Because the flow is assumed to be two dimensional and incompressible, stream functions
ψi can be found. Solving u = ψz and w = −ψx in each region yields the two stream functions

ψ1 =
dp1

dx

(

z3

6
− z2

2
+

1
3

)

,

ψ2 =
dp2

dx

(

z3

6
+
z2

2
− 1

3

)

.

Using the fluid velocity found above, the concentration of red blood cells in the upper
region can be solved. Despite the governing equation being linear, the velocities are suffi-
ciently complicated that it could not be solved analytically. Instead, a simple, upwinded,
finite differencing scheme was used. In particular, central differencing was used in the z
direction and backwards differencing was used in the x direction to account for the blood
travelling in the positive x direction.

3.4 Results and Discussion. The scaled streamlines can be seen in Figure 4. Blood
enters the top region from the left and has a small downward component, which is a result
of the prescribed pressure differences on the left and right boundaries and the porous mem-
brane. In the bottom region, dialysate enters from the right and also has a small downward
component. The flow from the top to the bottom region is expected, as this corresponds
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Figure 4 Scaled streamlines of the flow in two regions separated by a porous membrane
(dashed line).

to plasma water leaving the inside of the hollow fibres and entering the dialysate fluid
space, which is what happens during the dialysis process. This flow represents the underly-
ing convectively dominated régime of solute transport, assuming that electrical effects are
negligible.

The pressure found depends only on x, and although it is an exponential function, the
value of K is small enough for the function to be approximately linear in both regions. If
K is increased enough, there is a pressure drop in the center, and some of the fluid from
the right of the top region will flow to the left and then down into the bottom. Since K is
proportional to permeability, this intuitively means that increasing the permeability of the
membrane makes it harder for the fluid in the top region to make it across. Furthermore,
as the permeability tends to zero, the pressure becomes a linear function of x, and both
velocity profiles reduce to Poiseuille flow in Cartesian coordinates.

In Figure 5, the concentration gradient of red blood cells in the upper region can be
seen, along with the stream lines. The concentration increases toward the membrane and
also increases downstream to the right. Interestingly, the concentration gradient appears
everywhere to be almost parallel to the streamlines. This implies a large contribution to the
movement of red blood cells from diffusion, otherwise we would expect to see concentrations
that are constant along the streamlines. In fact, this solution is valid not only for red blood
cells, but for any solute that cannot pass through the membrane, such as protein. This is
provided the diffusion coefficient of the solute is on the same order as that for red blood
cells and, if the solute is charged, electric effects can be ignored.
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Figure 5 Scaled blood-cell concentration gradient and the streamlines in the fibre.

4 Bulk Solute Transport - Outer Solutions

In this section, we review the different models that try to estimate the solute distribution
away from the membrane. In all of these models, since the advective transport to the
membrane is much smaller than the advective transport along the filament axis, the effective
equations of motion are quasi-steady. In future work, additional details on how advection of
solute from the blood into the dialysate would need to be included in order to see changes
on this longer time scale.

4.1 Toy model based on transport equilibrium.
4.1.1 Assumptions. Our simplest model of a dialyzer assumes that:

1. The transport of solutes between the blood and the dialysate involves the sum of a
diffusive term (proportional to the concentration difference across the tube walls),
and an electrical term (proportional to the product of the charge on the species, the
electric field across the tube walls, and the average concentration).

2. Dialysis continues for sufficient time to allow the blood to come in to equilibrium
with the dialysate.

3. Electro-neutrality is maintained in the blood and dialysate at leading order (though
minute differences can lead to a significant potential difference, and hence an electric
field, across the tube walls).

4.1.2 Notation and equations. Consider n diffusing species. Each species i ∈ {1, 2, . . . n}
has valencey zi, and concentrations Ci in the blood and ci in dialysate initially. Since the
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Table 7 Initial concentrations Ci in the blood and ci in the dialysate, used in the example
in Section 4.1.3.

i Species zi Ci(0) ci

1 Na+ +1 100 c
2 K+ +1 1 0
3 Cl− −1 100 c
4 Pr− −1 1 0

dialysate is not recycled, the concentration there remains fixed at ci, while the concentration
in the blood can evolve to its equilibrium value C∞

i = limt→∞Ci(t).
The equations for our model, to determine the equilibrium concentrations C∞

i are then
as follows. For species that can pass through the tube walls we must have no net transport
at equilibrium. We assume that the advective, diffusive and electrical fluxes from the blood
to the dialysate are given, respectively, by

Qa = Q

(

Ci + ci
2

)

, (4.1)

Qd = Di(Ci − ci) , (4.2)

Qe =
qziDi

kBT

(

Ci + ci
2

)

E , (4.3)

where Q is the flux of fluid through the wall, E is the mean electric field strength, Di is a
species dependent mobility coefficient for passing through the tube walls. At equilibrium,
the total flux of each species must be zero. We also have no flux of fluid, so Q = 0 and
there is no advective transport to consider. Balancing the diffusive and electrical fluxes we
find that

Di

[

(C∞
i − ci) +

qzi
kBT

(

C∞
i + ci

2

)

E

]

= 0 . (4.4)

For species that are unable to pass through the tube walls, the concentration in the
blood cannot alter, so

C∞
i = Ci . (4.5)

Finally the condition of electro-neutrality gives us
∑

i

C∞
i zi = 0 . (4.6)

We now have n+ 1 equations for the n+ 1 unknowns {C∞
i } and E.

4.1.3 A simple example. For simplicity we consider just four diffusing species: Na+, K+,
Cl−, and Pr−(the latter representing a negatively charged protein ion). All the ions are
monovalent (zi = ±1), and the first three can pass through the tube walls, but the protein
cannot. Initial concentrations in the blood and dialysate are shown in Table 4.1.3. The
blood contains a mixture of all four, whereas the dialysate contains only a concentration c
of NaCl.

We want to find appropriate concentration c of NaCl in dialysate to allow removal of
K+ without affecting Na+ levels. But firstly we solve for the forward problem to determine
{C∞

i } for a given c.
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Figure 6 The equilibrium concentrations Na+ (C∞
1 ) and Cl− (C∞

3 ) in the blood as func-
tions of NaCl concentration c in the dialysate for the simple example in Section 4.1.3.

The equations are as follows:

(C∞
1 − c) + E′(C∞

1 + c) = 0 , (4.7)
C∞

2 (1 + E′) = 0 , (4.8)
(C∞

3 − c) − E′(C∞
3 + c) = 0 , (4.9)
C∞

4 − 1 = 0 , (4.10)
C∞

1 + C∞
2 − C∞

3 − C∞
4 = 0 , (4.11)

where E′ = qE/kBT .
From (4.8) either E′ = −1 or C∞

2 = 0. The former is ruled out by (4.7), since this
equation could then only be satisfied if c = 0. Hence C∞

2 = 0. We can then eliminate E′
between (4.7) and (4.9) to obtain a pair of equations for C∞

1 and C∞
3 :

C∞
1 − c

C∞
1 + c

= −C
∞
3 − c

C∞
3 + c

, (4.12)

C∞
1 = 1 + C∞

3 . (4.13)

The solution for C∞
1 and C∞

3 in terms of c is now straightforward:

C∞
1 =

√
1 + 4c2 + 1

2
, (4.14)

C∞
3 =

√
1 + 4c2 − 1

2
. (4.15)

These results are plotted as functions of c in Figure 6.
However, we are more interested in choosing a dialysate concentration c in order to

obtain optimal values for C∞
1 and C∞

3 . If we choose values consistent with (4.13) – necessary
to ensure electro-neutrality – the value of c can be computed by solving (4.12). This yields:

c =
√

C∞
1 C∞

3 . (4.16)
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So if we wish to obtain C∞
1 = 100 (so Na+levels are unaffected) and C∞

3 = 99 (to maintain
electro-neutrality after the loss of K+), we should set the dialysate concentration of NaCl
to be

c = 30
√

11 ≈ 99.50 . (4.17)

4.2 Argument for using a 1D model. Consider a small length δx of tube that has
a concentration drop ΔC1 from the centre to the boundary. The average radial concen-
tration gradient is ΔC1/rt. If we assume advection transport of solute is small compared
to diffusion, then the mass flux of solute due to diffusion at the boundary approximately
equals

D
ΔC1

rt
(2πrtδx) ⇒ Q = D

ΔC1

rt
(2πrt), (4.18)

where Q is the mass flux per unit length of tube. The number of pores in that section
of boundary is φp(2πrt)δx/Ap, and therefore the number of pores per unit length equals
φp(2πrt)/Ap, meaning that we may obtain a second equation for Q

Q = D
ΔC2

lp
Ap
φp(2πrt)
Ap

= D
ΔC2

lp
φp(2πrt), (4.19)

where ΔC2 is the concentration drop along a pore. Relating the two expressions for Q,

ΔC1

ΔC2
=
φprt
lp

≈ 0.02, (4.20)

which would suggest that most of the concentration drop takes place across the membrane.
Therefore we propose to use a 1D model when transport from advection is small compared
to diffusive transport.

4.3 One-dimensional steady model. The above assumption motivates a model in
one dimension, in which the concentration profile of a single charged species varies in the
axial direction along the tubes and along the dialysate, but not significantly in the radial
direction. We consider the model depicted in Figure 7. We use a one-dimensional model
and assume the flow and the concentration profiles are steady. We also make the simpli-
fying assumption that the velocities of blood and dialysate, Ub and Ud, respectively, are
independent of x. This is reasonable since the filtration rate is small compared to the fluxes
of blood and dialysate (Qp/Qb ≈ 1/24 and Qp/Qd = 1/48). Table 2 suggests that the
pressure drop, and hence the velocity of the blood in the pores, varies by around 20% along
the length, but for simplicity we assume here that the average velocities are constant along
the tubes.

In the blood we analyse a control volume consisting of a section of one tube of length δx,
as shown in Figure 7. We balance the solute flux across each of the surfaces. The flux along
the tube into the control volume is AtiUbCb(x), where Ati is the internal area of the tube and
Cb is the species concentration. The flux out of the control volume along the tube equals
AtiUbCb(x+δx). To find the flux across the curved surface of the control volume, we find the
number of pores, which equals the surface area, 2πrtδx, multiplied by the number of pores
per unit area, nppua = Np/As, and then multiply by the flux per pore. The dimensionless
flux is given by the expression Qσ appearing in (2.29), and the corresponding dimensional
flux is given by ApUpQσ/Pep. Since we are interested in the concentration of a single
charged species under electrically neutral conditions, the quantities σb and σd appearing
in (2.29) are directly proportional to Cb and Cd in this section. Thus the flux through



Sodium Flux during Haemodialysis 77

DIALYSATE

flux of solute
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DIALYSATE

Figure 7 Schematic view of one-dimensional model, showing one tube of the dialyzer with
porous walls. It is filled with blood and surrounded by dialysate.

the curved surface of the control volume equals 2πrtNpApUpQσ δx/(PepAs). Balancing the
fluxes into and out of the control volume and taking the limit as δx→ 0, we obtain

∂Cb

∂x
= −2πrtNpApUpQσ

PepAsAtiUb
. (4.21)

Unlike the blood, which is partitioned by the tubes, the region occupied by the dialysate
is connected, so to analyse the concentration in the dialysate, we consider a control volume
containing all of the dialysate between x and x + δx. This is a cylindrical region with
Nt cylindrical holes in it. The flux into the control volume through the surface at x is
(1 − φt)AdUdCb(x), the flux through x + δx equals (1 − φt)AdUdCb(x + δx), and the flux
from the tubes equals 2πrtNtNpApUpQσδx/(PepAs), meaning we obtain:

∂Cd

∂x
= − 2πrtNtNpApUpQσ

PepAs(1 − φt)AdUd
. (4.22)

Substituting the expression for Qb from (2.29), (4.21) and (4.22) become

∂Cb

∂x
= − λ

(ePep − 1)
(

ePepCb − Cd

)

, (4.23)

∂Cd

∂x
= − λκ

(ePep − 1)
(

ePepCb − Cd

)

, (4.24)

where

λ =
2πrtNpApUp

AsAtiUb
≈ 0.043m−1, κ =

NtAtiUb

(1 − φt)AdUd
≈ 0.50, (4.25)

Pep ≈ 1.8, ld ≈ 0.2m. (4.26)
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Figure 8 Concentration profiles in the blood (solid) and in the dialysate (dashed).

Table 8 Typical removal rates predicted by the model.

Solute Normal Pre- Dialysate Diffusion Removal Mass
conc. dialysis conc. coefficient rate removed

conc. (normal-
(mEq) [15] (mEq) [15] (mEq) [15] (m2/s) (mol/s) ised)

Sodium 142 142 133 2 × 10−9 1.1 × 10−25 0.78
Potassium 5 7 1 2 × 10−9 6.2 × 10−27 0.04
Urea 21mg/ml 200 0 1.8 × 10−9 1.4 × 10−25 1

These have solution

Cb =
(ePepCb0 − Cd0) e−γ x − κCb0e

−γ ld + Cd0

ePep − κe−γ ld
, (4.27)

Cd =
κ(ePepCb0 − Cd0) e−γ x + ePepCd0 − κCb0e

Pep−γ ld

ePep − κe−γ ld
, (4.28)

where

γ =
λ
(

ePep − κ
)

(ePep − 1)
.

This is plotted in Figure 8 for sodium, potassium and urea, assuming that each species
appears individually in solution. As can be seen, the concentration profiles show a near
linear variation over the lengthscale of the dialyzer.

The total flux of the solute out of the blood is

Qs =
∫ ld

0

ApUpQσ

Pep
dx =

ApUp

[

1 − e−γ ld
]

(ePepCb0 − Cd0)
λ(ePep − 1) [ePep − κ e−γld ]

. (4.29)

Removal rates are listed in Table 4.3
We may also calculate the ratio of advective to diffusive effects on both sides of the

membrane, which is shown in Figure 9. This shows that advection is much more important
than diffusion, particularly for sodium.
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Figure 9 Ratio of advective to diffusive transport at either end (solid – blood, dashed –
dialysate) of the pore for the concentration profiles displayed in Figure 8, see Section 2 for
details of the calculation.

5 Conclusions

We have investigated the transport of charged species over a variety of length scales.
Firstly, we considered the transport of species through a single pore in the membrane that
separates the blood from the dialysate. In the case when electro-neutrality holds, the volu-
metric flow rate remains constant, but depends in general on the local hydraulic and osmotic
pressures and on the local electric potential. The electric potential, a streaming potential,
depends only on the local solution conductivity if the Péclet numbers are identical for all
species. Formally, the classic membrane relations discussed in [2] are reproduced in our anal-
ysis in this limit, but the coefficients depend nonlinearly on the solute concentration and
electric potenial. In the case when electro-neutrality is weakened, there are two approaches
in modeling. The first, and classical, approach is to model the charge in the membrane as
a ζ-potential, and prescribe this potential as a Dirichlet boundary condition along the pore
wall. Our approach here considers the case of the membrane acting as a pure dielectric. In
this case, we find a nonlinear eigenvalue problem for the potential, where the eigenvalue is
the ratio of the pore radius to the Debye length scale.

Secondly, we considered the flow of plasma from the blood to the dialysate assuming
that concentration effects were negligible. We found that the pressure difference across the
dialysate decays exponentially over space, with the decay rate depending on the permeability
of the membrane. Although limited to looking at the plasma effects, this model forms a
foundation for developing the net charge transport across the membrane, since the solute
available to cross into the dialysate is found in the plasma. Further, extensions to this
model that include solute transport from the blood cells to the plasma could potentially be
implemented with a local analysis of the osmotic transport across the cell wall. Although
work for the future, one potential result from such a local analysis would be an effective
diffusion coefficient which depends on the local blood cell concentration.

Finally, we investigated the case where the solute distribution was independent of the
radial dimension. This case is appropriate if diffusive transport across the membrane is
dominant over advective transport. We find that in this case, advective transport appears
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to be dominant only for the case of sodium. Since advective transport is dominant for
sodium, the concentration depends not only on the axial coordinate but also on the radial
coordinate, suggesting that a boundary-layer approach is needed.
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Transmissible spongiform encephalopathies (TSE’s), also known as prion (proteinaceous
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typified by long incubation periods and asymptomatic infections—two factors making epi-
demiological investigations particularly difficult. Two modes of infection of vCJD have been
identified:

• Primary infections: associated with the ingestion of infectious materials (mainly
BSE-contaminated beef),
• Secondary infections: associated with receiving blood from an infected blood pool

(particularly through transfusions) and with the use of infected surgical instruments.

The number of cases of vCJD is relatively small, but its characteristic incubation pe-
riod coupled with unconventional transmissibility has presented a challenge for parameter
estimation and modeling dynamics. In spite of the fact that only one vCJD case has been
detected in Canada (in 2002) it is important to study possible transmission scenarios. In-
deed, outbreaks can potentially develop into epidemics, as the outbreak in UK (in the
1990’s) has shown.

Since the epidemic course shows geographical differences, every country should assess
its specific vCJD risk as a condition for developing a national blood supply strategy. A
group was formed for this purpose in Germany in 2001, and its findings are available in
[16].

To prevent secondary transmission through blood components, several countries have
started to exclude recipients of blood transfusions from being donors. A recent study [7]
investigated the effectiveness of this measure using a dynamic age-structured model based
on German epidemiological data. An important question for us is whether Canada should
ban recipients of blood transfusions from donating blood. On the one hand, this ban could
prevent some new cases of the terrible disease vCJD; on the other hand, it would significantly
decrease the number of blood units collected by Canadian Blood Services. To help us choose
between these alternatives, we would like to predict the number of new vCJD cases that
would be prevented if Canada were to enact this ban.

In this report, we use two models to describe the plausible evolutions of vCJD outbreaks
in Canada. In the next two sections, these models and their underlying assumptions are
thoroughly discussed. In Section 2 we use a classical compartmental model to describe
the evolution of the infected population originated from primary infections and secondary
infections. We examine possible parameter values and scenarios based on data. The roles
of the two key transmission parameters are examined. Section 3 explores a stochastic
model that could help predict the consequences of a vCJD-infected individual entering the
Canadian blood-donor pool. Both simulation and analytical results are presented. Some
brief concluding remarks appear in Section 4.

2 A Deterministic Model

The first basic deterministic time-continuous compartmental models to describe the
transmission of communicable disease are contained in a sequence of three papers by Ker-
mack and McKendrick in 1927, 1932 and 1933 [10]. These models have been generalized
and a recommended introduction to the topic is provided in the first two chapters in [2].

The deterministic compartmental model can be directly translated into a Markovian
stochastic version by reformulating the ordinary differential equations that describe the
deterministic dynamics, as the transition probabilities (+o(dt)) of the process. In this
underlying stochastic model the process has latent (if considering an SEIR model) and
infectious periods that are exponentially distributed.
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In this section we only explore the deterministic version of the vCJD infectious dynamics
considering primary and secondary infections (via blood transfusion) and the sensitivity of
outbreak to the change of some parameter values.

The analysis in this section aims to study the general characteristics and rough uncon-
trolled outbreak scenarios derived from infections by food intake and blood transfusion. The
number of infected individuals is obtained in the long term with the purpose of exploring
the evolutionary epidemic trends rather than forecasting outbreak outcomes.

2.1 Model. The population is subdivided into susceptible S(t), primary infected (by
beef consumption) I1(t), secondary infected (by blood transfusion) I2(t), and removed R(t)
individuals.

Compartmental models assume that individuals in the entire population mix homoge-
nously, so the rate of interaction between two different subsets of the population is propor-
tional to the product of the number in each subset.

Regarding the vCJD transmissibility in the infectious process, if we have an almost
completely susceptible population we suppose that each infected beef cow infects β1 indi-
viduals and that each infected individual annually transmits vCJD to β2 individuals by
blood transfusion.

We also assume that every individual becomes infectious immediately after being in-
fected by either ingesting contaminated beef or receiving infected blood. This, added to
the fact that individuals die just a few weeks or months after presenting vCJD symptoms,
makes the infectious periods very similar to the illness’s latent periods. Here we consider
the two kinds of periods as equal.

We include two different incubation periods for primary and secondary cases. In both
cases the periods are exponentially distributed but with means 1/γ1 and 1/γ2, respectively.

Due to the fact that the evolution of vCJD is long, it is important to introduce the
demographical changes that occur in a population. The two demographical variables that
we consider in this section are the births and deaths. We respectively denote as π and δ
the crude annual birth and death rates in Canada.

Let N(t) be the total population at time t. Since vCJD is a fatal disease, then N(t) =
S(t) + I1(t) + I2(t). Therefore the interactions of our compartmental model are depicted by
Figure 1 and it is formalized by the following differential equations:

dS

dt
= πN − β1

N
SC − β2

N
S(I1 + I2)− δS, (2.1)

dI1
dt

=
β1

N
SC − γ1I1 − δI1, (2.2)

dI2
dt

=
β2

N
S(I1 + I2)− γ2I2 − δI2, (2.3)

dR

dt
= γ1I1 + γ2I2, (2.4)

where C is the number of BSE infected beef cases in Canada in a year. The term β1SC/N in
(2.1) and (2.2) describes the number of susceptible individuals who acquire vCJD by eating
BSE infected meat. When S ∼ N then this number is equal to β1C as described above.
The expression β2S(I1 + I2)/N in (2.1) and (2.3) describes the number of new infections
by blood transfusion from infected individuals (either primary or secondary cases). Then if
S ∼ N each infective originates β2 new cases.
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Figure 1 Interactions of the deterministic compartmental model.

2.2 Parameters. Now we discuss the parameter values used to describe the infectious
dynamics. Some infectious scenarios are explored in Section 2.4 by varying some of the
parametric values.

Since 1993, one percent of the cattle have been tested in Canada and only 18 have been
found to be infected with BSE [4]. On the other hand, according to Canada Livestock and
Products Annual 2007 [17], approximately 3,825,000 heads are slaughtered in Canada every
year. If we assume that the 18 infected animals were uniformly found during these 16 years
and that beef consumption over this period has been approximately equal to the 2007 levels,
then the number of BSE cases during a year is close to Ĉ = 3, 825, 000× α = 112.5, where
α is the estimated fraction of infected heads (α = 2.94× 10−5).

As stated in [15], the annual Canadian beef consumption in recent years has been
approximately 23.3 kg per person. We know that a single animal provides between 140 and
200 kg of edible meat. Consequently, we calculate that a single BSE infected bovine can
contaminate between 700 (140 kg/200 grams per meal portion) and 6,667 (200 kg/30 grams
per meal portion) individuals. If we assume that each bovine provides 170 kg of edible meat
and the individual portions are 65 grams (64.7 grams per day = 23.3 kg /360 days), the
number of individuals infected by one diseased bovine would be 2,615.

Because the most dangerous parts of the animal are now eliminated from human con-
sumption (those that contain sections of the central nervous system), the probability that
an individual acquires vCJD by consuming meat from an infected animal decreases by half.
Hence β̂1 = 1, 307. In the next section we will explore some other values for this parameter.

In order to estimate β2, we use a case study from Britain where 4 out of a total of 66
individuals who had received blood from a blood pool contaminated by a single infected
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(a) (b)

Figure 2 Epidemic curves, (a) evolution of outbreak in Canada, (b) as in (a) except
individuals are separated into primary and secondary infections.

donor contracted vCJD after their transfusion. Even though the donor pool size can vary,
the number of affected individuals may remain similar due to factors such as dilution of
the particles that transmit the disease (see [6]). We consider that the number of infected
individuals originated from a single infected person who donates blood is constant and equal
to 4.

Now, we also have that the fraction of people that donated blood in Canada in 2007
was 1/60, [3], and from those individuals 335,000 donated once, 90,000 donated twice,
110,500 donated between 3 and 5 times, and 14,500 donated 6 or 7 times during the year.
Thus the expected number of times that the same individual gives blood in a year, is
approximately 1.91. Hence the estimated new cases an infected individual originates in one
year is β̂2 = 2/60× 4 = 0.1333.

The estimated incubation periods in individuals that acquired vCJD by eating contam-
inated beef and blood transfusion has been estimated to be between 13 and 40 years and
between 5 and 6 years, respectively. Using the midpoints of these intervals we have

γ̂1 =
1

26.5
= 0.03773 and γ̂2 =

1
5.5

= 0.181818.

From the demographical information in [14] we obtain the crude birth and death rate
registered in 2007-2008:

π̂ =
11.1
1000

= 0.0111 and δ̂ =
7.2

1000
= 0.0072.

2.3 Outbreak Evolution. Assuming that the parameters remain similar every year,
the evolution of the outbreak in Canada (population with 33 million people) is as presented
in Figure 2 (a). Here we assume that a single case by secondary infection is present at time
0.
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(a) (b)

Figure 3 Epidemic curves for the cases of (a) primary and (b) secondary infections.

As shown in Figure 2(a), the epidemic curve reaches its peak at around year 50. While
the number of infected individuals remains always less than 5,250,000, by year 200 the num-
ber of susceptible individuals decreases to the value of 162. Due to the natural population
growth the total number of individuals that die with vCJD symptoms is 40 million.

Figure 2(b) decomposes the total number of infected according to primary and secondary
infections. These two curves reach their peaks in the same year. As we will see, this is due to
the fact that the incidence of secondary infections follows the incidence of primary infections,
and both combined decrease the susceptible population to a level that causes the abrupt
decrement in the number of infected cases after year 50.

To understand the interaction of the cases by primary and secondary infections in the
outbreak we obtain the outbreak evolution considering that the vCJD can only be acquired
by ingesting BSE infected meat (Figure 3(a)), and that infection can only be acquired by
blood transfusion (Figure 3(b)).

In the first case we have a rapid increment in the vCJD incidence, and by year 100, 3.01
million people live with vCJD. After this date the increment is steady but slow. By year
500, the number of infected individuals is 3.148 million, and in spite of the fact that the
susceptible population increases, a total of 55 million people would have died with vCJD
symptoms.

Based on Figure 3(a) we can conclude that the infectious and removal rate (β1 and γ1),
combined with the fixed birth and death rates would result in the event of vCJD becoming
endemic in the population.

In contrast, under the second scenario (Figure 3(b)) we have that the outbreak dies
out immediately after starting, affecting only 4 individuals. According to the model, an
outbreak originated by secondary transmissions will remain small and this is explained by
its basic reproductive number.
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Figure 4 Basic Reproductive Number.

The basic reproductive number (R0) is defined as the (expected) number of secondary
infections produced by an infective individual in a fully susceptible population [1]. This
epidemic parameter is used to estimate the size of the population that is infected during an
outbreak (final outbreak size). In a deterministic model, if R0 < 1 an outbreak affects only
a reduced number of individuals but an epidemic will always develop if R0 > 1.

Based on this model, the basic reproductive number for secondary vCJD infections is

R0 =
β2

γ2 + δ
.

For the values of β2 = 0.1333, γ2 = 0.1818 and δ = 0.0072, the basic reproductive
number is 0.7054 < 1 (white dot in Figure 4). Consequently, in the absence of primary
infections, all vCJD outbreaks would affect only a handful of individuals.

In order to better understand the sensitivity of this basic reproductive number in terms
of β2 and γ2, we present the level curves of R0 in Figure 4. While the parameter β2 can
be modified with criteria that exclude vCJD exposed blood donors, the parameter γ2 is
directly linked to the evolution characteristics of infectious agents in the host. As depicted
in Figure 4 the larger the value of β2 the more sensitiveR0 is to the changes in the incubation
period. Considering incubations larger than 6 years, it is notable that for β2 = 0.1333 (as
before), the epidemic threshold R0 = 1 is reached for an incubation period of just 8 years
(γ2 = 0.125, black dot in Figure 4).

In 2002 one vCJD case was detected in Canada and no other case has been identified
since then. The discrepancy between the observed and theoretical trends for outbreaks can
be due to several reasons such as the effectiveness of the implemented control measures.
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Table 1 Parameter values for the different scenarios.

values for β1 values for β2

0.0000 697.0700 0.0000 0.4267
87.1330 784.2000 0.0533 0.4800

174.2700 871.3300 0.1067 0.5333
261.4000 958.4700 0.1600 0.5867
348.5300 1045.6000 0.2133 0.6400
435.6700 1132.7000 0.2667 0.6933
522.8000 1219.9000 0.3200 0.7467
609.9300 1307.0000 0.3733 0.8000

This male (under the age of 50), had multiple stays in the UK during the BSE outbreak
and once classified as vCJD suspected, Health Canada immediately advised the hospital to
remove from service the medical devices that were in contact with this person, until such
time as a diagnosis be confirmed. Once the individual was confirmed with vCJD (through
autopsy) the identified individuals who were exposed to the medical devices were advised
not to donate blood, organs or tissue.

Another factor that can lead to an overestimation of the transmissibility by food intake
is the actual existence of a non negligible latent period in beef cows, during which the
animals are infected but not infectious.

2.4 Interaction of primary and secondary infections. With the aim to further
study the impact of the interaction between β1 and β2 in the outbreaks, we construct a grid
where we evaluate the function

f(β1, β2) =
m∑
t=0

(
S(0,0)(t)− S(β1,β2)(t)

)
,

where S(0,0)(t) and S(β1,β2)(t) are the number of susceptible individuals in the population at
day t = {0, 3.6, 2(3.6), . . . , n(3.6), . . . ,m = 50001(3.6) ∼ 500 years}, when no transmission
can occur (β1 = β2 = 0) and when the vCJD outbreak has parameters (β1, β2), respectively.
This function is a measure of the outbreak severity and when it is evaluated in the grid
with parametric values in Table 1, it can be depicted as in Figure 5. Here f(·, ·) is divided
by 1× 1012.

As we can observe in Figure 5, when outbreaks are only due to primary infections, they
tend to become epidemics very slowly as β1 increases (first line in Figure 5(b)); however,
combined with secondary infections, even modest increments of β2 produce large outbreaks
even for relatively small β1.

In contrast, outbreaks due solely to secondary infections tend to be small for values of
β2 < 0.19. This is in agreement with the threshold value for the basic reproductive number
and Figure 4 (when drawing a horizontal line at level of white dot). From Figure 5(a) we
see that adding primary infections affects the value of f(·, ·) for β2 < 0.19 but does not
significantly increases the final epidemic size when the outbreaks are already developing
into epidemics.

2.5 Discussion and Future Work. The first and largest vCJD outbreak occurred
in the UK between 1995 and 2008 (with death prevalence peak during 1998/2000 [11]), but
since then the disease incidence is rare. This last fact is to be celebrated, but unfortunately
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(a) (b)

Figure 5 Two views of f(β1, β2)/
(
1× 1012

)

has led to the problem of not having enough information to fully understand and estimate
the human transmission risks and the individual evolution of the illness. From the epidemi-
ological point of view it is important to analyze the dynamics of vCJD to be able to rule
in or out certain scenarios and evaluate the impact of control measures.

The first challenge that scientists have to face in order to refine their models is to
improve the estimates of the parameters for the different transmission paths. The parameter
estimation should also include the estimation for the exposed and infectious periods that
animals and humans present when infected by each route.

The model presented here can also become more realistic by considering the specific
rates that now are describing the population as one with homogeneous individuals. First,
we can introduce the specific birth and death rates by sex and age (or age group, also called
cohorts) to model the natural population growth over time. Second, since the probability
of receiving/donating blood can significatively vary according to sex and age, it is desirable
to incorporate the specific blood exchange for these groups.

The epidemic model in this section can also be generalized by introducing other sec-
ondary infections such as those derived from surgical cross contamination (as in [8]) and
organ transplants. These two events can be closely related to blood transfusion but they
may modify the probability of vCJD transmission.

In laboratory experiments, an epidemiologist may obtain more information about the
impact of the pool blood size for the vCJD transmission and based on this new information
update the blood transmission parameter that here we have considered fixed.

Since the outbreak size for the transmission via blood transfusion appears to be very
sensitive to the incubation periods (Figure 4), the epidemic threshold (R0 = 1) may also
be very sensitive to the asymmetry present in the incubation (and/or latent) period distri-
bution. The authors of [8] estimated that the incubation-latent period for individuals that
acquired vCJD via surgery is a random variable with gamma distribution. The model in [8]
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is a compartmental model as the one presented here, and the authors introduce the gamma
distribution for the incubation period adding as many stages in this period as the estimated
gamma distribution.

Due to the fact that the vCJD latent period is long, it is important to incorporate the
demographical changes over time. The model introduced here takes into account the crude
birth and death rates, but it is important to incorporate as well the migration of susceptible
and infected individuals.

The value of the model presented here lies in the ability of drawing general epidemic
trend characteristics, but in order to predict the number of infected individuals (or suscep-
tible or removed individuals) at a certain point in time it is not only necessary to obtain the
forecasted specific rates (birth, death, migration, transfusion, beef consumption, etc.) but
it is also important to incorporate the distribution of latent and incubation periods, and
provide a measure of uncertainty to the predicted number (such as confidence intervals).

Finally, the stochastic model obtained after incorporating the illness stage distribution
and infectious rates, can also become more realistic by relaxing the assumption that each
individual in the same age-sex group is equally likely to be infected during an outbreak.
The existence of “superspreaders” (such as individuals that donate blood significantly more
times during a year) can importantly modify the outbreak evolution and the impact of
control measures [12, 13, 5].

3 A Stochastic Model and Simulation

In this section we present a stochastic model, developed to help us better understand
and forecast the dynamics of secondary vCJD infections through blood transfusions. The
assumptions and computations that led to the numerical values for the model’s parameters
are discussed thoroughly in the following sections.

Our model provides a simple probabilistic representation of the blood-donor system,
using conditional probabilities. It revolves around the following parameters:

• The probability of an individual donating blood
• The probability of contracting the disease after receiving a transfusion of contami-

nated blood
• The attrition (or mortality) rate of the infected population

It is possible to estimate the probability of an individual donating blood, from data
collected by the Canadian Blood Services. In fact, the data allows us to estimate probabil-
ities of an individual being a first-time and a repeat blood donor. Of particular relevance
for our model is the fact that an individual who has donated in the past year has a higher
probability of donating than an individual who has not. Past studies also provide clues on
the rates of secondary transmission given an exposure to contaminated blood products.

We model the available parameters using conditional probabilities and build an iterative
process to study the dynamics of the blood-donor system.

The parameters of our system include the probability of blood donation by an individ-
ual (see Table 2), the probability of contracting the disease upon receiving contaminated
blood through a blood transfusion P (c), and the attrition (or mortality) rate of an infected
individual m. We define the attrition rate to include both the removal of an infected indi-
vidual from the donor population due to the appearance of vCJD symptoms and the natural
mortality. Using these parameters an iterative process was constructed to assess the effects
of an infected individual on the Canadian blood-donor population.
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Figure 6 Flowchart of the algorithm with input and output variables given in Table 2.

The algorithm is explained in terms of the input and output parameters in Table 2, and
its flowchart is displayed in Fig. 6.

The steps of the algorithm are as follows:

• Step 0: Introduce one infected individual into the blood-donor pool and set the
number of infected individuals to be N = 1.

As long as t ≤ T the following steps are performed in a loop as required to collect
M samples of the count N .
• Step 1: Assess whether an individual was a past donor:

– Assign the probability P (db) for the individual of having donated in the past

Table 2 Input and output variables of the algorithm.

Input
T Duration of the simulation
P (d|db) Probability of an individual to donate blood

given at least one previous donation
P (nd|db) Probability of an individual not donating blood

given at least one previous donation
P (d|ndb) Probability of an individual donating blood

given no previous donation
P (nd|ndb) Probability of an individual not donating blood

given no previous donation
m Mortality or attrition rate of infected individuals in the pool of donors
Output
N Number of infected individuals, in the pool of potential donors
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– Assign the probability (1−P (db)) for the individual not having donated in the
past

• Step 2: Determine if an individual donates at the current time
If the individual has donated in the past:

– Assign the probability P (d|db) of donating
– Assign the probability P (nd|db) = 1− P (d|db) of not donating

If the individual is not a past donor:
– Assign the probability P (d|ndb) of donating
– Assign the probability P (nd|ndb) = 1− P (d|ndb) of not donating

• Step 3: Determine if a donor contaminates one or more others
– Assign the probability P (c) of contaminating:

∗ Compute the number of secondary contaminations C
∗ Increment the number of infected individuals by N = N + k

– Assign the probability 1− P (c) of not contaminating:
No further action
• Step 4: Compute the attrition in the pool of infected potential donors

N = N −mN

3.1 Numerical results and scenario analysis. Using the algorithm presented above,
we ran our simulation over a (simulated) duration of 15 years, the approximate time over
which individuals remain donors. Simulations were done using a 6-month time-step and iter-
ated 30 times (T = 30). Finally, we repeated the whole process 10,000 times (M = 10, 000).

The results are reported in Table 3.1 and in Figure 7. We see that the expected (mean)
number of infected individuals in the pool of potential blood-donors begins with a value of
1 (by construction) and decreases to approximately zero, over the simulation period.

Table 3 Mean number of infected individuals in the potential donor pool and its standard
deviation (Stdev.) with time.

Time Mean Stdev. Time Mean Stdev.
1 1 0 16 0.1039 0.3051
2 0.8545 0.3526 17 0.0885 0.284
3 0.7373 0.4401 18 0.0763 0.2655
4 0.6354 0.4813 19 0.0664 0.249
5 0.5448 0.498 20 0.0586 0.2349
6 0.4654 0.4988 21 0.0493 0.2165
7 0.3992 0.4898 22 0.0425 0.2017
8 0.3393 0.4735 23 0.0363 0.187
9 0.2897 0.4536 24 0.0312 0.1739
10 0.2465 0.431 25 0.0266 0.1609
11 0.2102 0.4075 26 0.0231 0.1502
12 0.1813 0.3853 27 0.0197 0.139
13 0.1559 0.3628 28 0.0164 0.127
14 0.1311 0.3375 29 0.0139 0.1171
15 0.1191 0.3239 30 0.0161 0.1423

31 0 0
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Figure 7 Number of infected individuals in the pool of potential donors

Figure 8 Number of infected individuals and results from the worst-case scenario

To better assess the potential effect of an infected donor entering the Canadian blood-
donor pool we examined a “worst-case scenario”, using the model presented above. The
“worst-case” number of contaminated was defined as the mean number of infected individ-
uals plus four standard deviations. This is a highly unlikely outcome, with a probability
of occurring in the order of 10−5, under the assumptions of our model. (Under the normal
distribution, the probability of exceeding the mean by at least 4 standard deviations is of
the order of 10−5, i.e. 1-F(4) for the normal N(0,1).)
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The results are shown in Figure 8. The worst-case estimate begins with N = 1 (by
construction the standard deviation is 0) and attains a peak at approximately 2.5 individ-
uals, after 2 years. The number of infected individuals then decreases over the remaining
simulation period, except for a negligible increase in the 30th time-step.

The preliminary results for both the “mean” and “worst-case” scenarios suggest that
the effect of an infected individual entering the blood-donor pool would be negligible on the
total number of vCJD infections in the overall population. However, future work should
focus on estimating the parameters and empirically validating the underlying assumptions of
the model. Only then will we be able to rigorously evaluate the risk of vCJD transmissions
and draw more complete conclusions.

3.2 Analysis of the Stochastic Model. In this section we present an analysis of the
stochastic model described earlier in this section. The analysis will be based on a branching
processes formulation.

Consider a single primary vCJD case (a person who acquired vCJD by eating meat
infected with BSE). How many secondary cases of vCJD will occur as the result of blood
transfusions from this primary case? (We shall count all secondary cases over all times after
the primary infection occurs; we do not restrict the count to a single time period.) Some
individuals may get vCJD by blood transfusion directly from the primary case; we shall say
that such individuals comprise the “first generation” of secondary infections. Individuals in
the first generation of secondary infections may donate blood to others, who may acquire
vCJD as a result; we shall say that these people comprise the “second generation” of
secondary infections. In general, for k = 1, 2, . . ., individuals in the kth generation may
donate blood to others, and those people who acquire vCJD by transfusions from people in
the kth generation comprise the (k + 1)th generation of secondary infections. We wish to
study the total number of all of the secondary infections.

To formalize our model, we now define some random variables. Let N0 denote the
number of people who receive blood transfusions from our single primary infected person
during his/her lifetime (after he/she becomes infected). Let p be the probability that a
single transfusion from an infected person to a second person causes the second individual
to become infected. For each k = 1, 2, . . ., let Xk denote the number of secondary infections
in the kth generation. Then X1 has the binomial distribution with parameters N0 and p;
we shall represent this by writing

X1 = Bin(N0, p) . (3.1)

(Note that this is a generalization of the usual definition of binomial distribution, since N0

is a random variable instead of a constant. It is more correct to say that the conditional
distribution of X1 given the value of N0 is binomial with parameters N0 and p.)

Now consider people who receive transfusions from a given individual with secondary
infection. The pattern of blood donation is different from that of our primary case, since
people who receive transfusions are not a “typical” group within the population—e.g., they
tend to be older and in poorer health. For a single person who has received a transfusion, the
random variable NT shall denote the number of people who receive blood transfusions from
this person during his/her lifetime (subsequent to this person receiving the transfusion).
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Formally, we can express the random variables Xk (k > 1) recursively as follows:

Xk = Bin

Xk−1∑
i=1

N
(k−1,i)
T , p

 (3.2)

(where {N (j,i)
T } are independent, identically distributed copies of NT ; N (j,i)

T represents the
number of recipients of transfusions from the ith person in the jth generation of secondary
cases). Finally, let Y be the total number of secondary cases that are ultimately due to our
initial infected primary individual. Then

Y = X1 + X2 + X3 + · · · (3.3)

It is routine to show that the expected values of the above random variables satisfy

E(X1) = pE(N0) (3.4)

and that
E(Xk) = pE(Xk−1)E(NT ) for k > 1. (3.5)

It follows that

E(Xk) = [pE(NT )]k−1E(X1) = pk [E(NT )]k−1E(N0), for k ≥ 1, (3.6)

and that the expected total number of secondary infections (recall (3.3)) is

E(Y ) =
∞∑
k=1

E(Xk) =
pE(N0)

1 − pE(NT )
. (3.7)

Public health officials may consider the policy of preventing any recipient of a blood trans-
fusion from themselves donating blood. To assess the possible impact of such a policy,
we shall calculate the number of secondary infections that could have been prevented with
such policy. The first generation of secondary infections are not preventable in this way,
but all subsequent generations of secondary infections are. The total number of infections
preventable in this way (per primary infected individual) is Y −X1, and its expected value
is

E(Y −X1) = E

( ∞∑
k=2

Xk

)
=

∞∑
k=2

[pE(NT )]k−1pE(N0) =
p2E(N0)E(NT )

1 − pE(NT )
. (3.8)

Now we consider estimates for the values of p, E(N0), and E(NT ).
For p, we use British data, in which 4 out of 66 known individuals developed vCJD

after having received transfusions from a vCJD-infected donor. (The data is not perfect,
because some recipients may have developed vCJD after being surveyed, and some may have
acquired vCJD by other means.) This gives us the simple point estimate p̂ = 4/66 = 0.061.
Even assuming that the data is perfect, we can ask for a 95% confidence bound for p. In other
words, for what values of p is it true that Pr{Bin(66, p) ≤ 4 } ≥ 0.05 ? It turns out that
the largest such p is about 0.133. Therefore a 95% confidence bound on p is “p ≤ 0.133.”

For E(N0), we use the following information from the web pages of Canadian Blood
Services (http://www.blood.ca; > Media Room > Resource Center > Quick Facts):

(i) about 3.7% of Canadians donate blood at some point in their lives. This
says that about 1.2 million Canadians ever donate blood.

(ii) There are about 450,000 active donors in Canada (about 1.4% of the
population).
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(iii) About 900,000 units of blood are donated annually in Canada.
(iv) A unit of blood can go to up to three recipients.
(v) Each active donor gives an average of 2.18 units per year.

We use the above information to obtain a rough estimate of E(N0) (a better estimate can
be obtained by a more careful analysis of available data from Canada Blood Services and
Héma-Québec), as follows. Of the 1.2 million Canadians who ever donate blood, some are
currently active donors and some are not. If L is the lifetime average number of units given
by one donor, then in a given year the average amount given by one donor is L/80, where
we have used 80 years as the average lifetime of one donor. (Of course, active donors will
tend to give more than this, and inactive donors will give nothing, but the average will
be L/80.) Therefore Canadians give about 1, 200, 000 × L/80 units per year; by (iii), this
number equals 900,000, so we deduce that L ≈ 60. In view of item (iv) above, we shall
assume that each unit goes to an average of two recipients. Therefore the expected number
of recipients of transfusions from a single person is

E(N0) =

 probability that
the person is
a blood donor

×
 number of

units
per donor

×
 number of

recipients
per unit

 (3.9)

≈ 0.037× 60× 2
≈ 4.4. (3.10)

Finally, for E(NT ), we modify our calculations as follows.

• 53% of transfusion recipients die within 5 years of receiving the transfusion.
It seems reasonable to assume that a negligible number of these 53% donate
blood after receiving the transfusion (due to age and/or poor health). So
among transfusion recipients, we expect that the fraction of future donors
is at most 47% of the global proportion of 3.7%, which comes to 1.7%.

• For someone who acquires secondary vCJD by transfusion, the average in-
cubation time (i.e. the time until symptoms appear) is 3 years. We assume
that such a person would not donate blood after vCJD symptoms appear.
Active blood donors among this group (which is precisely the group that
concerns us when it comes to passing along the infection) would give an
average of 2.18 units per year (by item (v) above) for an average of three
years, for a total of about 6.5 units.

Therefore, the analogous calculation to (3.9) is

E(NT ) ≈ 0.017× 6.5× 2 ≈ 0.22 .

We can now insert the above estimates into (3.7) to give the number of infected sec-
ondary cases from one person:

E(Y ) =
0.061× 4.4

1− 0.061× 0.22
= 0.27, using p = 0.061, (3.11)

E(Y ) =
0.133× 4.4

1− 0.133× 0.22
= 0.60, using p = 0.133. (3.12)
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Finally, from (3.8) we compute the expected number of cases that would be prevented if all
recipients of blood transfusions could be prevented from themselves donating blood:

E(Y −X1) =
(0.061)2 × 4.4× 0.22

1− 0.061× 0.22
= 0.0037, using p = 0.061, (3.13)

E(Y −X1) =
(0.133)2 × 4.4× 0.22

1− 0.133× 0.22
= 0.018, using p = 0.133. (3.14)

These estimates are much smaller than those in (3.11) and (3.12).

3.3 Conclusions and Future Work. In this section, we created a probabilistic model
of the blood-donor system. We then simulated the effect of an infected individual on the
entire Canadian blood-donor pool, which we found to be quite small. Analytic results
supported this conclusion.

Our preliminary simulation results suggest that an infected individual entering the
blood-donor pool would only have negligible effects. As shown in Table 3.1, the expected
number of infected individuals in our population never exceeds one. Even in our worst-case
scenario, the total number of infected potential donors never exceeds 2.5 (see Figure 8).

The calculations of (3.11)–(3.14) show that each primary infected individual has a sig-
nificant chance of infecting others by blood transfusion, but the chances are much smaller
that a secondary infected individual will infect others. Because only transmissions from
secondary individuals could be avoided under a policy that would ban recipients of blood
transfusions from donating blood, only a minimal number of cases would be prevented.
Indeed, given the small number of primary cases in Canada and the precautions now in
place, such a policy may only prevent a few transmissions per century. The concern with
implementing such a policy is that it would have a significant impact on the number of
eligible donors, which in turn could have serious ramifications for people in need of blood
donations.

We must emphasize that although our findings from the stochastic model may seem
reassuring, even in the worst-case scenario, they are far from rigorous. Given the very
strong assumptions that were required to build our model and the lack of data available to
estimate model parameters, it is not possible to draw any definitive conclusions based on
our numerical results.

4 Concluding Remarks

We have presented two different simple models for vCJD transmission by blood trans-
fusion. Both models indicate that transfusions alone are unlikely to cause more than a few
infections, unless the number of primary cases increases.

To improve our models, future work should pursue data collection, empirical estimation
of the model parameters, and examination of the underlying assumptions of our frameworks.

Further improvements could also include examining susceptibility to vCJD infection by
age group and iatrogenic infections introduced through surgical instruments. Regarding the
latter, it may be worthwhile to conduct experiments to quantify the transmission of prions
from an infected surgical instrument after repeated sterilization procedures.
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