Speed-ups of Elliptic Curve-Based Schemes

René Struik
Certicom Research
e-mail: rstruik@certicom.com
Part I –
Accelerated Verification of ECDSA Signatures

René Struik
Certicom Research
e-mail: rstruik@certicom.com

Joint work with A. Antipa, D.R. Brown, R. Gallant, R. Lambert, S.A. Vanstone
Outline

• ECDSA signature scheme
• Fast ECDSA signature scheme
• Computational aspects
 – Simultaneous multiplication
 – Extended Euclidean Algorithm
• Examples
 – Fast ECDSA verification
 – ECDSA verification
 – Comparison with RSA signatures
• Generalizations
• Conclusions
ECDSA signature scheme

<table>
<thead>
<tr>
<th>System-wide parameters</th>
<th>Initial set-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elliptic curve of prime order n with generator G. Hash function h.</td>
<td>Signer A selects private key $d \in [1,n-1]$ and publishes its public key $Q = dG$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signature generation</th>
<th>Signature verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT: Message m, private key d.</td>
<td>INPUT: Message m, signature (r, s); Public signing key Q of Alice.</td>
</tr>
<tr>
<td>OUTPUT: Signature (r, s).</td>
<td>OUTPUT: Accept or reject signature.</td>
</tr>
</tbody>
</table>

ACTIONS:
1. Compute $e := h(m)$.
2. Select random $k \in [1,n-1]$.
3. Compute $R := kG$ and map R to r.
4. Compute $s := k^{-1}(e + d \cdot r) \mod n$.
5. If $r, s \in [1,n-1]$, return (r, s); otherwise, go to Step 2.

ACTIONS:
1. Compute $e := h(m)$.
2. Check that $r, s \in [1,n-1]$. If verification fails, return ‘reject’.
3. Compute $R' := s^{-1}(e \cdot G + r \cdot Q)$.
4. Check that R' maps to r. If verification succeeds, return ‘accept’; otherwise return ‘reject’.

Non-repudiation: Verifier knows the true identity of the signing party, since the public signing key Q is bound to signing party Alice.

Certicom Research
Fast ECDSA signature scheme

System-wide parameters

Elliptic curve of prime order n with generator G. Hash function h.

Signature generation

INPUT: Message m, private key d.
OUTPUT: Signature (R, s).

ACTIONS:
1. Compute $e := h(m)$.
2. Select random $k \in [1, n-1]$.
3. Compute $R := kG$ and map R to r.
4. Compute $s := k^{-1}(e + d \cdot r) \mod n$.
5. If $r, s \in [1, n-1]$, return (R, s); otherwise, go to Step 2.

Initial set-up

Signer A selects private key $d \in [1, n-1]$ and publishes its public key $Q = dG$.

Signature verification

INPUT: Message m, signature (R, s); Public signing key Q of Alice.
OUTPUT: Accept or reject signature.

ACTIONS:
1. Compute $e := h(m)$.
2. Map R to r.
3. Check that $r, s \in [1, n-1]$. If verification fails, return ‘reject’.
4. Check that $R = s^{-1}(eG + rQ)$. If verification succeeds, return ‘accept’; otherwise return ‘reject’.

Non-repudiation: Verifier knows the true identity of the signing party, since the public signing key Q is bound to signing party Alice.

Certicom Research
Fast ECDSA signature scheme

Computational aspects

Ordinary signature verification

ACTIONS:

3. Compute \(R' := (e^{-1}) G + (r^{-1}) Q \).
4. Check that \(R' \) maps to \(r \).

Fast signature verification

ACTIONS:

2. Map \(R \) to \(r \).
4. Check that \(R = (e^{-1}) G + (r^{-1}) Q \).

Ordinary signature verification

Compute expression \(R' := (e^{-1}) G + (r^{-1}) Q \).

Cost: full-size linear combination of known point \(G \) and unknown point \(Q \).

Fast signature verification

Evaluate expression \(\Delta := s^{-1} (e G + r Q) - R \) and check that \(\Delta = O \).

Cost: full-size linear combination of known point \(G \) and unknown point \(Q \).

Seemingly no computational advantages over traditional approach … ☹️

Certicom Research
Computational aspects (1)

One can do better, though! ☺

Fast signature verification
Evaluate expression \(\Delta := (e s^{-1}) G + (r s^{-1}) Q - R \) and check that \(\Delta = O \).

Equivalent test
Check that \(\mu \Delta := (\mu e s^{-1}) G + (\mu r s^{-1}) Q - \mu R = O \) for any \(\mu \in [1, n-1] \).

or:
Check that \(\mu \Delta := (\mu e s^{-1}) G + \lambda Q - \mu R = O \), where \(r / s \equiv \lambda / \mu \pmod{n} \).

Optimum choice
Write \(r / s \equiv \lambda / \mu \pmod{n} \), where \(\lambda \) and \(\mu \) have size half the bit-length of \(n \).

Note: This can be done efficiently using the Extended Euclidean Algorithm.

Why speed-up?
Speed-up due to getting rid of half of so-called point doubles.

Certicom Research
Computational aspects (2)

Fast signature verification
Check that \(\mu \Delta := (\mu e s^{-1}) G + \lambda Q - \mu R = O \), where \(r/s \equiv \lambda / \mu \pmod{n} \) and where \(\lambda \) and \(\mu \) have size half the bit-length of \(n \).

Details:
Pre-compute \(G_1 := t G \), where \(t \approx \sqrt{n} \). Let \(G_0 := G \).
Write \(r/s \equiv \lambda / \mu \pmod{n} \), where \(\lambda \) and \(\mu \) have size half the bit-length of \(n \).
Write \(\mu e s^{-1} \equiv \alpha_0 + \alpha_1 t \pmod{n} \), where \(\alpha_0, \alpha_1 \) have size half the bit-length of \(n \).
Evaluate \(\mu \Delta := (\mu e s^{-1}) G + \lambda Q - \mu R \)
\[= \alpha_0 G_0 + \alpha_1 G_1 + \lambda Q - \mu R \]
Cost: half-size combination of known points \(G_0, G_1 \) and unknown points \(Q, R \).

Ordinary signature verification
Compute expression \(R' := (e s^{-1}) G + (r s^{-1}) Q \).
Cost: full-size linear combination of known point \(G \) and unknown point \(Q \).
Optimum choice
Write \(r / s \equiv \lambda / \mu \pmod{n} \), where \(\lambda \) and \(\mu \) have size \(\text{half} \) the bit-length of \(n \).

This can be done efficiently using the Extended Euclidean Algorithm.

Extended Euclidean Algorithm (EEA)

INPUT: Positive integers \(a \) and \(n \) with \(a \leq n \).

OUTPUT: \(d = \gcd(a, n) \) and integers \(x, y \) satisfying \(a x + n y = d \).

ACTIONS:
1. \((u, v) \leftarrow (a, n); X \leftarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \);
2. while \(u \neq 0 \) do
 \{
 \hspace{1em} q \leftarrow v \div u; (u, v) \leftarrow (v \mod u, u); X \leftarrow \begin{pmatrix} -q & 1 \\ 1 & 0 \end{pmatrix} X
 \}
3. \((d, x, y) \leftarrow (v, x_{21}, x_{22}) \).

Invariant:
\[
\begin{align*}
ax_{11} + nx_{12} &= u \\
ax_{21} + nx_{22} &= v
\end{align*}
\]

Let \(a := r s^{-1} \pmod{n} \).

Use Ext. Euclidean Algorithm to compute \(\gcd(a, n) \).
(which is 1, since \(n \) is prime.)

Abort algorithm once \(u < \sqrt{n} \).
(Most likely, \(|x_{11}| \) is also close to \(\sqrt{n} \).)

Set \(\lambda := u \) and \(\mu := x_{11} \).
Example

Verification cost ECDSA scheme vs. Fast ECDSA scheme
• Curve: NIST prime curve P-384 with 192-bit security (Suite B)
• Integer representation: NAF, joint sparse form (JSF)
• Coordinate system: Jacobian coordinates

<table>
<thead>
<tr>
<th>P-384 curve</th>
<th>ECDSA Verify</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECC operations</td>
<td>Ordinary</td>
</tr>
<tr>
<td>– Add</td>
<td>194</td>
</tr>
<tr>
<td>– Double</td>
<td>384</td>
</tr>
<tr>
<td>– Total</td>
<td>459</td>
</tr>
</tbody>
</table>

\(^1\text{Normalized (double/add ratio: 0.69)}\)

| RIM Blackberry\(^2\) | 221 ms | 158 ms |

\(^2\text{Platform: ARM7TDMI (50 MHz)}\)

Speed-up cost Fast ECDSA verify compared to ordinary approach: 1.4x
Security of Fast ECDSA
Both schemes are equally secure: ECDSA has signature \((r, s)\) if and only if Fast ECDSA has signature \((R, s)\) where \(R\) maps to \(r\).

ECDSA signature verification
• Convert ECDSA signature \((r, s)\) to Fast ECDSA signature \((R, s)\)
• Verify Fast ECDSA signature \((R, s)\)

Note:
• Conversion generally yields pair \((R, -R)\) of candidate points that map to \(r\).
• Verification involves trying out all those candidate points not discarded based on some side constraints (the so-called admissible points).

How to ensure only one admissible point:
• Generate ECDSA signature with \(k\) such that \(y\)-coordinate of \(R:=kG\) can be prescribed. (If necessary, change the sign of \(k\).)
• Use the fact that \((r, s)\) is a valid ECDSA signature if and only if \((r, -s)\) is.
Cost of signature verification

Verification cost of ECDSA signature vs. RSA signatures
• RSA: public exponent $e = 2^{16}+1$
• ECDSA: NIST prime curves
• Platform: HP iPAQ 3950, Intel PXA250 processor (400 MHz)

<table>
<thead>
<tr>
<th>Security level (bits)</th>
<th>Verification cost (ms)</th>
<th>Ratio fast ECDSA verify vs. RSA verify</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RSA(^2)</td>
<td>ECDSA</td>
</tr>
<tr>
<td></td>
<td>ordinary(^2)</td>
<td>fast(^3)</td>
</tr>
<tr>
<td>80</td>
<td>1.4</td>
<td>4.0</td>
</tr>
<tr>
<td>112</td>
<td>5.2</td>
<td>7.7</td>
</tr>
<tr>
<td>128</td>
<td>11.0</td>
<td>11.8</td>
</tr>
<tr>
<td>192</td>
<td>65.8</td>
<td>32.9</td>
</tr>
<tr>
<td>256</td>
<td>285.0</td>
<td>73.2</td>
</tr>
</tbody>
</table>

\(^1\)Excluding (fixed) overhead of identification data
\(^2\)Certicom Security Builder
\(^3\)Estimate

Conclusion
Efficiency advantage of RSA signatures over ECDSA signatures is vanishing
Method for accelerated signature verification works in more general setting than presented here:

- **Verification:**
 - Fast ECDSA signature verification when more than one multiple of the signer’s public key Q is available (e.g., included in ‘fat’ certificate)
 - Verification of any elliptic curve equation involving an unknown point
 - Verification of any elliptic curve equation involving more than one unknown point (use lattice base reduction in low-dimensional lattice)

- **Algebraic group:**
 - Operations in other algebraic structures
 (including hyper-elliptic curves, identity-based crypto systems)
Fast ECDSA signature scheme attractive:

- **Security:** Same security as original ECDSA signature scheme
- **Efficiency:** Considerable speed-up possible for non-Koblitz curves
 - NIST prime curves, ‘Suite B’ curves, Brainpool curves: 40% speed-up
 - NIST random binary curves: 40% speed-up

Efficiency results applicable to ordinary ECDSA signature scheme:

- ECDSA and Fast ECDSA have same cost if only 1 admissible point
 - Append 1 bit of side info to ECDSA signature to distinguish \((R, -R)\)
 - Agree on particular way of generating ECDSA signatures such that only one of points \(R\) and \(-R\) is admissible
- ECDSA can still use Fast ECDSA if more than 1 admissible point
 - Roughly 8% average speed-up for curves mentioned above

Efficiency advantage of RSA signatures over ECDSA signatures is vanishing
Part II – Combined Verification and Key Computation

René Struik
Certicom Research
e-mail: rstruik@certicom.com
Outline

• Public key cryptography
 – Key agreement schemes
 – Signature schemes
• Computational aspects
 – Key computation
 – Certificate verification
 – Combined key computation and certificate verification
• Examples
 – Static Diffie-Hellman with ECDSA certificates
 – ECMQV with ECDSA certificates
 – Comparison with RSA certificates
• Generalizations
• Conclusions
Public key cryptography

Communication model
Communicating parties a priori share authentic information

Alice ➔ Bob
Alice ➔ Eve
Bob ➔ Eve

authentic channel
unsecured channel
Key agreement schemes

Anonymous Diffie-Hellman (ephemeral ECDH)

Properties
- **Key agreement:** Both parties arrive at same key K, since $K = abG = aB = bA$.
- **No key authentication:** Neither party knows the true identity of the key sharing party, since keys A and B are *not* bound to parties Alice and Bob.
Key agreement schemes

Authenticated Diffie-Hellman (static ECDH)

\[K = aB = bA. \]

\[K = abG = aB = bA. \]

Properties
- **Key agreement**: Both parties arrive at same key \(K \), since \(K = abG = aB = bA \).
- **Key authentication**: Each party knows the true identity of the key sharing party, since keys \(A \) and \(B \) are bound to parties Alice and Bob.
General protocol format

Step 1: Key contributions
Each party randomly generates a short-term (ephemeral) public key pair and communicates the ephemeral public key to the other party (but not the private key).

Step 2: Key establishment
Each party computes the shared key based on static and ephemeral public keys received from the other party and static and ephemeral private keys it generated itself.

Step 3: Key authentication
Each party verifies the authenticity of the static key of the other party.

Step 4: Key confirmation
Each party evidences possession of the shared key to the other party. This also confirms its true identity to the other party.
Key agreement schemes

Computational aspects

Step 1: Key contributions
Each party randomly generates a short-term (ephemeral) public key pair and communicates the ephemeral public key to the other party (but not the private key).

Step 2: Key establishment
Each party computes the shared key based on static and ephemeral public keys received from the other party and static and ephemeral private keys it generated itself.

Step 3: Key authentication
Each party verifies the authenticity of the static key of the other party.

Step 4: Key confirmation
Each party evidences possession of the shared key to the other party. This also confirms its true identity to the other party.

Certicom Research
ECDSA signature scheme

ECDSA signature verification

| INPUT: | Message m, signature (r, s); Public signing key Q of Alice. |
| OUTPUT: | Accept or reject signature. |

System-wide parameters

| Elliptic curve with generator G. |
| Hash function h. |

Ordinary signature verification

<table>
<thead>
<tr>
<th>ACTIONS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
</tr>
<tr>
<td>1. Compute $e := h(m)$.</td>
</tr>
<tr>
<td>2. Compute $R' := (e s^{-1}) G + (r s^{-1}) Q$.</td>
</tr>
<tr>
<td>3. Check that R' maps to r.</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>

Fast signature verification

<table>
<thead>
<tr>
<th>ACTIONS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
</tr>
<tr>
<td>1. Compute $e := h(m)$.</td>
</tr>
<tr>
<td>2. Reconstruct R from r.</td>
</tr>
<tr>
<td>3. Check that $R = (e s^{-1}) G + (r s^{-1}) Q$.</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>

ECDSA verification: Check equation $s^{-1} (e G + r Q) - R = O$.

Non-repudiation: Verifier knows the true identity of the signing party, since the public signing key Q is bound to signing party Alice.

Certicom Research
Computational aspects (1)

Step 2: ECDH key computation (key establishment)

Compute expression \(K := aB, \)

where \(a \) is Alice’s private key;
\(B \) is Bob’s public key (derived from his certificate).

Step 3: ECDSA certificate verification (key authentication)

Evaluate expression \(s^{-1} \left(e \ G + r \ Q \right) - R = O, \)

where \(e \) is hash value of certificate info (including Bob, \(B \));
\(Q \) is public key of certificate authority;
\((r, s)\) is ECDSA signature over certificate info.

Question: Can one combine these steps?
Answer: YES!
Computational aspects (2)

Step 2: ECDH key computation (key establishment)

Compute expression \(K := aB \).

Step 3: ECDSA certificate verification (key authentication)

Evaluate expression \(\Delta := s^{-1}(e \ G + r \ Q) - R \) and check that \(\Delta = O \).

Step 2 and Step 3 combined: Combined verification and key computation

Compute expression \(K' := aB + \lambda (s^{-1}(e \ G + r \ Q) - R) \) instead.

More generally, compute \(K' := K + \lambda \Delta \) instead.

Certicom Research
Step 2 and Step 3 combined: Combined verification and key computation

Compute expression \(K' := aB + \lambda (s^{-1}(eG + rQ) - R) \) instead.

More generally, compute \(K' := K + \lambda \Delta \) instead.

Why does this work?

Alice can only compute \(K' \) correctly if certificate is ‘correct’ (i.e., \(\Delta = 0 \)); otherwise, \(K' \) is random (since then \(\Delta \neq 0 \)).

Property

Implicit key authentication: Each party knows the true identity of the key sharing party, if any, since keys \(A \) and \(B \) are bound to parties Alice and Bob and either party can only compute a shared key if that binding is ‘correct’.

Certicom Research
Step 2: ECDH key computation (key establishment)
Compute expression \(K := aB \).
Cost: full-size multiple of unknown point \(B \).

Step 3: ECDSA certificate verification (key authentication)
Check expression \(s^{-1} (eG + rQ) = R \).
Cost: linear combination of known point \(G \) and unknown point \(Q \).

Step 2 and Step 3 combined: Combined verification and key computation
Compute expression \(K' := aB - \lambda R + (\lambda e s^{-1}) G + (\lambda r s^{-1}) Q \).
Cost: linear combination of known point \(G \) and unknown points \(B, Q, \) and \(R \).

Why speed-up?
Speed-up due to getting rid of half of so-called point doubles.

Certicom Research
Example (1)

Static ECDH with ECDSA certificates
• Curve: NIST prime curve P-384 with 192-bit security (Suite B)
• Integer representation: NAF, joint sparse form (JSF)
• Coordinate system: Jacobian coordinates

<table>
<thead>
<tr>
<th>P-384 curve</th>
<th>ECDH key</th>
<th>ECDSA (incremental cost)</th>
<th>Separately</th>
<th>Combined with ECDH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ordinary</td>
<td>Fast</td>
</tr>
<tr>
<td>Add</td>
<td>128</td>
<td>194</td>
<td>196</td>
<td>195</td>
</tr>
<tr>
<td>Double</td>
<td>384</td>
<td>384</td>
<td>192</td>
<td>–</td>
</tr>
<tr>
<td>Total¹</td>
<td>393</td>
<td>459</td>
<td>328</td>
<td>195</td>
</tr>
</tbody>
</table>

¹Normalized (double/add ratio: 0.69)

Speed-up incremental cost ECDSA verify
compared to separate approach: 2.4x (ordinary ECDSA verify)
1.7x (Fast ECDSA verify)
Example (2)

ECMQV with ECDSA certificates
- Curve: NIST prime curve P-384 with 192-bit security (Suite B)
- Integer representation: NAF, joint sparse form (JSF)
- Coordinate system: Jacobian coordinates

<table>
<thead>
<tr>
<th>P-384 curve</th>
<th>ECMQV key</th>
<th>ECDSA (incremental cost)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECC operations</td>
<td>Separately</td>
<td>Combined with ECMQV</td>
</tr>
<tr>
<td>Add</td>
<td>194</td>
<td>194</td>
</tr>
<tr>
<td>Double</td>
<td>384</td>
<td>384</td>
</tr>
<tr>
<td>Total¹</td>
<td>459</td>
<td>459</td>
</tr>
</tbody>
</table>

¹Normalized (double/add ratio: 0.69)

Speed-up incremental cost ECDSA verify
compared to separate approach: 2.3x (ordinary ECDSA verify)
1.7x (Fast ECDSA verify)
Example (3)

Static ECDH and ECMQV with ECDSA certificates

<table>
<thead>
<tr>
<th>P-384 curve Total ECC operations¹</th>
<th>Key computation</th>
<th>Key computation + ECDSA (total cost)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ECDSA separately</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ordinary</td>
</tr>
<tr>
<td>ECDH</td>
<td>393</td>
<td>852</td>
</tr>
<tr>
<td>ECMQV</td>
<td>459</td>
<td>918</td>
</tr>
</tbody>
</table>

¹Normalized (double/add ratio: 0.69)

Speed-up total cost ECDH + ECDSA
compared to separate approach: +45% (ordinary ECDSA verify)
+23% (Fast ECDSA verify)

Speed-up total cost ECMQV + ECDSA
compared to separate approach: +40% (ordinary ECDSA verify)
+20% (Fast ECDSA verify)
Cost of certificate verification

Incremental verification cost of ECDSA certificates vs. RSA certificates
• RSA: public exponent $e = 2^{16} + 1$
• ECDSA, ECDH: NIST prime curves
• Platform: HP iPAQ 3950, Intel PXA250 processor (400 MHz)

<table>
<thead>
<tr>
<th>Security level (bits)</th>
<th>Certificate size¹ (bytes)</th>
<th>Ratio ECC/RSA certificates</th>
<th>Verify – incremental cost (ms)</th>
<th>Ratio ECDSA verify vs. RSA verify</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ECDSA</td>
<td>RSA</td>
<td>ECC/RSA certificates</td>
<td>RSA²</td>
</tr>
<tr>
<td>80</td>
<td>72</td>
<td>256</td>
<td>4x smaller</td>
<td>1.4</td>
</tr>
<tr>
<td>112</td>
<td>84</td>
<td>512</td>
<td>6x smaller</td>
<td>5.2</td>
</tr>
<tr>
<td>128</td>
<td>96</td>
<td>768</td>
<td>8x smaller</td>
<td>11.0</td>
</tr>
<tr>
<td>192</td>
<td>144</td>
<td>1920</td>
<td>13x smaller</td>
<td>65.8</td>
</tr>
<tr>
<td>256</td>
<td>198</td>
<td>3840</td>
<td>19x smaller</td>
<td>285.0</td>
</tr>
</tbody>
</table>

¹Excluding (fixed) overhead of identification data ²Certicom Security Builder ³Estimate

Conclusion
Efficiency advantage of RSA certificates with DH-based schemes is no more
Method for combining verification with key computation works in more general setting than presented here:

- **Verification:**
 - Verification of multiple ECDSA signatures (certificate chains)
 - Verification of any elliptic curve equation
 - Batch verification of multiple elliptic curve equations

- **Key computation:**
 - Key computation with ECDH-schemes in ANSI X9.63, NIST SP800-56a (including ECIES, Unified Model, STS, ECMQV, ElGamal encryption)
 - Computation of non-secret ECC point (if correctness can be checked)
 - Computation of multiple ECC points (if correctness can be checked)

- **Algebraic group:**
 - Operations in other algebraic structures (including hyper-elliptic curves, identity-based crypto systems)

- **Side channel resistance:**
 - Simple side channel resistance virtually for free
Conclusions

Combined computation of ECDH-key and ECDSA verification attractive:

- **Security:** Same security as underlying DH-based key agreement scheme or ECDSA signature scheme
- **Efficiency:** Considerable speed-up for all NIST prime curves
 - ECDH + ECDSA: up to 45% speed-up total online cost
 - ECMQV + ECDSA: up to 40% speed-up total online cost
 - ECDSA: up to 2.4x speed-up incremental ECDSA cost
- **Implementation security:** Simple side channel resistance virtually for free

Incremental cost of signature verification is the right metric:

- Efficiency advantage of RSA certificates with ECDH scheme is no more
 - Break-even point already at roughly 80-bit security level

Many generalizations possible…

Certicom Research
Further reading

8. R. Struik, ‘Combined Verifications and Key Computations,’ draft.