Scaling and Universality in Random Matrix Models

Pavel Bleher

Indiana University-Purdue University
Indianapolis

Thematic Program "Renormalization and Universality in Mathematics and Mathematical Physics"

Fall 2005

The Fields Institute, Toronto, Canada

Plan of the lectures

Lecture 1. General introduction to random matrix models.

Lecture 2. The Riemann-Hilbert approach to the large N asymptotics of orthogonal polynomials and random matrix models. Scaling limits and universality in the bulk of the spectrum and at the end-points.

Lecture 3. Double scaling limits and universality at critical points.

Lecture 4. Large N asymptotics of the free energy of random matrix models.

Lecture 1. General introduction to random matrix models

- Unitary Ensemble of Random Matrices

Let $M=\left(M_{j k}\right)_{j, k=1}^{N}$ be a random Hermitian matrix, $M_{k j}=\overline{M_{j k}}$, with respect to the probability distribution

$$
\mu_{N}(d M)=Z_{N}^{-1} e^{-N \operatorname{Tr} V(M)} d M, \quad M=M^{\dagger}
$$

where

$$
V(M)=\sum_{i=1}^{p} t_{j} M^{j}, \quad p=2 p_{0}, \quad t_{p}>0
$$

is a polynomial,

$$
d M=\prod_{j=1}^{N} d M_{j j} \prod_{j \neq k}^{N} d \Re M_{j k} d \Im M_{j k}
$$

the Lebesgue measure, and

$$
Z_{N}=\int_{\mathcal{H}_{\mathcal{N}}} e^{-N \operatorname{Tr} V(M)} d M
$$

the partition function.

- Gaussian Unitary Ensemble (GUE)

For $V(M)=M^{2}$,

$$
\begin{aligned}
\operatorname{Tr} V(M) & =\operatorname{Tr} M^{2}=\sum_{j, k=1}^{N} M_{k j} M_{j k} \\
& =\sum_{j=1}^{N} M_{j j}^{2}+2 \sum_{j>k}\left|M_{j k}\right|^{2}
\end{aligned}
$$

hence

$$
\begin{aligned}
\mu_{N}(d M) & =Z_{N}^{-1} \prod_{j=1}^{N}\left(e^{-N M_{j j}^{2}} d M_{j j}\right) \\
& \times \prod_{j>k}\left(e^{-2 N\left|M_{j k}\right|^{2}} d \Re M_{j k} d \Im M_{j k}\right),
\end{aligned}
$$

so that the matrix elements are independent Gaussian random variables. If $V(M)$ is not quadratic then the matrix elements are dependent.

- Topological Large N Expansion

Free energy

$$
\begin{aligned}
& F_{N}=-N^{-2} \ln \frac{Z_{N}}{Z_{N}^{0}} \\
& =-N^{-2} \ln \frac{\int_{\mathcal{H}_{\mathcal{N}}} e^{-N \operatorname{Tr}\left(M^{2}+t_{3} M^{3}+t_{4} M^{4}+\ldots\right)} d M}{\int_{\mathcal{H}_{\mathcal{N}}} e^{-N \operatorname{Tr}\left(M^{2}\right)} d M} \\
& =-N^{-2} \ln \left\langle e^{-N \operatorname{Tr}\left(t_{3} M^{3}+t_{4} M^{4}+\ldots\right)}\right\rangle \\
& =-N^{-2} \ln \left\langle 1-N \operatorname{Tr}\left(t_{3} M^{3}+t_{4} M^{4}+\ldots\right)\right. \\
& \left.+\frac{1}{2!} N^{2}\left[\operatorname{Tr}\left(t_{3} M^{3}+t_{4} M^{4}+\ldots\right)^{2}\right]+\ldots\right\rangle .
\end{aligned}
$$

where

$$
\langle f(M)\rangle=\frac{\int_{\mathcal{H}_{\mathcal{N}}} f(M) e^{-N \operatorname{Tr} M^{2}} d M}{\int_{\mathcal{H}_{\mathcal{N}}} e^{-N \operatorname{Tr} M^{2}} d M}
$$

Topological expansion:

$$
F \sim F_{0}+N^{-2} F_{1}+N^{-4} F_{2}+\ldots
$$

Expansion over Feynman diagrams:

$$
F_{j}=\sum_{m=\left(m_{3}, m_{4}, \ldots\right)} f_{j m} t^{m}, \quad t=\left(t_{3}, t_{4}, \ldots\right),
$$

where $f_{j m}$ is (up to an explicit factor) the number of Feynman diagrams with m vertices on a Riemannian surface of genus j. Thus, F is a generating function for $f_{j m}$. It is used to find asymptotics of $f_{j m}$ as $m \rightarrow \infty$.

Some references to topological expansions

1. E. Brézin, C. Itzykson, G. Parisi and J.-B. Zuber, Planar diagrams, Commun. Math. Phys. 59 (1978), 35-51. D. Bessis, C. Itzykson, and J.-B. Zuber, Quantum field theory techniques in graphical enumeration, Adv. Appl. Math. 1 (1980), 109-157.
2. P. Di Francesco, P. Ginsparg and J. ZinnJustin, 2D gravity and random matrices, Physics Reports 254 (1995), 1-131, and references therein.
3. P. Di Francesco, Matrix model combinatorics: applications to folding and coloring. In: "Random Matrices and Their Applications", MSRI Publications 40. Eds. P. Bleher and A. Its, Cambridge Univ. Press (2001), 111-170.
4. N.M. Ercolani and K.D.T-R McLaughlin. Asymptotics of the partition function for random matrices via Riemann-Hilbert techniques and applications to graphical enumeration. Int. Math. Res. Not. 14 (2003), 755-820.

- Ensemble of Eigenvalues

$$
\mu_{N}(d \lambda)=\tilde{Z}_{N}^{-1} \prod_{j>k}\left(\lambda_{j}-\lambda_{k}\right)^{2} \prod_{j=1}^{N} e^{-N V\left(\lambda_{j}\right)} d \lambda,
$$

where

$$
\begin{aligned}
\tilde{Z}_{N} & =\int \prod_{j>k}\left(\lambda_{j}-\lambda_{k}\right)^{2} \prod_{j=1}^{N} e^{-N V\left(\lambda_{j}\right)} d \lambda, \\
d \lambda & =d \lambda_{1} \ldots d \lambda_{N} .
\end{aligned}
$$

Main Problem: Find asymptotics of the partition function and correlations between eigenvalues as $N \rightarrow \infty$.

Correlation Functions

The m-point correlation function is given as

$$
\begin{aligned}
& K_{m N}\left(x_{1}, \ldots, x_{m}\right) \\
& =\frac{N!}{(N-m)!} \int_{\mathbb{R}^{N-m}} p_{N}\left(x_{1}, \ldots, x_{N}\right) d x_{m+1} \ldots d x_{N},
\end{aligned}
$$

where

$$
p_{N}\left(x_{1}, \ldots, x_{N}\right)=\widetilde{Z}_{N}^{-1} \prod_{j>k}\left(x_{j}-x_{k}\right)^{2} \prod_{j=1}^{N} e^{-N V\left(x_{j}\right)} .
$$

Determinantal formula for correlation functions

$$
K_{m N}\left(x_{1}, \ldots, x_{m}\right)=\operatorname{det}\left(Q_{N}\left(x_{k}, x_{l}\right)\right)_{k, l=1}^{m},
$$

where

$$
Q_{N}(x, y)=\sum_{n=0}^{N-1} \psi_{n}(x) \psi_{n}(y)
$$

and

$$
\psi_{n}(x)=\frac{1}{h_{n}^{1 / 2}} P_{n}(x) e^{-N V(x) / 2},
$$

where $P_{n}(x)=x^{n}+a_{n-1} x^{n-1}+\ldots$ are monic orthogonal polynomials,

$$
\int_{-\infty}^{\infty} P_{n}(x) P_{m}(x) e^{-N V(x)} d x=h_{n} \delta_{n m} .
$$

Recurrence and differential equations for orthogonal polynomials

$$
\begin{aligned}
x P_{n}(x) & =P_{n+1}(x)+\beta_{n} P_{n}(x)+\gamma_{n}^{2} P_{n-1}(x), \\
\gamma_{n} & =\left(\frac{h_{n}}{h_{n-1}}\right)^{1 / 2}>0, \quad \gamma_{0}=0 .
\end{aligned}
$$

or
$x \psi_{n}(x)=\gamma_{n+1} \psi_{n+1}(x)+\beta_{n} \psi_{n}(x)+\gamma_{n} \psi_{n-1}(x)$.

Consider the complex Hilbert space $\mathcal{H}=L^{2}\left(\mathbb{R}^{1}\right)$,

$$
\mathcal{H}=\left\{f(x)=\sum_{j=0}^{\infty} f_{j} \psi_{n}(x)\right\}, \quad f=\left(\begin{array}{c}
f_{0} \\
f_{1} \\
\vdots
\end{array}\right),
$$

with the scalar product $(f, g)=\sum_{j=0}^{\infty} f_{j} \overline{g_{j}}$. Consider the matrix Q of the operator of multiplication by $x, f(x) \rightarrow x f(x)$ in the basis $\left\{\psi_{n}(x)\right\}$. Then Q is the symmetric tridiagonal Jacobi matrix,

$$
Q=\left(\begin{array}{cccc}
\beta_{0} & \gamma_{1} & 0 & \ldots \\
\gamma_{1} & \beta_{1} & \gamma_{2} & \ldots \\
0 & \gamma_{2} & \beta_{3} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right) .
$$

Christoffel-Darboux Formula

Calculation:

$$
\begin{aligned}
& (x-y) \sum_{n=0}^{N-1} \psi_{n}(x) \psi_{n}(y)=\sum_{n=0}^{N-1}\left[\left(\gamma_{n+1} \psi_{n+1}(x)\right.\right. \\
& \left.+\beta_{n} \psi_{n}(x)+\gamma_{n} \psi_{n-1}(x)\right) \psi_{n}(y) \\
& \left.-\psi_{n}(x)\left(\gamma_{n+1} \psi_{n+1}(y)+\beta_{n} \psi_{n}(y)+\gamma_{n} \psi_{n-1}(y)\right)\right] \\
& =\gamma_{N}\left[\psi_{N}(x) \psi_{N-1}(y)-\psi_{N-1}(x) \psi_{N}(y)\right]
\end{aligned}
$$

(telescopic sum), hence

$$
\begin{aligned}
& Q_{N}(x, y)=\sum_{n=0}^{N-1} \psi_{n}(x) \psi_{n}(y) \\
& =\gamma_{N} \frac{\psi_{N}(x) \psi_{N-1}(y)-\psi_{N-1}(x) \psi_{N}(y)}{x-y} .
\end{aligned}
$$

Density function:

$$
\begin{aligned}
& p_{N}(x)=\frac{Q_{N}(x, x)}{N} \\
& =\frac{\gamma_{N}}{N}\left[\psi_{N}^{\prime}(x) \psi_{N-1}(x)-\psi_{N-1}^{\prime}(x) \psi_{N}(x)\right]
\end{aligned}
$$

Our goal is to derive semiclassical asymptotics for $\psi_{n}(z)$ on the complex plane, as $n, N \rightarrow \infty$ in such a way that

$$
\frac{n}{N} \rightarrow \lambda>0
$$

(for Christoffel-Darboux we need $n=N, N-1$). There are three basic elements in the derivation:

1. String equations.
2. Lax pair equations.
3. Riemann-Hilbert problem.

- String Equations

Let $P=\left(P_{n m}\right)_{n, m=0,1,2, \ldots}$ be a matrix of the operator $f(z) \rightarrow f^{\prime}(z)$ in the basis $\psi_{n}(z), n=$ $0,1,2, \ldots$ Then $P_{m n}=-P_{n m}$ and

$$
\begin{aligned}
\psi_{n}^{\prime}(z) & =-\frac{N V^{\prime}(z)}{2} \psi_{n}(z)+\frac{P_{n}^{\prime}(z)}{\sqrt{h_{n}}} e^{-N V(z) / 2} \\
& =-\frac{N V^{\prime}(z)}{2} \psi_{n}(z)+\frac{n}{\gamma_{n}} \psi_{n-1}(z)+\ldots
\end{aligned}
$$

hence

$$
\begin{aligned}
& {\left[P+\frac{N V^{\prime}(Q)}{2}\right]_{n n}=0} \\
& {\left[P+\frac{N V^{\prime}(Q)}{2}\right]_{n, n+1}=0} \\
& {\left[P+\frac{N V^{\prime}(Q)}{2}\right]_{n, n-1}=\frac{n}{\gamma_{n}}}
\end{aligned}
$$

Since $P_{n n}=0$, we obtain that

$$
\begin{equation*}
\left[V^{\prime}(Q)\right]_{n n}=0 \tag{*}
\end{equation*}
$$

In addition,

$$
\begin{aligned}
0= & {\left[P+\frac{N V^{\prime}(Q)}{2}\right]_{n-1, n}=\left[-P+\frac{N V^{\prime}(Q)}{2}\right]_{n, n-1}, } \\
& {\left[P+\frac{N V^{\prime}(Q)}{2}\right]_{n, n-1}=\frac{n}{\gamma_{n}}, }
\end{aligned}
$$

hence

$$
\begin{equation*}
\gamma_{n}\left[V^{\prime}(Q)\right]_{n, n-1}=\frac{n}{N} \tag{**}
\end{equation*}
$$

Thus, we have the discrete string equations,

$$
\left\{\begin{array}{l}
{\left[V^{\prime}(Q)\right]_{n n}=0,} \\
\gamma_{n}\left[V^{\prime}(Q)\right]_{n, n-1}=\frac{n}{N} .
\end{array}\right.
$$

Example. Quartic model,

$$
V(M)=\frac{t}{2} M^{2}+\frac{g}{4} M^{4} .
$$

String equation,

$$
\gamma_{n}^{2}\left(t+g \gamma_{n-1}^{2}+g \gamma_{n}^{2}+g \gamma_{n+1}^{2}\right)=\frac{n}{N}
$$

($\beta_{n}=0$ and the second string equation is trivial in the case when $V(M)$ is even). Initial conditions: $\gamma_{0}=0$ and

$$
\gamma_{1}=\frac{\int_{-\infty}^{\infty} z^{2} e^{-N V(z)} d z}{\int_{-\infty}^{\infty} e^{-N V(z)} d z}
$$

Gaussian model, $V(M)=\frac{M^{2}}{2}, t=1, g=0$:

$$
\gamma_{n}^{2}=\frac{n}{N}
$$

- Computer solution of the string equation for the quartic model: $g=1, t=-1, N=$ 400

- Fix-point solution of the string equation:

$$
\begin{gathered}
\gamma_{n}^{2}=R\left(\frac{n}{N}\right), \\
R(\lambda)=\frac{-t+\sqrt{t^{2}+12 g \lambda}}{6 g}, \quad \lambda>\lambda_{c}=\frac{t^{2}}{2 g} .
\end{gathered}
$$

- Period-2-solution of the string equation:

$$
\begin{gathered}
\gamma_{n}^{2}= \begin{cases}R\left(\frac{n}{N}\right), & n=2 k+1, \\
L\left(\frac{n}{N}\right), & n=2 k,\end{cases} \\
R(\lambda), L(\lambda)=\frac{-t \pm \sqrt{t^{2}-4 g \lambda}}{2 g}, \quad \lambda<\lambda_{c} .
\end{gathered}
$$

- Lax Pair Equations

Define $\vec{\Psi}_{n}(z)=\binom{\psi_{n}(z)}{\psi_{n-1}(z)}$.
Differential equation:

$$
\begin{equation*}
\vec{\Psi}_{n}^{\prime}(z)=N A_{n}(z) \vec{\Psi}_{n}(z), \tag{*}
\end{equation*}
$$

where

$$
A_{n}(z)=\left(\begin{array}{cc}
-\frac{V^{\prime}(z)}{2}-\gamma_{n} u_{n}(z) & \gamma_{n} v_{n}(z) \\
-\gamma_{n} v_{n-1}(z) & \frac{V^{\prime}(z)}{2}+\gamma_{n} u_{n}(z)
\end{array}\right)
$$

and

$$
\begin{aligned}
u_{n}(z) & =[W(Q, z)]_{n, n-1}, \\
v_{n}(z) & =[W(Q, z)]_{n n},
\end{aligned}
$$

where

$$
W(Q, z)=\frac{V^{\prime}(Q)-V^{\prime}(z)}{Q-z} .
$$

Observe that $\operatorname{Tr} A_{n}(z)=0$.

Recurrence equation:

$$
\begin{equation*}
\vec{\Psi}_{n+1}(z)=U_{n}(z) \vec{\Psi}_{n}(z), \tag{**}
\end{equation*}
$$

where

$$
U_{n}(z)=\left(\begin{array}{cc}
\gamma_{n+1}^{-1}\left(z-\beta_{n}\right) & -\gamma_{n+1}^{-1} \gamma_{n} \\
1 & 0
\end{array}\right)
$$

Thus, we have two equations on $\vec{\Psi}_{n}(z)$,

$$
\left\{\begin{array}{l}
\vec{\Psi}_{n}^{\prime}(z)=N A_{n}(z) \vec{\Psi}_{n}(z), \\
\vec{\Psi}_{n+1}(z)=U_{n}(z) \vec{\Psi}_{n}(z) .
\end{array}\right.
$$

The compatibility conditions of these two equations are the discrete string equations, so that this is a Lax pair for the discrete string equations.

Example. Quartic model,

$$
V(M)=\frac{t}{2} M^{2}+\frac{g}{4} M^{4} .
$$

Matrix $A_{n}(z)$:
$A_{n}(z)=\left(\begin{array}{cc}-\left[\left(\frac{t}{2}+g \gamma_{n}^{2}\right) z+\frac{g z^{3}}{2}\right] & \gamma_{n}\left(g z^{2}+\theta_{n}\right) \\ -\gamma_{n}\left(g z^{2}+\theta_{n-1}\right) & \left(\frac{t}{2}+g \gamma_{n}^{2}\right) z+\frac{g z^{3}}{2}\end{array}\right)$
where

$$
\theta_{n}=t+g \gamma_{n}^{2}+g \gamma_{n+1}^{2}
$$

- Riemann-Hilbert Problem

Adjoint functions to $\psi_{n}(z)$,
$\varphi_{n}(z)=e^{\frac{N V(z)}{2}} \frac{1}{2 \pi i} \int_{-\infty}^{\infty} \frac{e^{-\frac{N V(u)}{2}} \psi_{n}(u) d u}{z-u}, \quad z \in \mathbb{C}$.

Proposition 1. The vector-valued function $\vec{\Phi}_{n}(z)=\binom{\varphi_{n}(z)}{\varphi_{n-1}(z)}$ satisfies the Lax pair equations,

$$
\left\{\begin{array}{l}
\vec{\Phi}_{n}^{\prime}(z)=N A_{n}(z) \vec{\Phi}_{n}(z), \\
\vec{\Phi}_{n+1}(z)=U_{n}(z) \vec{\Phi}_{n}(z) .
\end{array}\right.
$$

Define

$$
\varphi_{n \pm}(x)=\lim _{\substack{z \rightarrow x \\ \pm \Im z>0}} \varphi_{n}(z), \quad-\infty<x<\infty
$$

Then

$$
\varphi_{n+}(x)=\varphi_{n-}(x)+\psi_{n}(x)
$$

Asymptotics of $\varphi_{n}(z)$ as $z \rightarrow \infty, z \in \mathbb{C}$:

$$
\begin{aligned}
\varphi_{n}(z) & =e^{\frac{N V(z)}{2}} \frac{1}{2 \pi i} \int_{-\infty}^{\infty} e^{-\frac{N V(u)}{2}} \psi_{n}(u)\left(\sum_{j=0}^{\infty} \frac{u^{j}}{z^{j+1}}\right) d u \\
& =e^{\frac{N V(z)}{2}}\left(\frac{h_{n}^{1 / 2}}{2 \pi i} z^{-n-1}+O\left(z^{-n-2}\right)\right)
\end{aligned}
$$

(due to the orthogonality, the first n terms cancel out).

Psi-matrix:

$$
\Psi_{n}(z)=\left(\begin{array}{cc}
\psi_{n}(z) & \varphi_{n}(z) \\
\psi_{n-1}(z) & \varphi_{n-1}(z)
\end{array}\right)
$$

Lax pair:

$$
\left\{\begin{array}{l}
\Psi_{n}^{\prime}(z)=N A_{n}(z) \Psi_{n}(z) \\
\Psi_{n+1}(z)=U_{n}(z) \Psi_{n}(z)
\end{array}\right.
$$

WKB asymptotic solution:

$$
\Psi_{n}(z)=V_{n}(z) e^{N \Lambda_{n}(z)}
$$

where $\Lambda_{n}(z)=\operatorname{diag}\left(\lambda_{n 1}(z), \lambda_{n 2}(z)\right)$. Then

$$
\Lambda_{n}^{\prime}=V_{n}^{-1} A_{n} V_{n}-N^{-1} V_{n}^{-1} V_{n}^{\prime}
$$

In the leading order, $\Lambda_{n}^{\prime}=V_{n}^{-1} A_{n} V_{n}$, so that $\lambda_{n 1}^{\prime}, \lambda_{n 2}^{\prime}$ are eigenvalues of A_{n}, and V_{n} is the matrix of eigenvectors of A_{n}. Since $\operatorname{Tr} A_{n}=0$,

$$
\Psi_{n}(z)=V_{n}(z) e^{N \lambda_{n}(z) \sigma_{3}}
$$

where $\lambda_{n}^{\prime}(z)=\sqrt{-\operatorname{det} A_{n}(z)}$.

Riemann-Hilbert problem for $\Psi_{n}(z)$:

- $\Psi_{n}(z)$ is analytic on $\{\Im z \geq 0\}$ and $\{\Im z \leq 0\}$ (two-valued on $\{\Im z=0\}$).
- $\Psi_{n+}(z)=\psi_{n-}(z)\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right), \quad \Im z=0$.
- $\Psi_{n}(z) \sim\left(\sum_{k=0}^{\infty} \frac{\Gamma_{k}}{z^{k}}\right) e^{-\left(N V(z) / 2-n \ln z+\lambda_{n}\right) \sigma_{3}}$, $z \rightarrow \infty$, where $\Gamma_{k}, k=0,1,2, \ldots$, are some constant 2×2 matrices, with

$$
\Gamma_{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & c_{n}
\end{array}\right)
$$

where λ_{n} and $c_{n} \neq 0$ are some explicit constants, and σ_{3} is the Pauli matrix,

$$
\sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

- Riemann-Hilbert Problem for Orthogonal Polynomials

- $Y_{n}(z)$ is analytic on $\{\Im z \geq 0\}$ and $\{\Im z \leq 0\}$ (two-valued on $\{\Im z=0\}$).
- For any real x,

$$
Y_{n+}(x)=Y_{n-}(x)\left(\begin{array}{cc}
1 & w(x) \\
0 & 1
\end{array}\right)
$$

where $w(x)=e^{-N V(x)}$.

- As $z \rightarrow \infty$,

$$
Y_{n}(z) \sim\left(I+\sum_{k=1}^{\infty} \frac{Y_{k}}{z^{k}}\right)\left(\begin{array}{cc}
z^{n} & 0 \\
0 & z^{-n}
\end{array}\right)
$$

where $Y_{k}, k=1,2, \ldots$, are some constant 2×2 matrices.

The RH problem has a unique solution

$$
Y_{n}(z)=\left(\begin{array}{cc}
P_{n}(z) & C\left(w P_{n}\right)(z) \\
c_{n} P_{n-1}(z) & c_{n} C\left(w P_{n-1}\right)(z)
\end{array}\right)
$$

where

$$
C\left(w P_{n}\right)(z)=\frac{1}{2 \pi i} \int_{\mathbb{R}} \frac{w(x) P_{n}(x) d x}{x-z}
$$

and $c_{n}=-2 \pi i\left(\gamma_{n-1}\right)^{2}$. The recurrent coefficients can be found as

$$
\begin{gathered}
\gamma_{n}^{2}=\left[Y_{1}\right]_{21}\left[Y_{1}\right]_{12} \\
\beta_{n}=\frac{\left[Y_{2}\right]_{21}}{\left[Y_{1}\right]_{21}}-\left[Y_{1}\right]_{11}
\end{gathered}
$$

We will construct a semiclassical solution (parametrix) to the RH problem in several steps. The first step is based on the equilibrium measure for the function $V(x)$.

- Distribution of Eigenvalues and Equilibrium Measure

Rewrite the distribution of eigenvalues

$$
d \mu_{N}(\lambda)=Z_{N}^{-1} \prod_{j>k}\left(\lambda_{j}-\lambda_{k}\right)^{2} \prod_{j=1}^{N} e^{-N V\left(\lambda_{j}\right)} d \lambda_{j},
$$

as $d \mu_{N}(\lambda)=Z_{N}^{-1} e^{-H_{N}(\lambda)} d \lambda$ where

$$
\begin{aligned}
& \qquad H_{N}(\lambda)=-\sum_{j \neq k} \log \left|\lambda_{j}-\lambda_{k}\right|+N \sum_{j=1}^{N} V\left(\lambda_{j}\right) \\
& \quad=N^{2}\left[-\iint_{x \neq y} \log |x-y| d \nu_{\lambda}(x) d \nu_{\lambda}(y)\right. \\
& \left.\quad+\int V(x) d \nu_{\lambda}(x)\right] \equiv N^{2} I_{V}\left(\nu_{\lambda}\right) \\
& \text { and } d \nu_{\lambda}(x)=N^{-1} \sum_{j=1}^{N} \delta\left(x-\lambda_{j}\right) d x .
\end{aligned}
$$

Thus,

$$
d \mu_{N}(\lambda)=Z_{N}^{-1} e^{-N^{2} I_{V}\left(\nu_{\lambda}\right)} d \lambda
$$

We expect that for large N the measure $d \mu_{N}(\lambda)$ is concentrated near the minimum of the functional I_{V}, i.e. near the equilibrium measure $d \nu(x)$.

- Equilibrium Measure

Consider the minimization problem

$$
E_{V}=\inf _{\nu \in M_{1}(\mathbb{R})} I_{V}(\nu),
$$

where

$$
M_{1}(\mathbb{R})=\left\{\nu: \int_{\mathbb{R}} d \nu=1\right\}
$$

and

$$
I_{V}(\nu)=-\iint \log |s-t| d \nu(s) d \nu(t)+\int V(t) d \nu(t)
$$

Proposition 2.2. The infinum of $I_{V}(\nu)$ is achieved uniquely at an equilibrium measure $\nu=\nu_{V}$. The measure ν_{V} is supported by a finite union of intervals, $J=\cup_{j=1}^{q}\left[a_{j}, b_{j}\right]$, and on J it has the form

$$
d \nu(x)=p(x) d x
$$

where

$$
\begin{aligned}
& p(x)=\frac{1}{2 \pi i} h(x) R_{+}^{1 / 2}(x), \\
& R(x)=\prod_{j=1}^{q}\left(x-a_{j}\right)\left(x-b_{j}\right)
\end{aligned}
$$

Here $R^{1 / 2}(x)$ is the branch with cuts on J, which is positive for large positive x and $R_{+}^{1 / 2}(x)$ is the value of $R^{1 / 2}(x)$ on the upper part of the cut. The function $h(x)$ is a polynomial, which is the polynomial part of the function $\frac{V^{\prime}(x)}{R^{1 / 2}(x)}$ at infinity, i.e.

$$
\frac{V^{\prime}(x)}{R^{1 / 2}(x)}=h(x)+O\left(x^{-1}\right) .
$$

In particular, $\operatorname{deg} h=\operatorname{deg} V-1-q$.

- A useful formula for the equilibrium density

$$
\frac{d \nu_{V}(x)}{d x}=\frac{1}{\pi} \sqrt{q(x)},
$$

where

$$
q(x)=\left(\frac{V^{\prime}(x)}{2}\right)^{2}-\int \frac{V^{\prime}(x)-V^{\prime}(y)}{x-y} d \nu_{V}(y)
$$

Reference
P. Deift, T. Kriecherbauer, and K.T-R McLaughlin. New results on the equilibrium measure for logarithmic potentials in the presence of an external field. J. Approx. Theory 95 (1998), 388-475.

The Euler-Lagrange variational conditions:

 for some real constant l,$$
\begin{aligned}
& 2 \int \log |x-y| d \nu(y)-V(x)=l, \text { for } x \in J \\
& 2 \int \log |x-y| d \nu(y)-V(x) \leq l, \text { for } x \in \mathbb{R} \backslash J
\end{aligned}
$$

Definition. The equilibrium measure

$$
\nu(d x)=\frac{1}{\pi i} h(x) R_{+}^{1 / 2}(x) d x
$$

is regular (otherwise singular) if

1. $h(x) \neq 0$ on the (closed) set J,
2. The inequality is strict,

$$
2 \int \log |x-y| d \nu(y)-V(x)<l, \text { for } x \in \mathbb{R} \backslash J
$$

Example. If $V(x)$ is convex then $\nu(d x)$ is regular and the support of $\nu(d x)$ consists of a single interval.

- Equations on the End-Points

Define

$$
\omega(z)=\int_{J} \frac{\rho(x) d x}{z-x}, \quad z \in \mathbb{C} \backslash J .
$$

where $d \mu(x)=\rho(x) d x$ is the equilibrium measure. The Euler-Lagrange variational condition implies that

$$
\omega(z)=\frac{V^{\prime}(z)}{2}-\frac{h(z) R^{1 / 2}(z)}{2} .
$$

Observe that as $z \rightarrow \infty$,

$$
\omega(z)=\frac{1}{z}+\frac{m_{1}}{z^{2}}+\ldots, \quad m_{k}=\int_{J} x^{k} \rho(x) d x .
$$

The equation

$$
\frac{V^{\prime}(z)}{2}-\frac{h(z) R^{1 / 2}(z)}{2}=\frac{1}{z}+O\left(z^{-2}\right) .
$$

gives $q+1$ equations on $a_{1}, b_{1}, \ldots, a_{q}, b_{q}$. Remaining $q-1$ equations are

$$
\int_{b_{j}}^{a_{j+1}} h(x) R^{1 / 2}(x) d x=0, \quad j=1, \ldots, q-1 .
$$

Example. Quartic model,

$$
V(M)=\frac{t}{2} M^{2}+\frac{1}{4} M^{4} .
$$

For $t \geq t_{c}=-2$, the support of the equilibrium distribution consists of one interval $[-a, a]$ where

$$
a=\left(\frac{-2 t+2\left(t^{2}+12\right)^{1 / 2}}{3}\right)^{1 / 2}
$$

and

$$
\frac{d \nu_{V}(x)}{d x}=\frac{1}{\pi}\left(b+\frac{1}{2} x^{2}\right) \sqrt{a^{2}-x^{2}}
$$

where

$$
b=\frac{t+\left(\left(t^{2} / 4\right)+3\right)^{1 / 2}}{3} .
$$

In particular, for $t=-2$,

$$
\frac{d \nu_{V}(x)}{d x}=\frac{1}{2 \pi} x^{2} \sqrt{4-x^{2}}
$$

For $t<-2$, the support consists of two intervals, $[-a,-b]$ and $[b, a]$, where

$$
a=\sqrt{2-t}, \quad b=\sqrt{-2-t},
$$

and

$$
\frac{d \nu_{V}(x)}{d x}=\frac{1}{2 \pi}|x| \sqrt{\left(a^{2}-x^{2}\right)\left(x^{2}-b^{2}\right)} .
$$

- The density function for $t=-1,-2,-3$.

