Quantum Measurement Approach to a Non-Markovian Master Equation*

Alireza Shabani¹ and Daniel Lidar²

¹Department of Physics, University of Toronto
²Chemical Physics Theory Group, University of Toronto

*quant-ph/0404077
Open System Dynamics

Exact Solution (Kraus Rep.):

\[\rho_S(t) = \sum_{\alpha} E_{\alpha}(t) \rho_S(0) E_{\alpha}^\dagger(t), \]
\[\sum_{\alpha} E_{\alpha}^\dagger(t) E_{\alpha}(t) = I. \]

\[E_{\alpha}(t) = \sqrt{\nu} \langle \mu | U(t) | \nu \rangle, \quad |\nu\rangle \text{ and } |\mu\rangle \text{ are bath states.} \]

Markovian Regime (Lindblad Eq.):

\[\frac{\partial \rho_S}{\partial t} = \mathcal{L} \rho_S = -\frac{1}{2} \sum_{\alpha} a_{\alpha} ([F_{\alpha}, \rho_S F_{\alpha}^\dagger] + [F_{\alpha} \rho_S, F_{\alpha}^\dagger]), \quad \rho_S(t) = e^{\mathcal{L} t} \rho_S(0). \]
Dynamics in Two Limits

<table>
<thead>
<tr>
<th></th>
<th>Exact Solution</th>
<th>Markovian Approximation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantages</td>
<td>No approximation</td>
<td>1. Closed form of dynamical map.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Effective numerical solution.</td>
</tr>
<tr>
<td>Disadvantages</td>
<td>Analytically solvable only for simple models.</td>
<td>Inadequate description for a bath with a significant memory effect.</td>
</tr>
</tbody>
</table>

Goal of the presented work:

“To develop a dynamical master equation beyond the Markovian regime that is analytically solvable and the resulting map is completely positive.”

Center for Quantum Information and Quantum Control
University of Toronto
Measurement Theory Picture of Dynamics

Kraus Sum Representation: \[\rho_{\text{out}} = \sum_k M_k \rho_{\text{in}} M_k^\dagger, \quad \sum_k M_k^\dagger M_k = I. \]

Non-Selective Generalized Measurement (GM): \[\rho_{\text{out}} = \sum_k p_k \rho_k, \quad \text{k'th outcome:} \quad \rho_k = \frac{M_k \rho_{\text{in}} M_k^\dagger}{\text{Tr}(M_k^\dagger M_k \rho_{\text{in}})} \]

Probability: \[p_k = \text{Tr}(M_k^\dagger M_k \rho_{\text{in}}) \]

Exact Solution: \[\rho_S(t) = \sum_\alpha E_\alpha(t) \rho_S(0) E_\alpha^\dagger(t). \]

GM operators: \{E_\alpha\}

Lindblad (Quantum Jump):
\[\tau \ll \|\mathcal{L}\|^{-1}, \quad \rho_S(t + \tau) \approx (I - \frac{T}{2} \sum_\alpha F_\alpha^\dagger F_\alpha) \rho_S(t) (I - \frac{T}{2} \sum_\alpha F_\alpha^\dagger F_\alpha) + \tau \sum_\alpha F_\alpha \rho_S(t) F_\alpha^\dagger. \]

GM operators: \{\sqrt{\tau} F_\alpha, I - \frac{T}{2} \sum_\beta F_\beta^\dagger F_\beta\}
Single-Shot Measurement Process

Exact Solution:

Single-Shot Measurement:

Markovian Approximation (Quantum Trajectories):

Measurement:
Preparation:

Quantum Information Group
University of Toronto
Non-Markovian Master Equation

Probabilistic Procedure:

Probability of an extra measurement at time t_1: $w(t_1)$,

$$\rho_S(t = N\epsilon) = \sum_{m=1}^{N-1} w(m\epsilon)\Lambda(m\epsilon)\rho_S(t_1) = (N-m)\epsilon$$

Non-Markovian Master Equation (Newton Iteration Method):

$$\frac{\partial \rho_S}{\partial t} = \int_0^t dt'k(t')\Lambda(t')\dot{\Lambda}(t')\Lambda^{-1}(t')\rho_S(t-t')$$
Post-Markovian Master Equation:

\[\Lambda(t) = e^{\mathcal{L}t} : \quad \begin{array}{cccc}
0 & \text{P} & \text{M} & \text{M} & \text{M} \\
& t_i & t_i + \tau & t - 2\tau & t - \tau & t
\end{array} \]

1) S.Daffer et al., quant-ph/309081.
2) S.M.Barnett et al., PRA, 2001, 64, 33808.

Markovian approximation can be recovered by choosing: \(k(t) = \delta(t) \),

The intuitively \(^{(1,2)}\) addressed memory function could also be retrieved in the limit of \(\|\mathcal{L}\| \ll T^{-1} \).
Example: Single Qubit Dephasing

Spin-Boson Hamiltonian:

\[H_{SB} = \sum_k \sigma_z \otimes (\lambda_k b + \lambda_k^* b^\dagger) \]

\[\rho(t) = \frac{1}{2} (I + f(t) \alpha_x \sigma_x + f(t) \alpha_y \sigma_y + \alpha_z \sigma_z) \]

<table>
<thead>
<tr>
<th>Exact Solution</th>
<th>Markovian Regime</th>
</tr>
</thead>
<tbody>
<tr>
<td>[f(t) = \exp[-\sum_k</td>
<td>\lambda_k</td>
</tr>
</tbody>
</table>

Post-Markovian Equation Result:

Memory Function:

\[k(t) = (1 - \theta) \frac{1}{\gamma} e^{-\gamma t} + \theta \delta(t) \]

\[f(t) = (1 - \theta) e^{-(\gamma/2 + a)t} \cos(\sqrt{2a\gamma - (\gamma/2 + a)^2 t + \varphi}) + \theta e^{-at} \]
Quantum Dynamical Map

Laplace Transformation:

\[s\tilde{\rho}_S(s) - \rho_S(0) = [\tilde{k}(s) \ast \frac{\mathcal{L}}{s - \mathcal{L}}] \tilde{\rho}_S(s) \]

Eigenvalue, right and left eigenoperators of the superoperator \(\mathcal{L} : \{\lambda_i, R_i, L_i\} \).

\[
\begin{align*}
\mathcal{L}\rho_i &= \lambda_i \rho_i \\
\rho_S(t) &= \sum_i \mu_i(t) R_i
\end{align*}
\]

\[
\begin{align*}
s\tilde{\mu}_i(s) - \mu_i(0) &= \lambda_i \tilde{k}(s - \lambda_i) \tilde{\mu}_i(s)
\end{align*}
\]

Dynamical Map:

\[
\Phi(t) : \rho \mapsto \sum_i \xi_i(t) \text{Tr}[L_i \rho] R_i , \quad \xi_i(t) = \text{Lap}^{-1}\left[\frac{1}{s - \lambda_i \tilde{k}(s - \lambda_i)}\right]
\]
Complete Positivity:

\[\Phi((|i\rangle\langle j|))_{1 \leq i, j \leq n} \geq 0 \quad \Rightarrow \quad \sum_k \xi_k(t) L_k^T \otimes R_k \geq 0. \]

Experimental Determination of the Kernel Function:

Quantum state tomography result: \(\rho(t) \).

Kernel function:

\[k(t) = \text{Lap}^{-1}[(s - 1/\text{Lap}[\xi_i(t)])] e^{-\lambda_i t} / \lambda_i \]

\[\xi_i(t) = \text{Tr}[L_i \rho(t)] / \text{Tr}[L_i \rho(0)] \]
Conclusion and Possible Extensions:

We have introduced:

- Phenomenological picture of a non-Markovian master equation in the measurement theory.

- A post-Markovian master equation which can be analytically solved by applying the Laplace transform.

- A condition on the memory function to preserve the complete positivity of the corresponding dynamical map.

We like to present in the future:

- Improving the introduced non-Markovian equation by going to higher steps of Newton iteration method.

- Exploring the memory function for a set of performed experiment results.