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Abstract

We study an economic agent who has an exogenously determined ini-
tial amount of debt. The agent is equipped with a constant relative risk
aversion utility function and a deterministic terminal wealth (before debt
interest payments) and faces a debt allocation problem: The choice be-
tween fixed interest rate debt or floating interest rate debt. The problem
is thus related to the seminal Merton (1969), Merton (1971) asset alloca-
tion problem. In order to model fixed and floating interest rates we use
a version of the Hull and White (1990) term structure model, essentially
the Vasicek (1977) model fitted to the initial term structure.

First, the static case is considered, where no rebalancing of debt is
allowed after the initial point in time. Next, the dynamic case is treated
where the debt portfolio can be rebalanced continuously at no cost. We
find a surprisingly low increase in welfare, measured by expected utility, in
the dynamic case compared to the static case. The optimal debt portfolio
in the dynamic case is sensitive to the initial shape of the initial forward
rates and therefore may or may not resemble the static case.

1 Introduction

The last decades financial institutions have developed new products in sev-
eral areas. This rapid and innovative development leaves customers with more
choices so more tailor-made financial solutions can be constructed, hopefully in
better accordance with individuals’ needs. In this paper we focus on the choice
of fixed or floating rate loans.

∗Earlier versions of this paper have been presented at Workshop on finance and insurance,
June 2001, Stockholm, Sweden, FIBE, January 2002, NHH, Bergen, 3rd Bachelier confer-
ence, Crete, June 2002. Comments and suggestions from Steinar Ekern, Jørgen Haug, Steen
Koekebakker, and Kristian Miltersen are most appreciated.
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floating fixed
> 1

2m < 1
2m 3 y 5 y 10 y

< 60% 8.1% 8.45% 7.45% 7.40% 7.40%
< 80% 8.85% 9.15% 7.9% 7.85% 7.85%

Table 1: Interest rate conditions of Postbanken Oct 30, 2002, found at
www.postbanken.no.

As an example consider the Norwegian State Education Loan Fund, a gov-
ernment run organization under the Ministry of Education, which is the most
important source of student financial aid in Norway. Earlier the loan interest
rate was politically determined. Later years the loan interest rate has been
determined by interest rates in the financial market and since 1999 customers
have been given the choice of floating rates or 3 year fixed rates (in 2002 a third
option of 5 year fixed rate was introduced).

Most Norwegian banks offer customers a menu of choices for mortgage fi-
nancing. The interest rate conditions of the major Norwegian bank Postbanken
are presented in table (1). The conditions depend on whether the loan amount
is within 60% or 80% of the value of the house and whether the amount of loan
is above or below 500 000 NOK (roughly 70 000 USD). The customer has to
choose between floating, fixed for 3, 5, or, 10 years interest rates, and also the
allocation of debt between these 4 alternatives.

To get some insight into this debt allocation problem we choose a simplified
and idealized approach, which excludes important aspects as income, inflation
or consumption choices. Many of these aspects are included in the article by
Cambell and Cocco (2002), who use a different modelling approach to analyze
the optimal mortgage choice.

We study an economic agent who borrows an exogenously determined amount
of money. Two types of loan alternatives are present: Loan with a fixed inter-
est rate through the loan horizon and loans with floating interest rates. Both
fixed and floating rate interest rates are determined from the prevailing term
structure of interest rates derived from a financial market.

The investor must determine his initial distribution between fixed rate and
floating rate loan. Two extreme cases are treated with respect to intermediate
rebalancing of the loan portfolio: No rebalancing and continuous rebalancing.

The problem is in many ways related to the classical Merton (1969), Merton
(1971) problem. Merton studies the investment decision or asset allocation
where capital may be invested either in a risky security or to the riskfree interest
rate. Whereas Merton deals with allocation of assets, we focus on the liability
side of the balance sheet and study debt allocation. In our set-up fixed rate
debt corresponds to a ‘risky’ investment in the sense that the intermediate
market value of the fixed-rate debt fluctuates randomly. Although we allow for
stochastic interest rates, floating rate debt has similar dynamics as a bank or
money market account which in Merton’s model corresponds to the ‘riskfree’
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investment.
A term structure model including random interest rates is essential to our

problem. In order to keep things simple we use a one factor Gaussian spot
interest rate process with mean reversion. The same process was first used by
Vasicek (1977). By assuming a special structure of the market price of interest
rate risk process the Vasicek model is consistent with the initial observable term
structure. This extension is credited Hull and White (1990). By calibrating the
model to the initial observable term structure one does not need to make ad-
hoc assumption with respect to the market price of interest rate risk (like the
typical example of a constant market price of interest rate risk). At the same
time forward interest rates, which are observable, in our model as well as in real
world financial markets, enter the model in a natural way.

Our set-up is similar to the recent literature on asset allocation in models
with stochastic interest rates (Sørensen, 1999; Brennan and Xia, 2000; Bajeux-
Besnainou, Jordan, and Portait, 2001; Munk and Sørensen, 2001). Brennan and
Xia (2000) and Bajeux-Besnainou et al. (2001) suggest a solution to the appar-
ent asset allocation puzzle established by Canner, Mankiw, and Weil (1997),
However, most of these papers assume a constant market price of risk. This
difference may play a crucial role when it comes to optimal allocations.

Section 2 of the article contains a description of one version of the Hull and
White (1990) term structure model.

In section 3 we present results for a static model without the possibility to
rebalance the loan portfolio before expiration. We derive a lower bound for
the fixed rate which is interpreted as follows: The agent will not borrow at the
floating rate (though he may wish to lend money at the floating rate) if the
fixed rate is below this lower bound. This lower bound depends only on, in a
specific sense, expected future interest rates. We also derive an upper bound
for the fixed rate interpretable as follows: The agent will not borrow at the
fixed rate (also for this case he may wish to lend money to the fixed rate) if
the fixed interest rate is above this upper bound. In addition to expectations
about the future interest rates this upper bound depends on characteristics of
the agent related to his financial wealth and preferences. For values of the fixed
rate between the lower and upper bounds it is optimal to keep positive fractions
of both floating rate debt and fixed rate debt.

In section 4 the agent is allowed to rebalance his loan portfolio continuously
at no cost. For this problem we derive closed form expressions both for optimal
expected utility and optimal fractions of floating rate debt. We present some
numerical comparisons of the dynamic case with the static case both in terms
of welfare measured by optimal expected utility and in terms of initial fractions
of floating rate debt. Our numerical examples indicate, perhaps surprisingly,
only a marginal increase in optimal expected utility. It turns out that the
interplay between the market price of risk and the initial forward rates plays an
important role, especially for the optimal debt fractions. As a consequence the
optimal initial fractions of debt may be substantially different from the static
case. Several examples are included to illustrate this point.

Finally, section 5 concludes the article.
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2 A term structure model

This section contains a description of a version of the Hull and White (1990)
term structure model. A time horizon T is fixed and we denote by s the initial
time point. Uncertainty is given by a fixed probability space (Ω,F , P ) together
with the filtration {Ft, s ≤ t ≤ T} where FT = F . A financial market with
continuous trading opportunities consists only of unit discount bonds from which
information about the term structure is derived. In this model there exists
a unique equivalent martingale measure Q which may be applied for pricing
purposes.

2.1 Spot interest rate process

We denote the spot interest rate process by rt and assume it is given by the
following stochastic differential equation under the original probability measure
P

drt = q(m− rt)dt + vdBt, (1)

where the initial value rs is a given constant. This is the well known Ornstein-
Uhlenbeck process, first used in financial economics by Vasicek (1977). The
parameters m, q and v are interpreted as the long-run mean to which the pro-
cess tend to revert, the speed of reversion and the volatility of the process,
respectively.

We denote by fs(t) the instantaneous time t forward rate observable at time
s. The connection between market prices of default free unit discount bonds
and the instantaneous forward rates is given by

Ps,τ = e−
∫ τ

s
fs(t)dt,

where Ps,τ denotes the market price at time s of a default free unit discount
bond with maturity at time τ .

We assume that the market price of (interest rate) risk at time s as a function
of time t is

λs(t) =
qm

v
− 1

v

[
qfs(t) +

∂

∂t
fs(t)

]
− v

2q
(1− e−2q(t−s)). (2)

Notice that for fixed s the market price of risk is a deterministic process of time
which depends on the time s forward rates fs(t) as well as the derivative of the
time s forward rate ∂

∂tfs(t) and 3 parameters (q, m, v) of the spot interest rate
process.

By this choice of market price of risk the dynamics of the spot interest rate
process under the equivalent martingale measure Q can be written as

drt = q (θt − rt) dt + vdB̂t

where B̂t is a Brownian motion under the equivalent martingale measure Q, rs

is a given constant, and

θt =
1
q

∂

∂t
fs(t) + fs(t) +

v2

2q2
(1− e−2q(t−s)).
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This model1 of spot interest rates under the equivalent martingale measure is
known as a version of the Hull and White (1990) one-factor model.

The solution of (1) is

rt = m + (rs −m)e−q(t−s) +
∫ t

s

ve−q(t−u)dBu. (3)

For future use we define

Rs,T =
∫ T

s

rtdt

and calculate Rs,T as a function of rs the spot rate at time s as

Rs,T = m(T − s) + (rs −m)
1− e−q(T−s)

q
+
∫ T

s

v

q
(1− e−q(T−u))dBu. (4)

Observe that Rs,T is Gaussian and calculate the expectation and variance of
Rs,T as

µs,T = m(T − s) +
1
q
(rs −m)(1− e−q(T−s)) (5)

and

σ2
s,T =

v2

2q3

(
2q(T − s)− 3 + 4e−q(T−s) − e−2q(T−s)

)
. (6)

2.2 Bond price dynamics

The dynamics of market prices of default free unit discount bonds under the
original probability measure P in this model are

Pt,τ = Ps,τ +
∫ t

s

[ru + b(u, τ)]Pu,τdu +
∫ t

s

a(u, τ)Pu,τdBu, (7)

where
a(t, τ) =

v

q
(e−q(τ−t) − 1) (8)

and

b(t, τ) =
(

m− fs(t)−
1
q

∂

∂t
fs(t)−

v2

2q2
(1− e−2q(t−s))

)
(e−q(τ−t) − 1).

1Alternatively, our model can be expressed under the equivalent martingale measure as

rt = fs(t) +

∫ t

s
q(θ̂u − ru)du +

∫ t

s
vdB̂u,

where

θ̂t = fs(t) +
v2

2q2
(1 − e−2q(t−s)).

This latter equivalent formulation is in spirit with the more general Heath, Jarrow, and
Morton (1992) term structure formulation in the sense that the initial value of the process is
the instantaneous forward rate. It can also be shown that the current model is a special case
of the Heath et al. (1992) model, see e.g., Miltersen and Persson (1999). The above equation
(2) corrects an error in corresponding equation (for λt) at the bottom of page 310 in Miltersen
and Persson (1999).
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Observe that the relationship

λs(t) =
b(t, τ)
a(t, τ)

holds for all τ ≥ t.

3 The static case: No intermediate rebalancing
of debt

3.1 The agent’s problem

We assume that utility is derived from final time T wealth only, and that the
agent is equipped with a constant relative risk aversion (CRRA) utility function
given by

u(x) =
1

1− ρ
x1−ρ, (9)

where ρ can be interpreted as the relative risk aversion coefficient (−u′′(x)
u′(x) x = ρ).

Here ρ is assumed positive and the special case ρ = 1 corresponds to the utility
function u(x) = ln(x).

The floating rate loan is assumed to accrue interest according to the spot
rate rt given in expression (1), whereas the time t fixed rate for the period time
(t, T ) is determined at each point in time from the time t observable forward
rates as

rx
t =

1
T − t

∫ T

t

ft(u)du.

We denote the initial (time s) amount of debt by Ds and assume that the agent
has a deterministic time T wealth W̄ , which can be interpreted as the collateral
for the loan. All interest payments are assumed to take place at the horizon T .

In this section we assume that no rebalancing of the debt portfolio can take
place after the investor has chosen the initial distribution between fixed and
floating rate debt.

We denote the fraction of floating rate debt to total debt by α (the optimal
value of α is denoted by α∗). The agent’s terminal (time T ) wealth may be
written as

WT = W̄ − αDse
∫ T

s
rtdt − (1− α)Dse

rx
s (T−s).

Unless
∫ T

s
rtdt is bounded there may be a potential problem of negative terminal

wealth for high values of α.
Values of α < 0 represent short positions of floating rate debt, which means

that the investor acts as lender instead of borrower. Similarly, values of α > 1
imply short positions of fixed rate debt, which means that the investor acts as
a bond investor instead of a bond issuer. We do not formally exclude values of
α greater than 1 or lower than zero, but since we are primarily concerned with
optimal debt allocation, we focus on the case 0 < α < 1 in numerical examples.
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Observe that W̄e−rx
s (T−s)−Ds can be interpreted as the time s market value

of the time T wealth. We denote the ratio between the time s market value of
the time T wealth and the (market value of) the time s debt by Ls. Then

Ls =
W̄e−rx

s (T−s) −Ds

Ds
.

Sometimes we refer to Ls as just the (time s) wealth to debt ratio.
Now rewrite2 WT in terms of Ls as

WT = Dse
rx

s (T−s)[Ls + α
(
1− e

∫ T
s

(rt−rx
s )dt
)
].

The agent’s problem is stated as

max
α

E [u(WT )] .

The first order condition of this problem is

Dse
rx

s (T−s)E
[
u′(WT )(1− e

∫ T
s

(rt−rx
s )dt)

]
. (10)

3.2 A lower fixed rate bound for floating rate borrowing

In order to analyze this first order condition (10) further we apply the standard
arguments used, e.g., in Huang and Litzenberger (1988). We set α = 0. For
this special case all debt is fixed rate debt and WT = W̄ −Dsexp (rx

s (T − s)) is
deterministic. The first order condition may then be written as

Dsu
′(WT )

(
erx

s (T−s) − E
[
e
∫ T

s
rtdt
])

.

The value of the first order condition may be interpreted as the marginal increase
in expected utility of time T wealth from a marginal increase in α. If the value
of the above expression is positive, we may conclude that the optimal value of
α is positive. Using equations (5) and (6) we calculate

E
[
e
∫ T

s
rtdt
]

= E
[
eRs,T

]
= eµs,T + 1

2 σ2
s,T .

Now, define

rL =
1

T − s
(µs,T +

1
2
σ2

s,T ). (11)

These arguments lead to the following result:
2Observe that the following expression is on the form WT = K + αỸ , where K is constant

and Ỹ is a random variable. The problem has thus the same structure as both the classical
asset allocation problem, see e.g. Huang and Litzenberger (1988) as well as optimal purchase
of insurance problems, cf. Mossin (1968), as e.g., explained in the textbook by Eeckhoudt and
Gollier (1995).
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Proposition 1 The optimal fraction of floating rate debt α∗ is strictly positive
if and only if the fixed rate rx

s is strictly greater than rL defined in expression
(11).

This result is interpreted as follows: If rx
s > rL, it is optimal to accept some

floating interest rate loan. If the fixed rate is rL or lower, at least 100% of the
loan amount is financed by fixed rate debt. In the case where strictly more
than 100% of the loan amount is financed by fixed rate debt, the agent ’shorts’
floating rate debt, i.e., the agent lends instead of borrows to the floating rate.

Note that this result holds for any utility function with strictly positive
marginal utility and does therefore not depend on our particular choice of utility
function in expression (9).

3.3 An upper bound for fixed rate debt borrowing

An upper bound for some fixed rate debt may be derived in an analogous matter.
Define

Z =
W̄

Ds
− e

∫ T
s

rtdt.

We now study the situation with only floating rate loan, i.e., we let α = 1. By
using the CRRA utility function in expression (9) the first order condition (10)
is proportional to

E[Z1−ρ] +
(

erx
s (T−s) − W̄

Ds

)
E[Z−ρ]

If this first order condition takes a negative value, it is optimal to decrease α,
i.e., to accept some fixed rate loan. Define

rU =
1

T − s

[
ln
(

W̄

Ds
− E[Z1−ρ]

E[Z−ρ]

)]
. (12)

We now have the following result:

Proposition 2 The optimal fraction of floating rate debt α∗ is strictly less than
1 if and only if the fixed rate rx

s < rU defined in expression (12).

This result tells us that for fixed rates lower than rU it is optimal to accept some
fixed rate loan. As opposed to the lower bound the upper bound rU depends on
the agent specific factors, W̄

Ds
, ρ, and our specific choice of utility function (see

expression (9). Numerical results require the calculation of two moments of the
random variable Z defined above. The expression for rU also holds for the case
ρ = 1, i.e., for u(x) = ln(x).

From expression (12) the following result follows immediately for the special
case of a risk neutral investor:

Proposition 3 For a risk neutral investor, i.e., ρ = 0, the upper bound equals
the lower bound rU = rL.

Thus, a risk neutral investor chooses the debt alternative with the lowest ex-
pected interest rate, i.e., either fixed rate loan or floating rate loan, never a
combination of both.
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Base case parameters:
Interest rate process (1) drt = q(m− rt)dt + vdBt

Initial interest rate rs = 0.05
Speed of mean reversion q = 0.15
Long term mean reversion level m = 0.045
Volatility of interest rate v = 0.02
Other parameters:
Wealth to debt ratio Ls = 1
Time horizon T − s = 3
Fixed interest rate rx

s = 0.05

Table 2: Base case parameters

3.4 Numerical illustrations — static case

In order to do numerical calculations of the optimal α we set the first order
condition (10) equal to zero for the CRRA utility function and obtain

E

[(
Ls + α(1− e

∫ T
s

(rt−rx
s )dt)

)−ρ (
1− e

∫ T
s

(rt−rx
s )dt
)]

= 0. (13)

From this expression it is clear that α∗ only depends on the time s wealth to
debt ratio (in addition to ρ, T , rx

s and properties of Rs,T ) and not, for example,
on the levels of either W̄ or Ds.

By inspection of equation (13) it is clear that the optimal α is proportional
to the parameter Ls, i.e., if ᾱ solves the equation for L̄s, kᾱ will solve the
equation for kL̄s, for any constant k.

Numerical results are presented in the following tables. Table (2) presents
the base case parameters, which are intended to be within reasonable ranges. In
particular, the base case values of the mean reversion speed q and the volatility
v are close to the values estimated for the Vasicek spot rate interest by Chan,
Karolyi, Longstaff, and Sanders (1992). The chosen values of the initial interest
rate rs and the mean reversion level m are in the same range as used by Munk
and Sørensen (2001). The chosen time horizon represents a typical option for
consumers who want to fix their debt interest rate.

In table (3) we present the interval (rL, rU ) where the debt will be divided
into both fixed and floating rate debt for different levels of risk aversion ρ for
some alternative parameter values.

3.5 Constant relative risk aversion? A reformulation

From the proportionality property discussed above It is clear that the fraction
of floating rate debt increases with the wealth to debt ratio Ls. However, a
well known property of CRRA utility (9) is that the total fraction of ’risky
investments’ is independent of wealth. In order to obtain results in this spirit
we reformulate the problem as follows: We now express the amount of floating
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rL(ρ = 0) ρ = 1
2 ρ = 1 ρ = 2 ρ = 4 ρ = 8 P (neg)

Base case 4.95% 5.01% 5.07% 5.19% 5.45% 6.00% .51 · 10−26

L = 4 4.95% 4.96% 4.98% 5.02% 5.09% 5.23% .14 · 10−129

v = 4% 5.08% 5.34% 5.61% 6.20% 7.7%∗ 14% ∗ .44 · 10−7

T = 6 4.96% 5.29% 5.72% 7.35% ∗ ∗ 0.006

q = 30% 4.86% 4.91% 4.95% 5.04% 5.23% 5.62% .55 · 10−35

m = 5.5% 5.14% 5.20% 5.26% 5.39% 5.65% 6.21% .17 · 10−25

r0 = rx
0 = 7% 6.95% 7.02% 7.09% 7.24% 7.54% 8.20% .82 · 10−21

m = 6.5%

Table 3: Bounds for fixed rate debt rL and rU (equation (12)). Let Wα=1
T =

W̄ − D0e
∫ T
0 rsds be the terminal wealth for α = 1. Then P (neg) = P (Wα=1

T <

0) = P (
∫ T

0
rsds > ln(L)). An asterix (∗) indicates numerically unstable values.

ρ = 1
2 ρ = 1 ρ = 2 ρ = 4 ρ = 8

α∗ 1.231 0.6187 0.3100 0.1551 0.07759
E[U(W ∗

T )] 2.157 0.1505 -0.8605 -0.2125 -0.04997

Table 4: Optimal α (from equation (13)) and optimal expected utility E[U(W ∗
T )]

for various levels relative risk aversion ρ for Ls = 1 and Ds = 1.

rate debt as a fraction β of the time s market value of the time T wealth as
follows

WT = (W̄ −Dse
rx

s (T−s))
(
1 + β

(
1− e

∫ T
s

(rt−rx
s )dt
))

.

The amount of floating rate debt was αDs by the previous formulation and is
β(W̄e−rx

s (T−s)−Ds) by the current reformulation. These amounts are identical
in both formulations, i.e.,

αDs = β(W̄e−rx
s (T−s) −Ds).

The first order condition of this reformulation is

E

[(
1 + β(1− e

∫ T
s

(rt−rx
s )ds)

)−ρ (
1− e

∫ T
s

(rt−rx
s )dt
)]

= 0. (14)

By inspection of the first order condition (14) it is clear that the optimal β
(denoted by β∗) does neither depend on W̄ , Ds, nor Ls.

Based on a second order Taylor approximation, we have calculated the fol-
lowing approximation of β

β̂ =
σ2

Y ρ− 2γ2e2rx
s (T−s) − σY erx

s (T−s)
√

ρ2σ2
Y e−2rx

s (T−s) − 2γ2(1 + ρ)ρ

2γ3e2rx
s (T−s) + σ2

Y γρ(ρ− 1)
, (15)

where
σ2

Y = e2µs,T +σ2
s,T (eσ2

s,T − 1)
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ρ = 1
2 ρ = 1 ρ = 2 ρ = 4 ρ = 8

β∗ 1.231 0.6187 0.3100 0.1551 0.07759
β̂ 1.249 0.6236 0.3116 0.1557 0.07785

Table 5: Optimal β from equation (14) and approximate β from equation (15)
for the base case parameters.

and
γ = 1− eµs,T + 1

2 σ2
s,T−rx

s (T−s).

As mentioned, the reformulation only involves a change of base for a fraction,
so the total optimal amounts of floating rate debt are the same for the two
formulations. Thus

Dsα
∗ = (W̄e−rx

s (T−s) −Ds)β∗.

This insight leads to a simpler way of calculating α∗ for different wealth to
debt ratios: First, calculate β∗ which is independent of Ls. Then, calculate the
corresponding α∗ as

α∗ = Lsβ
∗,

i.e., the optimal α is given as the optimal β multiplied by the time s wealth to
debt ratio.

In table (5) some numerical values of β∗ are calculated together with the
value of the approximated β. We are tempted to conlude that the approximation
performs reasonably well.

From table (5) and the above relationship between β∗ and α∗, the first line
in table (4) may easily be reproduced3.

4 The dynamic problem: Continuous rebalanc-
ing of debt

In this section we allow the investor to rebalance his debt portfolio at any point
in time between the initial time 0 ant the time of expiration T . Moreover,
rebalancing does not impose any cost for the agent.

3Another polar case is the situation with constant absolute risk aversion, i.e., the investor
is equipped with a negative exponential utility function

u(x) = −e−ηx.

For comparison we present some results for this case as well. The first order condition, similar
to expression (13) for the problem now becomes

E

[
eηαDse

∫ T
s rtdt

(
1 − e

∫ T
s (rt−rx

s )dt
)]

= 0.

From this equation it is clear that the optimal α is independent of W̄ . Furthermore, it is clear
that if that the optimal α is inverse proportional to η, i.e., if ᾱ is the optimal value for a given
value of η, say η = η̄, then by e.g., doubling the risk aversion parameter to η = 2η̄, the new
optimal α is α∗ = 1

2
ᾱ, i.e., half the value of the given α.
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Figure 1: Optimal β as a function of the relativ risk aversion parameter ρ for
3 alternative parameter sets. The upper curve shows β∗ for the case where the
parameter rx

s = 0.0505, the lower curve shows β∗ for the parameter m = 0.046,
the center curve depicts the base case parameters.

Our methodology is based on the martingale formulation by Pliska (1986)
and Cox and Huang (1989) as recently extended by Sørensen (1999) and Munk
and Sørensen (2001).

4.1 Intermediate market value of debt and debt dynamics

In the dynamic setting of this section we both need the market value at inter-
mediate points in time as well as the stochastic dynamics of fixed and floating
rate debt.

First we derive expressions for the market values of debt at time t, s ≤ t < T .
Let DL

s be a time s amount of floating rate debt which has to be paid back
including interest rates at time T . The market value of this debt at time t > s
is

DL
t = DL

s EQ
t

[
e−

∫ T
t

rudue
∫ T

s
rudu

]
= DL

s e
∫ t

s
rudu. (16)

Let DX
s denote a time s amount of fixed rate debt which has to be paid back

including interest rates at time T . The market value of this debt at time t > s
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is

DX
t = DX

s EQ
t

[
e−

∫ T
t

rudue
∫ T

s
rx

s du
]

= DX
s erx

s (T−s)EQ
t

[
e−

∫ T
t

rudu
]

= DX
s erx

s (T−s)Pt,T . (17)

From the previous expressions (16) and (17) we derive the fixed and floating
rate dynamics below. The market value of fixed rate debt can be described by
the following stochastic differential equation

dDX
t = (rt + bt,T )DX

t dt + at,T DX
t dBt, (18)

together with the given constant DX
s . As one should expect, fixed rate debt

has identical dynamics as a bond with the same expiration as the debt, see
expression (7).

The corresponding stochastic differential equation for the market value of
floating rate debt is

dDL
t = rtD

L
t dt, (19)

where the initial value is the given constant DL
s . Floating rate debt has the

same dynamics as a bank account (sometimes called a money market account)
where interest accrues according to the spot rate rt.

In addition to debt the agent’s time T wealth consists only of the determin-
istic amount W̄ . The market value at time t, s ≤ t ≤ T of the agent’s time T
wealth for given amounts of fixed and floating rate debts is therefore

Wt = W̄Pt,T −DX
t −DL

t .

From the equations (7), (18), (19), and Itô’s lemma the dynamics of the wealth
process may be written as

dWt =
(
(rt + bt,T )Wt + bt,T DL

t

)
dt + at,T (Wt + DL

t )dBt, (20)

where the initial value Ws is a given constant. We now let Dt denote the market
value of the total debt at time t, i.e., Dt = DX

t + DL
t , and let αt denote the

fraction of floating rate debt, i.e., DL
t = αtDt. By substituting in expression

(20) we obtain

dWt = ((rt + bt,T )Wt + bt,T αtDt) dt + at,T (Wt + αtDt)dBt. (21)

Alternatively, we may express the floating rate amount at time t as a fraction βt

of time t wealth, DL
t = βtWt (somewhat similar as we did in the previous section

above expression (14)). By substituting in expression (20) we now obtain

dWt = (rt + bt,T (1 + βt))Wt)dt + at,T (1 + βt)WtdBt. (22)

13



The connection between αt and βt is

αt =
Wt

Dt
βt,

= Ltβt, (23)

where Lt is the wealth to debt ratio as previously defined. This is exactly the
same relationship between α and β as in the static case.

4.2 The agent’s problem

The agent’s problem is similar as in the previous section. Also in this dynamic
set-up utility is derived only from time T wealth. At time s the investors problem
is:

Js = sup
WT

Es

[
1

1− ρ
(WT )1−ρ

]
subject to

Es [ξs,T WT ] ≤ Ws,

where

ξs,t = exp
(
−
∫ t

s

rudu−
∫ t

s

λs(u)dBu −
1
2

∫ t

s

λs(u)2du

)
(24)

is sometimes called the state price deflator and λs(t) is given by expression (2).
For the special case ρ = 1 we assume that Js = supWT

Es[ln(WT )].
For example the market price of a default free unit discount bond expiring

at time T may be expressed by the state price deflator as

Ps,T = Es[ξs,T ].

Under the condition that ln(ξs,T ) is normally distributed, which always will be
the case for our model, we can calculate Ps,T as

Ps,T = exp

(
−µs,T − 1

2

∫ T

s

λs(u)2du +
1
2
V 2

s,T

)
,

where

V 2
s,T = Var

(∫ T

s

rudu +
∫ T

s

λs(u)dBu|Fs

)
,

and µs,T and λs(t) are given in expression (5) and (2), respectively.

4.3 Solution of the problem

The optimal indirect utility for this problem is given in the following proposition.

14



Proposition 4 The optimal expected utility for this problem for ρ 6= 1 is

Js =
1

1− ρ

[(
Ws

Ps,T

)1−ρ

e
1
2

1−ρ
ρ V 2

s,T

]
. (25)

Optimal expected utility for logarithmic utility (ρ = 1) is

Js = ln
(

Ws

Ps,T

)
+

1
2
V 2

s,T . (26)

Proof 1 Consider first the case ρ 6= 1. From the first order condition of the
corresponding Lagrangian we obtain

WT = L− 1
ρ (ξs,T )−

1
ρ , (27)

where L denotes the Lagrangian multiplier. Inserting the expression (27) for
WT into the budget constraint we obtain

Ws = L− 1
ρ Es[(ξs,T )

ρ−1
ρ ],

from which we determine L as L− 1
ρ = Wt

Es[(ξs,T )
ρ−1

ρ ]
. From equation (27) we

write the optimal terminal wealth W ∗
T as

W ∗
T =

Ws

Es[(ξs,T )
ρ−1

ρ ]
(ξs,T )−

1
ρ . (28)

Finally, we insert this expression into the objective function and obtain

Js = Es

[
1

1− ρ
(W ∗

T )1−ρ

]
=

1
1− ρ

W 1−ρ
s Es[(ξs,T )

ρ−1
ρ ]ρ.

Equation (25) is obtained by calculating Es[(ξs,T )
ρ−1

ρ ] = (Ps,T )
ρ−1

ρ e
1
2

1−ρ

ρ2 V 2
s,T .

Equation (27) also holds for the case ρ = 1. The expression correspon-
ding to equation (28) is W ∗

T = Ws
1

ξs,T
. Equation (26) follows by inserting this

expression into the objective function.

4.4 Optimal debt positions

In the following propositions we present the optimal fractions of floating rate
debt and, thus, implicitly, the optimal fixed rate debt.

Proposition 5 The optimal time t ≥ s fraction of floating rate debt, expressed
as a fraction of total debt, is

αt =
1
ρ

(
λs(t)
at,T

− 1
)

Lt

=
1
ρ

(
λs(t)
at,T

− 1
)(

W̄Pt,T

Dt
− 1
)

.
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Proposition 6 The optimal time t ≥ s fraction of floating rate debt, expressed
as a fraction of the market value of total time t wealth, is

βt =
1
ρ

(
λs(t)
at,T

− 1
)

.

Proof 2 The proof consists of deriving the dynamics of the optimal wealth pro-
cess (28). By equating this process with the wealth processes derived earlier in
equations (22) and (21) the optimal β and α, respectively, are determined.

We start by defining the process Yt for t ≥ s as

Yt =
Ws

Qs,t
(ξs,t)

− 1
ρ , (29)

where
Qs,t = Es

[
(ξs,t)

ρ−1
ρ

]
= (Ps,t)

ρ−1
ρ e

1
2

1−ρ

ρ2 V 2
s,t .

Observe that Yt can be interpreted as the optimal wealth process for the given
time horizon t, in particular YT = W ∗

T from equation (28). By applying Itô’s
lemma to the above equation Qs,t for t ≥ s may be expressed as

Qs,t = 1 +
∫ t

s

(·) dv +
∫ t

s

ρ− 1
ρ

av,tQs,vdBv, (30)

where the drift term is left unspecified. Furthermore, we obtain from equation
(24)

ξs,t = 1−
∫ t

s

rvξs,vdv −
∫ t

s

λs(v)ξs,vdBv. (31)

We now apply Itô’s lemma to equation (29) to find the dynamics of Yt and
evaluate this expression for t = T :

W ∗
T = Ws +

∫ T

s

(·) dv +
∫ T

s

[
ρ− 1

ρ
av,T +

λs(v)
ρ

]
WvdBv

The time t instantaneous dBt term of this equation is
[

ρ−1
ρ at,T + λs(t)

ρ

]
Wt. By

equating this term of with the similar term at,T (1 + βt)Wt of expression (22)
the expression for β in the proposition is obtained.

Proposition (5) then follows from the general connection between αt and βt

in expression (23). Alternatively, it can be derived by equating the dBt term of
the above equation with the dBt term of equation (21).

.

4.5 Numerical illustrations — dynamic case

We present some numerical results to compare the dynamic case with the static
case both in terms of welfare measured by expected utility and initial fractions
of floating rate debt.
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Figure 2: The 4 different initial term structures

From proposition 5 the optimal fraction of floating rate debt depends on the
market price of risk, which again (see equation (2)) depends on the initial (time
s) forward rates. We will therefore consider the following 4 cases (see Figure 2):

• Case 1. As Brennan and Xia (2000) and Bajeux-Besnainou et al. (2001)
among others, we first assume that λs(t) = λ̄, a constant. This assumption
implies (from equation (2)) that the initial forward rates are of the form:

f (1)
s (t) = rse

−q(t−s) + (m− vλ̄

q
)(1− e−q(t−s))− v2

2q2
(1− e−q(t−s))2.

The derivative of of the initial forward rate is

∂

∂t
f (1)

s (t) = qe−q(t−s)

(
m− vλ̄

q
− rs −

v2

q2
(1− e−q(t−s))

)
.

For our choice of parameter values f
(1)
s (t) will be humped, i.e., increasing

for small t values and decreasing for larger t values.

By definition Ps,T = erx
s (T−s). Also, Ps,T can be calculated as

Ps,T = EQ
s [e−

∫ T
s

rtdt] = e−µ̂s,T + 1
2 σ2

s,T = e−µs,T + 1
2 σ2

s,T +λ̄ v
q [T−s− 1

q (1−e−q(T−s))],

where µ̂s,T denotes the expectation of
∫ T

s
rtdt under the equivalent mar-

tingale measure. By equating these two expressions the market price of

17



risk at time s is determined as

λ̄ =
q

v

µs,T − 1
2σ2

s,T − rx
s (T − s)

(T − s− 1
q (1− e−q(T−s)))

.

Here V 2
s,T is given by equation (38).

• Case 2. The initial forward rates are constant, i.e., f
(2)
s (t) = rs for all t.

Then ∂
∂tf

(2)
s (t) = 0 and

λ(2)
s (t) =

q

v
(m− rs)−

v

2q
(1− e−2q(t−s)).

Here V 2
s,T is given by equation (34).

• Case 3. The initial forward rates are initially increasing, given by the
function

f (3)
s (t) = rs + sin(

2π(t− s)
T − s

)
1

2000
.

The derivative of of the initial forward rate is

∂

∂t
f (3)

s (t) = cos(
2π(t− s)

T − s
)

π

1000(T − s)

and

λ(3)
s (t) =

q

v
(m− rs)−

q

2000v
sin(

2π(t− s)
T − s

)

− π

1000(T − s)v
cos(

2π(t− s)
T − s

)− v

2q
(1− e−2q(t−s)).

In this case V 2
s,T is given by equation (34).

• Case 4. The forward rates are initially decreasing. In particular the initial
forward rates are given by the function

f (4)
s (t) = rs + sin(

2π(t− s)
T − s

+ π)
1

2000
.

The derivative of of the initial forward rate is

∂

∂t
f (4)

s (t) = cos(
2π(t− s)

T − s
+ π)

π

1000(T − s)

and

λ(4)
s (t) =

q

v
(m− rs)−

q

2000v
sin(

2π(t− s)
T − s

+ π)

− π

1000(T − s)v
cos(

2π(t− s)
T − s

+ π)− v

2q
(1− e−2q(t−s)).

Here V 2
s,T is given by equation (34).
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Js ρ = 1
2 ρ = 1 ρ = 2 ρ = 4 ρ = 8

static case 2.157 0.1505 -0.8605 -0.2125 -0.04997
constant λ 2.162 0.1515 -0.8594 -0.2121 -0.04986

constant fs(t) 2.167 0.1527 -0.8584 -0.2117 -0.04975
increasing fs(t) 2.176 0.1546 -0.8568 -0.2111 -0.04959
decreasing fs(t) 2.177 0.1550 -0.8564 -0.2110 -0.04956

Table 6: Optimal initial utility levels Js calculated from equation (25) and
compared with the results of the previous static model in table (4) for the base
case parameters.

∆CE in % ρ = 1
2 ρ = 1 ρ = 2 ρ = 4 ρ = 8

constant λ 0.46 0.10 0.13 0.06 0.03
constant fs(t) 0.93 0.22 0.24 0.13 0.06
increasing fs(t) 1.77 0.41 0.43 0.22 0.11
decreasing fs(t) 1.86 0.45 0.48 0.24 0.12

Table 7: Percentage increase in certainty equivalent wealth (∆CE) compared
with static case for the four dynamic cases. Let ū denote the optimal util-
ity level from table (6). The certainty equivalent wealth is then calculated as
(ū(1− ρ))

1
1−ρ for ρ 6= 1 and as eū for ρ = 1.

These choices of initial forward rates all produce the same fixed rate rx
s = 5%.

To make the choice between fixed and floating rate less obvious we set the
initial spot rate equal to the fixed rate in the numerical examples. Given this
restriction the sinus function is a natural choice as a model of the initial forward
rates in case 3 and case 4.

In table (6) some values of Js are calculated for the four cases for the base
case parameters. In order to interpret these results the increase in certainty
equivalent wealth from the static case to each of the dynamic case is presented
in table (7). The overall conclusion is that the increase in optimal expected
utility from the static to the dynamic case is low, less that 2%. The increase in
certainty equivalent wealth seems to be decreasing in the risk aversion parameter
ρ (with one exception), so that the welfare increase in a dynamic setting is largest
for investors with low levels of risk aversion.

In the table (8) the optimal values for the initial fractions of floating rate
debt βs are presented. The main conclusion from these tables is that the initial
positions of floating rate are sensitive to the initial term structure.

5 Concluding remarks and further research

Our preliminary numerical comparisons between the static case (no rebalancing
of the debt portfolio) with the dynamic case (continuous and costless rebalanc-
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βs ρ = 1
2 ρ = 1 ρ = 2 ρ = 4 ρ = 8

static case 1.231 0.6187 0.3100 0.1551 0.07759
constant λ 0.2320 0.1160 0.05800 0.0290 0.0145

constant fs(t) -0.4478 -0.2239 -0.1120 -0.05598 -0.02799
increasing fs(t) 1.7119 0.8602 0.4298 0.2150 0.1075
decreasing fs(t) -2.615 -1.308 -0.6536 -0.3668 -0.1635

Table 8: Optimal initial fractions of floating rate debt βs calculated from the
result in proposition 6 and compared with the results of the previous static
model in table (5) for the base case parameters.

ing) indicate, perhaps surprisingly, low increase in ’welfare’ in dynamic situation
compared to static situation. At least this is the case for high levels of relative
risk aversion.

In the dynamic case the optimal initial fractions of floating rate debt are
partly determined by the initial forward interest rates, which do not influence
the corresponding optimal fraction in the static case. Therefore, we do not
learn anything about the optimal floating rate debt fraction in the dynamic
case from the static case. Even if we are willing to assume that the market
price of interest rate risk is constant the initial optimal fractions of floating rate
debt are different in the static and dynamic cases.

The research in this article can be extended in a number of ways. First,
realism can be improved by introducing a multi-factor interest rate model. Also,
transaction costs can be introduced, in the spirit of Davis and Norman (1990),
Korn (1998), Øksendal and Sulem (2000), and Zakamouline (2002) in order to
make the set-up closer to real world situations. Finally, this set-up may be used
to study the effect of a stochastic collateral (W̄ ).

A Appendix

In this appendix a number of detailed calculations is collected.
From equation (2) direct calculations give∫ T

t

λsds =
q

v

[
(m− rx

t )(T − t) +
1
q
(rt − ft(T ))

]
−

q

v

[
v2

4q3
(2q(T − t)− 1 + e−2q(T−t))

]
(32)

and∫ T

t

λse
qsds =

q

v
eqT

[
m

q
(1− e−q(T−t))− 1

q
(ft(T )− rte

−q(T−t))
]

+

q

v
eqT

[
v2

2q3
(2e−q(T−t) − e−2q(T−t) − 1)

]
. (33)
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From the equations (2) and (4) by using (32) and (33) it follows that

Cov

(∫ T

s

rtdt,

∫ T

s

λs(t)dBt|Fs

)
=

(rs −m)
1− e−q(T−s)

q
+ (m− rx

s )(T − s)− 1
2
σ2

s,T . (34)

It is now straight forward to calculate

V 2
s,T = Var

(∫ T

s

rtdt +
∫ T

s

λs(t)dBt|Fs

)

= σ2
s,T +

∫ T

s

λs(t)2dt + 2Cov

(∫ T

s

rtdt,

∫ T

s

λs(t)dBt|Fs

)

=
∫ T

s

λs(t)2dt + 2
[
(rs −m)

1− e−q(T−s)

q
+ (m− rx

s )(T − s)
]

. (35)

The partial derivative of V 2
s,T is

∂V 2
s,T

∂s
= −[λs(t)2 + 2[(rs −m)e−q(T−s) + m− rx

s ]]. (36)

In the case where λ̄ is constant we obtain from equation (4)

Cov

(∫ T

s

rtdt,

∫ T

s

λ̄dBt|Fs

)
= µs,T − 1

2
σ2

s,T − rx
s (T − s). (37)

and

V 2
s,T = Var

(∫ T

s

rtdt +
∫ T

s

λ̄dBt|Fs

)
= λ̄2(T − s)+ 2(µs,T − rx

s (T − s)). (38)
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