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Rationale for jump-diffusion

modeling

Properties of real-life financial time series

not reflected in the Black–Scholes model

A Nonstationarity

• real markets change qualitatively over

time

• calibration of parameters to historical

data is suspect

• “regime–switching” models

B Volatility clustering

• squared returns are serially correlated

• leads to ARCH/GARCH/stochastic volatil-

ity models
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C Heavy tailed distributions

• increased probabilities for

“large moves/extreme events”

• underlying noise should have non–gaussian

heavy tails

D Multivariate dependences

• dependence structure of “large moves”

may be quite poorly predicted by the

covariance

• need flexibility to model large moves dif-

ferently from “normal market moves”

Jump diffusion modeling addresses C and D
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Jump diffusion modeling setup

Market: assumed “efficient” and “frictionless”

• riskless asset: dBt = rBtdt, 0 ≤ t ≤ T

take r = 0, B ≡ 1

• N risky assets:

dSi
t = Si

t



µidt +
M
∑

a=1

σiadW a
t





Remark: Diffusion processes are continuous

at all times, almost surely.

Add in JUMP TERM Si
t−

dQi
t

(

Si
t− = lim

τ↑t
Si

τ , Si
t+

= lim
τ↓t

Si
τ

)
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Log returns: let si
t = logSi

t

dsi
t =

[

µi −
1

2
(σσT )ii

]

dt +
M
∑

a=1

σiadW a
t

+

∫

RN
z(i) N

(ν)
t (dt dNz)

Poisson random measure N(ν):

For any set (t1, t2]×A ⊂ R+ × RN

N
(ν)
t

(

(t1, t2]×A
)

= number of jumps st+ − st−

of log return vector which

lie in A, which occur in

time interval (t1, t2]

= Poisson random variable with

intensity parameter

λ
(

(t1, t2]×A
)

= |t2 − t1|ν(A)

intensity measure

N
(ν)
t is a Poisson Point Process
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Generalized Ito Formula

If F : R+ × RN → RM is twice differentiable

and Xt is an R
N–valued jump diffusion with

dXt = dX
(cts)
t + dX

(jump)
t then F (t, Xt) is an

R
M–valued jump diffusion and

dFt =
∂F

∂t
dt +

∂F

∂x
dX

(cts)
t +

1

2

∂2F

∂x2
d 〈X, X〉

(cts)
t

+

∫

RN

[

F (t, Xt−+ z)− F (t, Xt−)
]

N
(ν)
t (dt dNz)

Example: St = exp[st]

dSt = St

[(

µ−
1

2
(σσT )

)

dt + σdW a
t

]

+ Stσ
2dWtdWt

+

∫

RN

[

exp[st− + z]− exp[st−]
]

N
(ν)
t (dt dNz)

∴ dQ
(i)
t =

∫

RN

[

ezi
− 1

]

N
(ν)
t (dt dNz)
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Facts:

• jump diffusion markets are INCOMPLETE

• in incomplete markets “risk–neutral pricing

theory” (Black–Scholes et al) must be re-

placed by “optimal portfolio theory”

8



The optimal portfolio problem

An economic agent invests in market over [0, T ]

creating a portfolio with value Xt, so as to

maximize E(U(XT )), the “expected utility of

terminal wealth”

Utility: function U : R→ [−∞,∞) satisfying

(i) monotonically

increasing

(ii) strictly concave

U(x) = “pleasure” derived from having $x at T
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Portfolio strategy π:

• At each time t, the agent has wealth Xt

• chooses to invest π
(i)
t in stock i

∴ Xt =
N
∑

i=1

π
(i)
t + (Xt −

N
∑

i=1

π
(i)
t )

stocks bank account

Self financing condition: No $ put in or taken

out

dXt =
N
∑

i=1

π
(i)
t−







dS
(i)
t

S
(i)
t−





+ 0

=
N
∑

i=1

π
(i)
t−



µidt +
M
∑

a=1

σiadW a
t + dQ

(i)
t
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Optimization for agent with utility U

For each value of the initial wealth x find the

pair (u(x), π∗(x)) which optimize

u(x) = sup
π

E
(

U(X
π,x
T )

)

u(x) = value function

π∗ = optimal strategy
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Option pricing by Davis’ “marginal

rate of substitution”

Let FT be contingent claim with expiry date T

Q How to assign a value F0?

A For an agent with utility U and wealth x:

F0(U, x) =
E(U ′(X

π∗,x
T )FT )

E(U ′(X
π∗,x
T ))

Logic • For ε (small) at t = 0 invest ε in the op-

tion, and remainder in the optimal port-

folio
x = (x− ε) + ε

portfolio option

• for 0 < t < T adopt the optimal strategy

π∗(x− ε)

• at t = T , Xε
T = (X

π∗,x
T − ε) + ε(FT /F0)

• F0 determined by E(U(Xε
T ) = E(U(X0

T ))+

O(ε2)
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An example

• take a general JD market with constant

(µ, σ, ν)

• U(x) = −e−αx,

α > 0 constant

• solve the optimal problem using the Hamilton–

Jacobi–Bellman equation from stochastic

control
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Verification Theorem

Suppose H(t, x), g(t, x) are such that

1. H is sufficiently integrable and solves


































































∂H
∂t + supπ



(π · µ)∂H
∂x + 1

2|σ
Tπ|2∂2H

∂x2

+
∫

RN [H(t, x + π · (ez − 1))−H(t, x)] ν(dNz)





= 0

H(T, x) = U(x) ∀x ∈ R

2. the sup is achieved by π(i) = g(i)(t, x)

Then:

1. The value function is u(x) = H(0, x)

2. The optimal strategy exists and is given by

π∗t = g(t, Xt).
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Assume H(t, x) = −f(t)e−αx, f(t) > 0

Find the condition for optimal π is independent

of t, x:

sup
π

[

α(π · µ)−
α2

2
|σTπ|2

−
∫

RN

[

e−απ·(ez−1) − 1
]

ν(dNz)

]

Result:

• last two terms are strictly concave, hence

optimal strategy π∗ exists

• απ∗ is independent of α, t, x

• “constant value in each risky asset”

• Value function is u(t, x) = −eK(T−t)−αx

(K constant).
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Duality Theory

(Kar-Leh-Shr-Xu 91)

(Kram-Sch 99)

Introduce the Legendre transform











V (y) = Ũ(y) = supx∈R[U(x)− xy]

U(x) = − ˜(−V )(x) = infy∈R[V (y) + xy]

Similarly for the value function:

v(y) = ũ(y)←→ u(x)

Example: (cont’d)

For u(t, x) = −eK(T−t)−αx

v(t, y) = (y/α)
(

log(yeK(t−T)/α)− 1
)
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Theorem 1. (KS ’99) Assume:

• general semi–martingale market

• smoothness and growth conditions on U

Then:

1. v(y) solves a dual optimal problem:

v(y) = inf
Y ∈Y(y)

E(V (YT ))

where

Y(y) = {Yt > 0|XtYt supermartingale ∀ portfolios X}

2. optimizers X̂(x) and Ŷ (y) exist and are related

by

X̂(x) = −V ′(Ŷ (y)); Ŷ (y) = U ′(X̂(x))

where x = −v′(y), y = u′(x).
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Option pricing:

F0(U, x) =
E(Ŷ (y)FT )

E(Ŷ (y))

= E([Ŷ (y)/y]FT )

= EQ̂(y)(FT )

where x = −v′(y).

dQ̂(y)

dP
= Ŷ (y)/y ≡ equivalent martingale measure

Example (cont’d)

• dual value function v(t, y) indeed solves the

constrained dual HJB equation, confirming

the KS theorem in this case

• Ŷ (y)/y is independent of y and coincides

with Schweizer’s “minimal martingale mea-

sure”
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Conclusions

• “incomplete markets” are those for which

Card
(

Y(y)
)

> 1

- then dual problem is nontrivial

- not all contingent claims can be hedged,

or priced uniquely

• even simple jump diffusion models are mas-

sively incomplete, and resulting HJB equa-

tions are complicated

• the theory of jump diffusion markets exists

and is developing rapidly

19



References

1. Benth, Karlsen & Reikvam, “Optimal port-

folio selection...”, Finance and Stochastics

(2000)

2. Goll & Kallsen, Stoc. Proc. and Appl. 89

p 31–48 (2000)

3. P. Grandits, Theory Probab. Appl. 44, p

39–50 (1999)

4. Karatzas, Lehoczky, Shreve & Xu, SIAM J.

Control. Optim. 29, p 1121-1259 (1991)

5. Kramkov & Schachermayer, Ann. of Appl.

Probab. 9, p 904–950 (1999)

20


