K-rings of wonderful varieties and matroids
As we have seen in many talks in this wonderful seminar, the wonderful variety of a realizable matroid and its Chow ring have played key roles in solving many long-standing open questions in combinatorics and algebraic geometry. Yet, its $K$-rings are underexplored until recently. I will be sharing with you some discoveries on the $K$-rings of the wonderful variety associated with a realizable matroid: an exceptional isomorphism between the $K$-ring and the Chow ring, with integral coefficients, and a Hirzebruch–Riemann–Roch-type formula. These generalize a recent construction of Berget–Eur–Spink–Tseng on the permutohedral variety. We also compute the Euler characteristic of every line bundle on wonderful varieties, and give a purely combinatorial formula. This in turn gives a new valuative invariant of an arbitrary matroid. As an application, we present the $K$-rings and compute the Euler characteristic of arbitrary line bundles of the Deligne–Mumford–Knudsen moduli spaces of rational stable curves with distinct marked points. Joint with Matt Larson, Sam Payne and Nick Proudfoot.