1. The notion of escape function

In order to characterize the spectrum of the wave operator H, we would like to connect spectral properties of H and dynamical properties of its principal symbol h.

For a differential operator of order m

$$D = \sum_{|j| \leq m} a_j(x) \frac{\partial^j}{\partial x^j}$$

the principal symbol is

$$d = \sum_{|j| = m} a_j(x) \left(i \frac{\partial}{\partial \xi}\right)^j$$

freeze the coefficients and take the Fourier transform.
This definition can be extended to pseudo differential operators, looking at the action of H on fast oscillating functions:

$$\langle H(\alpha e^{iS}), \alpha e^{iS} \rangle = \int |a(x)|^2 e^{i\theta} h(x, \xi(x)) + o(\tau^{-1})$$

The key property is that the principal symbol, even though it does not determine H completely, contains almost all the information, up to smoother error terms.

- order $(\mathcal{H} - \text{Op}(h)) \leq \text{order } H$
- order $[\mathcal{H}, \mathcal{H}_2] \leq \text{order } H + \text{order } H_2 - 1$

One can therefore obtain expansions at any order.

Example 1

Typical operators with continuous spectrum are multiplications by smooth functions $\gamma = \gamma(x)$ (the spectrum is then the range of γ).

The Hamiltonian dynamics associated to the principal symbol $\tilde{h}(x, p) = \gamma(x)$ is given by

$$\frac{dx}{dt} = \frac{\partial h}{\partial p} = 0, \quad \frac{dp}{dt} = -\frac{\partial h}{\partial x} = -\gamma'(x_0).$$

In particular, for all trajectories, the function $|\rho(t)|$ goes to infinity as $t \to +\infty$.
Example 2

In the case of operators with discrete spectrum, the eigenfunctions have finite energy.

Under a suitable factorization assumption on $H = u, v$, (satisfied by 2D internal waves), eigenfunctions have to be constant along the trajectories of the symbol h.

Both properties are compatible iff the dynamics has compact invariant sets, which rules out the existence of a function going to infinity as $t \to +\infty$.

This is of course not a proof but a strong indication that the fact that H has continuous spectrum is related to the existence of an escape function y of the form

$$\frac{d}{dt} \psi (x(t), p(t)) \geq \kappa > 0$$

or equivalently

$$\{ h, \psi \} \geq \kappa > 0$$

Remark: This property can be rephrased in terms of operators $i [H, A] \ni \kappa \text{Id} + K$ for some compact operator K.

- Example 2
2. The conjugate operator method

Let A be a self-adjoint (unbounded) operator. We define $H^3 = \{ u \in L^2 \mid (1 + A^2)^{3/2} u \in L^2 \}$. H is n-smooth with respect to A if $B_1 = i[H, A]$, $B_2 = [B_{k-1}, A]$ are bounded up to $k = n$.

A is conjugate to H if

$$X(H) B_1 X(H) \geq \alpha \overline{X(H)} + K$$

for $X, \overline{X} \in C^\infty$ with $\overline{X} \overline{X} = \overline{X}$.

Theorem (Mourre): for any closed interval $I \subset \text{supp} \overline{X}$

(i) H has a finite set $\sigma_p(H)$ of eigenvalues in I

(ii) the resolvent $(H - \lambda)^{-1}$ defined for $\text{Im} \lambda \neq 0$ admits boundary values at $\lambda \in I \setminus \sigma_p(H)$ in the space $O_s = L(H^s, H^{-s})$ for $s > \frac{1}{2}$

(iii) $(H - \lambda \pm i \delta)^{-1} \in C^\infty_{\delta} (O_s)$ for $s > \frac{1}{2}$

(iv) $(H - \lambda \pm i \delta)^{-1} \in C^\infty_{\delta} (O_s)$ for $s > n - \frac{1}{2}$
Sketch of proof

- If the discrete spectrum is not finite
 \(\exists (\phi_n) \) orthonormal \(H \phi_n = \omega_n \phi_n \)
 \(\langle \phi_n, K \phi_n \rangle \to 0 \) by compactness of \(K \)
 \(\langle \phi_n, K \phi_n \rangle \leq -\kappa \Vert \phi_n \Vert^2 \)

\(\text{contradiction} \)

- Define the approximation \(G_\varepsilon = (H - z - i\varepsilon P B_\varepsilon P)^{-1} \)
 and \(F_\varepsilon = A^{-1} G_\varepsilon A^{-1} \)

\[
\||P G_\varepsilon A^{-1}||^2 = \frac{1}{\varepsilon^2} \|A^{-1}(G_\varepsilon - G_\varepsilon) A^{-1}\| \leq \frac{1}{\varepsilon^2} \| F_\varepsilon \|
\]

\(\| (I - P) G_\varepsilon A^{-1} \| \leq C \)

- \(\frac{dF_\varepsilon}{d\varepsilon} = A^{-1} G_\varepsilon iPB_\varepsilon P G_\varepsilon A^{-1} \)

\[
= A^{-1} [G_\varepsilon, A] A^{-1} + \varepsilon A^{-1} G_\varepsilon [A, iPB_\varepsilon P] G_\varepsilon A^{-1} + A^{-1} G_\varepsilon (P - I) [A, H] P G_\varepsilon A^{-1} + A^{-1} G_\varepsilon [A, H^2] (P - I) G_\varepsilon A^{-1}
\]

main term

\[
\| \frac{dF_\varepsilon}{d\varepsilon} \| \leq C \left(1 + \frac{\|F_\varepsilon\|^{1/2}}{\varepsilon^{1/2}} + \|F_\varepsilon\| \right)
\]

- Integrating this differential inequality, we obtain uniform bounds as \(\varepsilon \to 0 \), so that \(G_\varepsilon \)
 has boundary values in \(O_3 = L(H^4, H^4) \)
• To obtain the Hölder continuity, we combine

\[
\begin{align*}
 \| F_\varepsilon(z) - F_\varepsilon(0) \| & \leq C \varepsilon \\
 \| F_\varepsilon(z) - F_\varepsilon(z') \| & \leq \frac{dF_\varepsilon}{dz} \| z-z' \| \leq \frac{C}{\varepsilon} |z-z'|
\end{align*}
\]

Remarks: to get the fractional Sobolev regularity, one has to replace A^{-1} by $A^{-s}(i+\varepsilon A)^{-s-1}$.

• To obtain additional regularity w.r.t. λ a better approximation is needed.

3 Construction of the conjugate operator

We will consider a general (scalar) equation of the form $\frac{d}{dt} u - iH u = f \exp(i\omega t)$ on T^2

(H0) H is a pseudodifferential operator with smooth principal symbol homogeneous of degree 0 and vanishing subprincipal symbol.

(H1) $\Sigma_{\omega_0} = k^{-1}(\omega_0)$ is non degenerate \(\pi : Z = \partial \Sigma_{\omega_0} \rightarrow X \) is a finite covering of degree
\(X_h\) induces a field of oriented directions on \(Z\). We therefore have a foliation \(F\) on \(Z\) (non-singular by (H1)). The leaves are the orbits of the Hamiltonian dynamics.

(H2) \(F\) is finite simple; i.e. \(F\) has a finite number of compact leaves, which are hyperbolic. And all other leaves accumulate only along these compact leaves at \(\infty\).

Remark: this model reproduces the main features of the internal wave operator, but requires more regularity.

Normal form

Let \(B_f\) be the basin of attraction (resp. repulsion) of the cycle \(f\). Denote by \(S\) a local Poincaré section transverse to \(f\) and by \(\Pi : S \to S\) the Poincaré return map.

1. By Sternberg’s theorem, \(\Pi(y) = \mu y\) for a good choice of \(\mu\).
2. Choose a vector field tangent to the foliation such that the return time is \(2\Pi\). Denote by \(x\) the coordinate along the flow.
3. The foliation \(F_0\) is given by \(dy + \delta y\, dx = 0\), it differs from \(F\) only by a reparameterization.
4. The normal form is extended on \(B_f\) by scattering.
Construction of the escape function

We define first a local escape function \(\psi_y \) on \(B_r \) let \(y \in \mathbb{C} \) such that \(y = 1 \) in \([-1, 1] \) and \(y \psi'(y) \leq 0 \). Define \(\psi_y = \lambda \psi(y) \)
\[\{ \Phi^2 h_o, \psi_y \} = \Phi^2 \{ h_o, \psi_y \} + h_o \{ \phi, \psi_y \} = \lambda^2 \Phi^2 (y - y \psi') > \alpha_o \text{ on } \Gamma_{rk} \]

From (H2), we know that \(\Sigma_{w_o} \subset \bigcup \Gamma_{rk} \).
Extracting a finite covering, and adding the local escape functions, we end up with a global escape function.
Construction of the conjugate operator

We first extend \(y \) as a smooth function homogeneous of degree 1 on \(T^*X \) which satisfies \(\{ h, y \} \geq \alpha > 0 \) in some conical neighborhood of \(\Sigma_{w_0} \).

Then we choose a self-adjoint operator \(A \) of principal symbol \(y \). By the sharp Garding inequality \(\langle (H)[H,A]X(H) \rangle \geq \|X(H)\|_k \) we can apply Howe's theory and define the resolvents \((H - \lambda \geq 0)^{-1} \) for \(\lambda \) close to \(w_0 \).