2D Navier-Stokes Equations with Large Reynolds Number

Yan Guo
Division of Applied Math, Brown University
In honor of Cedric Villani

November 18, 2014
2D Navier Stokes Equations: \(\mathbf{u} = [u, \nu] \),

\[
\begin{align*}
\mathbf{u}_t + \mathbf{u} \cdot \nabla_x \mathbf{u} + \nabla \rho &= \nu \Delta \mathbf{u} \\
\nabla \cdot \mathbf{u} &= 0
\end{align*}
\]
Navier-Stokes Equation with Large Reynolds Number

- 2D Navier Stokes Equations: \(\mathbf{u} = [u, v] \),

\[
\begin{align*}
\mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p &= \nu \Delta \mathbf{u} \\
\nabla \cdot \mathbf{u} &= 0
\end{align*}
\]

- \(\nu = \frac{1}{R} \ll 1 \), Reynolds Number \(R(\frac{LV}{\nu}) \), viscosity, inviscid limit is the Euler equations.

\[
\mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p = 0
\]
Navier-Stokes Equation with Large Reynolds Number

- 2D Navier Stokes Equations: \(\mathbf{u} = [u, \nu] \),

\[
\begin{align*}
\mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p &= \nu \Delta \mathbf{u} \\
\nabla \cdot \mathbf{u} &= 0
\end{align*}
\]

- \(\nu = \frac{1}{R} \ll 1 \), Reynolds Number \(R(\frac{LV}{\nu}) \), viscosity, inviscid limit is the Euler equations.

\[
\mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p = 0
\]

- Instability of Poiseuille Channel flow: \(x \in \mathbb{R}, 0 \leq y \leq 2 \):

\[
u(y) = U(y) = 1 - (y - 1)^2, \quad \nu \equiv 0, \quad p = 2\nu x
\]
Navier-Stokes Equation with Large Reynolds Number

- 2D Navier Stokes Equations: $\mathbf{u} = [u, v]$,

$$
\begin{align*}
\mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p &= \nu \Delta \mathbf{u} \\
\nabla \cdot \mathbf{u} &= 0
\end{align*}
$$

- $\nu = \frac{1}{R} << 1$, Reynolds Number $R \left(\frac{L \nu}{v} \right)$, viscosity, inviscid limit is the Euler equations.

$$
\mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p = 0
$$

- Instability of Poiseuille Channel flow: $x \in \mathbb{R}$, $0 \leq y \leq 2$:

$$
u(y) = \mathbf{U}(y) = 1 - (y - 1)^2, \quad \nu \equiv 0, \quad p = 2\nu x$$

- Validity of Steady Prandtl Layer Expansion ($\mathbf{u}_t \equiv 0$)
Navier-Stokes Equation with Large Reynolds Number

- 2D Navier Stokes Equations: \(\mathbf{u} = [u, v] \),

\[
\begin{align*}
\mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p &= \nu \Delta \mathbf{u} \\
\nabla \cdot \mathbf{u} &= 0
\end{align*}
\]

- \(\nu = \frac{1}{R} \ll 1 \), Reynolds Number \(R(\frac{LV}{\nu}) \), viscosity, inviscid limit is the Euler equations.

\[
\mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p = 0
\]

- Instability of Poiseuille Channel flow: \(x \in \mathbb{R}, 0 \leq y \leq 2 \) :

\[
u(y) = U(y) = 1 - (y - 1)^2, \quad \nu \equiv 0, \quad p = 2\nu x
\]

- Validity of Steady Prandtl Layer Expansion \((\mathbf{u}_t \equiv 0) \)

- Non-slip and Non-penetration BC
With $\nu = 0$, an example of stable shear flows for Euler:

$$U(y) = 1 - (y - 1)^2, \quad \nu \equiv 0, \quad p = 0$$

with non-penetration BC at $y = 0$ and $y = 2$:

$$v(x, 0) = v(x, 2) \equiv 0.$$
Instability of Poiseuille Flow

- With $\nu = 0$, an example of stable shear flows for Euler:

 $$U(y) = 1 - (y - 1)^2, \quad \nu \equiv 0, \quad p = 0$$

 with non-penetration BC at $y = 0$ and $y = 2$:

 $$v(x, 0) = v(x, 2) \equiv 0.$$

- When $0 < \nu << 1$, is Poiseuille flow still stable? Does $\nu \Delta u$ help or hurt stability?
Instability of Poiseuille Flow

- With $\nu = 0$, an example of stable shear flows for Euler:

 $U(y) = 1 - (y - 1)^2, \quad \nu \equiv 0, \quad p = 0$

 with non-penetration BC at $y = 0$ and $y = 2$:

 $v(x, 0) = v(x, 2) \equiv 0$.

- When $0 < \nu << 1$, is Poiseuille flow still stable? Does $\nu \Delta u$ help or hurt stability?

- Non-slip BC at $y = 0$ and $y = 2$:

 $u(x, 0) = u(x, 2) \equiv 0, \quad v(x, 0) = v(x, 2) \equiv 0$
With $\nu = 0$, an example of stable shear flows for Euler:

$$U(y) = 1 - (y - 1)^2, \quad \nu \equiv 0, \quad p = 0$$

with non-penetration BC at $y = 0$ and $y = 2$:

$$v(x, 0) = v(x, 2) \equiv 0.$$

When $0 < \nu << 1$, is Poiseuille flow still stable? Does $\nu \Delta u$ help or hurt stability?

Non-slip BC at $y = 0$ and $y = 2$:

$$u(x, 0) = u(x, 2) \equiv 0, \quad v(x, 0) = v(x, 2) \equiv 0$$

Poiseuille flow is a rare example of steady NS for $\nu << 1$.
Orr-Sommerfeld and Rayleigh Equations

- Long History: Reynolds (1883), Heisenberg (1924), Tollmien (1929), C.-C. Lin (1944), Drazin and Reid (1981), Wasaw (1948), many numerical and experimental work. This instability is believed to link to turbulence for $\nu \ll 1$.
Orr-Sommerfeld and Rayleigh Equations

- Long History: Reynolds (1883), Heisenberg (1924), Tollmien (1929), C.-C. Lin (1944), Drazin and Reid (1981), Wasaw (1948), many numerical and experimental work. This instability is believed to link to turbulence for $\nu \ll 1$.

- Many delicate asymptotic expansions are developed, in different spatial regime in x. No rigorous construction of a growing modes.

\[\psi(t, x, y) = e^{i\alpha(xct)} \phi(y), \]

\[\varepsilon(\partial^2_y \alpha^2)\phi = (Uc)(\partial^2_y \alpha^2)\phi U_0 \phi, \]

\[\varepsilon = \frac{i\alpha}{R}, \quad \alpha \text{ real wave number}, \quad c \text{ complex, and } \Re c \alpha > 0 \text{ is the exponential growth rate, the no-slip BC: } \phi(0) = \phi(y(0)) = \phi(2) = \phi(y(2)) = 0. \]

Is there a solution for $\varepsilon \ll 1, \alpha > 0, \Re c < 0$?

4th order ODE, non self-adjoint, no variational structure. For $\varepsilon = 0$, Rayleigh equation with stability. Bifurcation to instability for $\varepsilon \ll 1$.

[274x18] Yan Guo Division of Applied Math, Brown U
November 18, 2014 4 / 15
Orr-Sommerfeld and Rayleigh Equations

- Long History: Reynolds (1883), Heisenberg (1924), Tollmien (1929), C.-C. Lin (1944), Drazin and Reid (1981), Wasaw (1948), many numerical and experimental work. This instability is believed to link to turbulence for $\nu \ll 1$.

- Many delicate asymptotic expansions are developed, in different spatial regime in x. No rigorous construction of a growing modes.

- Assume the growing stream function $\psi(t, x, y) = e^{i\alpha(x - ct)}\phi(y)$, we obtain ODE in y

$$\varepsilon(\partial_y^2 - \alpha^2)^2 \phi = (U - c)(\partial_y^2 - \alpha^2)\phi - U''\phi,$$

where $\varepsilon = \frac{1}{i\alpha R}$, α real wave number, c is complex, and $\text{Re}\{c\alpha\} > 0$ is the exponential growth rate, the no-slip BC:

$$\phi(0) = \phi_y(0) = \phi(2) = \phi_y(2) = 0.$$
Orr-Sommerfeld and Rayleigh Equations

- Long History: Reynolds (1883), Heisenberg (1924), Tollmien (1929), C.-C. Lin (1944), Drazin and Reid (1981), Wasaw (1948), many numerical and experimental work. This instability is believed to link to turbulence for $\nu \ll 1$.
- Many delicate asymptotic expansions are developed, in different spatial regime in x. No rigorous construction of a growing modes.
- Assume the growing stream function $\psi(t, x, y) = e^{i\alpha(x-ct)}\phi(y)$, we obtain ODE in y

$$\varepsilon(\partial_y^2 - \alpha^2)^2 \phi = (U - c)(\partial_y^2 - \alpha^2)\phi - U''\phi,$$

here $\varepsilon = \frac{1}{i\alpha R}$, α real wave number, c is complex, and $\text{Re}\{c\alpha\} > 0$ is the exponential growth rate, the no-slip BC:

$$\phi(0) = \phi_y(0) = \phi(2) = \phi_y(2) = 0.$$

- Is there a solution for $\varepsilon \ll 1, \alpha > 0, \text{Re} c < 0$?
Orr-Sommerfeld and Rayleigh Equations

- Long History: Reynolds (1883), Heisenberg (1924), Tollmien (1929), C.-C. Lin (1944), Drazin and Reid (1981), Wasaw (1948), many numerical and experimental work. This instability is believed to link to turbulence for $\nu << 1$.
- Many delicate asymptotic expansions are developed, in different spatial regime in x. No rigorous construction of a growing modes.
- Assume the growing stream function $\psi(t, x, y) = e^{i\alpha(x-ct)}\phi(y)$, we obtain ODE in y
 $$\varepsilon(\partial_y^2 - \alpha^2)^2\phi = (U - c)(\partial_y^2 - \alpha^2)\phi - U''\phi,$$
 here $\varepsilon = \frac{1}{i\alpha R}$, α real wave number, c is complex, and $\text{Re}\{c\alpha\} > 0$ is the exponential growth rate, the no-slip BC:
 $$\phi(0) = \phi_y(0) = \phi(2) = \phi_y(2) = 0.$$
- Is there a solution for $\varepsilon << 1$, $\alpha > 0$, $\text{Re}\ c < 0$?
- 4th order ODE, non self-adjoint, no variational structure. For $\varepsilon = 0$, Rayleigh equation with stability. Bifurcation to instability for $\varepsilon << 1$.
Theorem (Grenier, G., Nguyen, 2014)

There exists a $0 < \varepsilon_0 << 1$, such that for all $0 < \varepsilon < \varepsilon_0$, there exists a growing mode solution with $\alpha(\varepsilon) > 0$ and $c(\varepsilon)$ such that

$$R^{-1/7} \lesssim \alpha(\varepsilon) \lesssim R^{-1/11},$$

$$\alpha(\varepsilon) \Im c(\varepsilon) \lesssim \frac{1}{\sqrt{\alpha(\varepsilon) R}} > 0.$$
Theorem (Grenier, G., Nguyen, 2014)

There exists a $0 < \varepsilon_0 << 1$, such that for all $0 < \varepsilon < \varepsilon_0$, there exists a growing mode solution with $\alpha(\varepsilon) > 0$ and $c(\varepsilon)$ such that

$$R^{-1/7} \lesssim \alpha(\varepsilon) \lesssim R^{-1/11},$$

$$\alpha(\varepsilon) \text{Im } c(\varepsilon) \lesssim \frac{1}{\sqrt{\alpha(\varepsilon) R}} > 0.$$

- These asymptotes are predicted by formal expansions.
Theorem (Grenier, G., Nguyen, 2014)

There exists a $0 < \varepsilon_0 << 1$, such that for all $0 < \varepsilon < \varepsilon_0$, there exists a growing mode solution with $\alpha(\varepsilon) > 0$ and $c(\varepsilon)$ such that

$$R^{-1/7} \lessapprox \alpha(\varepsilon) \lessapprox R^{-1/11},$$

$$\alpha(\varepsilon) \text{Im } c(\varepsilon) \lessapprox \frac{1}{\sqrt{\alpha(\varepsilon) R}} > 0.$$

- These asymptotes are predicted by formal expansions.
- The instability occurs for large wave number $\alpha(\varepsilon)$, but if $R \sim 10^7$ (Reynolds number 10^7), $\alpha(\varepsilon) \sim 1$. Inverse cascade?
Theorem (Grenier, G., Nguyen, 2014)

There exists a $0 < \varepsilon_0 << 1$, such that for all $0 < \varepsilon < \varepsilon_0$, there exists a growing mode solution with $\alpha(\varepsilon) > 0$ and $c(\varepsilon)$ such that

$$R^{-1/7} \lesssim \alpha(\varepsilon) \lesssim R^{-1/11},$$

$$\alpha(\varepsilon) \text{ Im } c(\varepsilon) \sim \frac{1}{\sqrt{\alpha(\varepsilon) R}} > 0.$$
Theorem (Grenier, G., Nguyen, 2014)

There exists a $0 < \varepsilon_0 \ll 1$, such that for all $0 < \varepsilon < \varepsilon_0$, there exists a growing mode solution with $\alpha(\varepsilon) > 0$ and $c(\varepsilon)$ such that

\[
R^{-1/7} \lesssim \alpha(\varepsilon) \lesssim R^{-1/11},
\]

\[
\alpha(\varepsilon) \operatorname{Im} c(\varepsilon) \sim \frac{1}{\sqrt{\alpha(\varepsilon) R}} > 0.
\]

- These asymptotes are predicted by formal expansions.
- The instability occurs for large wave number $\alpha(\varepsilon)$, but if $R \sim 10^7$ (Reynolds number 10^7), $\alpha(\varepsilon) \sim 1$. Inverse cascade?
- Our proof is constructive, no stability is known for the wave number α outside $[R^{-1/7}, R^{-1/11}]$.
- Our result has been extended to other general ‘shear flow’ profiles [Grenier, G., Nguyen, 2014], in particular, the Blasius boundary-layer profile $U(y) = f'(y)$ for $0 \leq y < +\infty$, where

\[
f''' + ff'' = 0
\]
Given three parameters ε, c and α, our goal is to represent a fundamental solution set $[\phi_1, \phi_2, \phi_3, \phi_4]$ to the Orr-Sommerfeld equation. We build starting with $\varepsilon = 0$, Rayleigh equations

$$\text{Ray}(\phi) \equiv (U - c)(\partial_y^2 - \alpha^2)\phi - U''\phi.$$

We further start with $\alpha = 0$, with two explicit solutions $U(y) - c$, and the singular one

$$(U(y) - c) \int_{1/2}^{y} \frac{1}{(U(y) - c)^2} dy$$

with logarithmic singularity $(y - z_c) \ln |y - z_c|$ at $z_c \sim c$ such that $U(z_c) - c = 0$.

Yan Guo Division of Applied Math, Brown U

November 18, 2014 6 / 15
Fundamental Solution Set to Rayleigh

Given three parameters ε, c and α, our goal is to represent a fundamental solution set $[\phi_1, \phi_2, \phi_3, \phi_4]$ to the Orr-Sommerfeld equation. We build starting with $\varepsilon = 0$, Rayleigh equations

$$\text{Ray}(\phi) \equiv (U - c)(\partial_y^2 - \alpha^2)\phi - U''\phi.$$

- We further start with $\alpha = 0$, with two explicit solutions $U(y) - c$, and the singular one

$$ (U(y) - c) \int_{1/2}^{y} \frac{1}{(U(y) - c)^2} dy$$

with logarithmic singularity $(y - z_c) \ln |y - z_c|$ at $z_c \sim c$ such that

$$U(z_c) - c = 0.$$

- To capture such a singularity, we define bounded function space Y_p

$$Y_p = \{ |\partial_y f(y)| \lesssim 1 + \ln |y - z_c|, \quad |\partial_y^l f(y)| \lesssim 1 + |y - z_c|^{1-l} \},$$

$$X_p = \{ |\partial_y^l f(y)| \lesssim |y - z_c|^{-l} \}.$$
Fundamental Solution Set to Rayleigh

Given three parameters ϵ, c and α, our goal is to represent a fundamental solution set $[\phi_1, \phi_2, \phi_3, \phi_4]$ to the Orr-Sommerfeld equation. We build starting with $\epsilon = 0$, Rayleigh equations

$$\text{Ray}(\phi) \equiv (U - c)(\partial_y^2 - \alpha^2)\phi - U''\phi.$$

- We further start with $\alpha = 0$, with two explicit solutions $U(y) - c$, and the singular one

$$\left(U(y) - c \right) \int_{1/2}^{y} \frac{1}{(U(y) - c)^2} dy$$

with logarithmic singularity $(y - z_c) \ln |y - z_c|$ at $z_c \sim c$ such that

$$U(z_c) - c = 0.$$

- To capture such a singularity, we define bounded function space Y_p

$$Y_p = \{ |\partial_y f(y)| \lesssim 1 + \ln |y - z_c|, \quad |\partial_{y}^l f(y)| \lesssim 1 + |y - z_c|^{1-l} \},$$

$$X_p = \{ |\partial_{y}^l f(y)| \lesssim |y - z_c|^{-l} \}.$$

- We construct Ray^{-1} by expansion of $\alpha \ll 1$ in Y_p.

Yan Guo Division of Applied Math, Brown University In honor of Cedric Villani ()
November 18, 2014 6 / 15
For given c, α, ϵ, our goal is to construct $[\phi_i]_{i=1,2,3,4}$

$$\text{Orr}(\phi) \equiv (U - c) (\partial_y^2 - \alpha^2) \phi - U'' \phi - \epsilon (\partial_y^2 - \alpha^2)^2 \phi.$$

then to fit them to the boundary conditions. Denote

- $\text{Ray}(\phi) \equiv (U - c) (\partial_y^2 - \alpha^2) \phi - U'' \phi,$
- $\text{Diff}(\phi) \equiv -\epsilon (\partial_y^2 - \alpha^2)^2 \phi,$
- $\text{Airy}(\phi) \equiv \epsilon \partial_y^4 \phi - (U - c + 2\epsilon \alpha^2) \partial_y^2 \phi,$
- $\text{Reg}(\phi) \equiv -[\epsilon \alpha^4 + U'' + \alpha^2 (U - c)] \phi,$

$\text{Orr} = \text{Ray} + \text{Diff} = -\text{Airy} + \text{Reg}$

We start with ϕ_0 such that $\text{Ray}(\phi_0) = 0$. Next,

- $\text{Ray}(\phi_r) = -\text{Orr}(\phi_0),$
- $\text{Orr}(\phi_0 + \phi_r) = \text{Orr}(\phi_0) + \text{Ray}(\phi_r) + \text{Diff}(\phi_r) = \text{Diff}(\phi_r),$
- $\text{Airy}(\phi_a) = \text{Diff}(\phi_r).$
Two Solutions From Rayleigh to OS

- From \([\phi_0, E_0]\) to \([\phi_1, E_1]\). Let \(E_0 = \text{Orr}(\phi_0)\), then

\[
\begin{align*}
\phi_1 &= \phi_0 + \phi_r + \phi_a, \\
E_1 &= \text{Orr}(\phi_1) = \text{Orr}(\phi_a) + \text{Orr}(\phi_r + \phi_0) \\
&= -\text{Airy}(\phi_a) + \text{Reg}(\phi_a) + \text{Diff}(\phi_r) = \text{Reg}(\phi_a) \\
&= \text{Reg} \circ \text{Airy}^{-1} \circ \text{Diff} \circ \text{Ray}^{-1}(E_0)
\end{align*}
\]

It is important to show that the operator \(\text{Reg} \circ \text{Airy}^{-1} \circ \text{Diff} \circ \text{Ray}^{-1}\) has norm < 1.
From $[\phi_0, E_0]$ to $[\phi_1, E_1]$. Let $E_0 = \text{Orr}(\phi_0)$, then

$$
\begin{align*}
\phi_1 &= \phi_0 + \phi_r + \phi_a, \\
E_1 &= \text{Orr}(\phi_1) = \text{Orr}(\phi_a) + \text{Orr}(\phi_r + \phi_0) \\
&= -\text{Airy}(\phi_a) + \text{Reg}(\phi_a) + \text{Diff}(\phi_r) = \text{Reg}(\phi_a) \\
&= \text{Reg} \circ \text{Airy}^{-1} \circ \text{Diff} \circ \text{Ray}^{-1}(E_0)
\end{align*}
$$

It is important to show that the operator $\text{Reg} \circ \text{Airy}^{-1} \circ \text{Diff} \circ \text{Ray}^{-1}$ has norm < 1.

If we start with Rayleigh solution $\text{Reg}(\phi_0) = 0$, then we show that

$$
norm{\text{Airy}^{-1} \circ \text{Diff}(f)}_{X_2} \lesssim \norm{f}_{Y_4} \delta^2 (1 + |\ln \delta|) (1 + |z_c / \delta|)^{3/2}, \quad \delta \sim \varepsilon^{1/3}.
$$
Two Solutions From Airy to OS

Via a sequence of translation and scaling (Langer), near $U(z_c) - c = 0$ or $y \sim z_c$,

$$
\text{Airy}(\phi) \equiv \epsilon \partial_y^4 \phi - (U - c + 2\epsilon \alpha^2) \partial_y^2 \phi \sim \partial_z^4 \phi - z \partial_z^2 \phi = 0
$$

for localized data (critical layer)

$$
\frac{y - z_c}{\epsilon^{1/3}} \sim \xi.
$$

Take $\text{Airy}(\phi_0) = 0$, then ϕ_0 is highly localized near z_c.

$E_0 = \text{Orr}(\phi_0) = \text{Reg}(\phi_0)$ is highly localized near z_c. Then construct

$$
\phi_1 \equiv \phi_0 - \text{Airy}^{-1}(E_0), \quad \text{then}
$$

$$
E_1 \equiv \text{Orr}(\phi_1) = \text{Orr}(\phi_0) - \text{Orr} \circ \text{Airy}^{-1}(E_0) = \text{Reg} \circ \text{Airy}^{-1}(E_0).
$$

We have the crucial estimate for ‘localized data’ E_1 such that

$$
|\text{Airy}^{-1}(E_0)| \leq \delta |E_1|.
$$

• Repeat the process in X_2, then estimate $\phi, \partial_y \phi$ at $y = 0$ with z_c^{-1}.
Consider the 2D steady Navier-Stokes equations for \(0 \leq X \leq L, 0 \leq Y \leq \infty\)

\[
UU_X + VU_Y + P_X = \varepsilon U_{XX} + \varepsilon U_{YY} \\
UV_X + VV_X + P_Y = \varepsilon V_{XX} + \varepsilon V_{YY}
\]

with \(U_X + V_Y = 0\) and non-slip boundary condition at \(Y = 0\)

\[
U(X, 0) = u_b > 0 \text{ (moving)}, \quad V(X, 0) = 0.
\]

We would like to understand when \(\varepsilon \to 0\), the relation to the inviscid Euler Equations. We assume that the outer Euler flow is

\[
[u_e^0(Y), 0]
\]

where

\[
0 < u_e^0(0) = u_e \neq u_b.
\]
Steady Prandtl Layer Expansion

Consider the 2D steady Navier-Stokes equations for
\(0 \leq X \leq L, 0 \leq Y \leq \infty\)

\[
UU_X + VU_Y + P_X = \varepsilon U_{XX} + \varepsilon U_{YY}
\]

\[
UV_X + VV_X + P_Y = \varepsilon V_{XX} + \varepsilon V_{YY}
\]

with \(U_X + V_Y = 0\) and non-slip boundary condition at \(Y = 0\)

\[
U(X, 0) = u_b > 0 \text{ (moving)}, \quad V(X, 0) = 0.
\]

We would like to understand when \(\varepsilon \rightarrow 0\), the relation to the inviscid Euler Equations. We assume that the outer Euler flow is

\[
[u_e^0(Y), 0]
\]

where

\[
0 < u_e^0(0) = u_e \neq u_b.
\]

1905, L. Prandtl resolves this mismatch by constructing a boundary solutions of width \(\sqrt{\nu}\). We reformulate his theory by letting \(x = X, y = \frac{Y}{\sqrt{\nu}}\).
New 2D Navier-Stokes system

\[\begin{align*}
UU_x + VU_y + P_x &= U_{yy} + \nu U_{xx} \\
VV_x + VV_y + \frac{P_y}{\nu} &= V_{yy} + \nu V_{xx}
\end{align*} \]

Prandtl hypothesizes as \(\nu \ll 1 \)

\[
[U, V] \text{ (NS)} \sim [u_e^0(\sqrt{\nu}y), 0](\text{Euler}) + [u(x, y), \nu(x, y)]\text{(Prandtl Layer)}
\]

where Prandtl Layer equations is a parabolic equation \(u_x + \nu_y = 0 \),

\[
[u_e(0) + u]u_x + \nu v_y + p_x = u_{yy}
\]
Steady Prandtl Layer Expansion

- New 2D Navier-Stokes system

\[
UU_x + VU_y + P_x = U_{yy} + \nu U_{xx}
\]

\[
UV_x + VV_y + \frac{P_y}{\nu} = V_{yy} + \nu V_{xx}
\]

Prandtl hypothesizes as \(\nu \ll 1 \)

\[
[U, V] \ (NS) \sim [u_e^0(\sqrt{\nu}y), 0](\text{Euler}) + [u(x, y), \nu(x, y)](\text{Prandtl Layer})
\]

where Prandtl Layer equations is a parabolic equation \(u_x + \nu y = 0, \)

\[
[u_e(0) + u]u_x + \nu v_y + p_x = u_{yy}
\]

- Prandtl Theory is regarded as one of the most important achievements in modern fluid mechanics, which connects the Euler theory and Navier-Stokes’ theory. Prandtl’s equation is a parabolic equation which is much easier to solve numerically. Prandtl’s analysis has broken new ground for asymptotic analysis.
Steady Prandtl Layer Expansion

- New 2D Navier-Stokes system

\[
UU_x + VU_y + P_x = U_{yy} + \nu U_{xx}
\]
\[
UV_x + VV_y + \frac{P_y}{\nu} = V_{yy} + \nu V_{xx}
\]

Prandtl hypothesizes as \(\nu \ll 1 \)

\([U, V] \) (NS) \(\sim [u_e^0(\sqrt{\nu}y), 0](Euler) + [u(x, y), \nu(x, y)](Prandtl \ Layer) \)

where Prandtl Layer equations is a parabolic equation \(u_x + \nu y = 0, \)

\[
[u_e(0) + u]u_x + \nu v_y + p_x = u_{yy}
\]

Prandtl Theory is regarded as one of the most important achievements in modern fluid mechanics, which connects the Euler theory and Navier-Stokes’ theory. Prandtl’s equation is a paraboloc equation which is much easier to solve numerically. Prandtl’s analysis has broken new ground for asymptotic analysis.

The validity and error estimate of the steady Prandtl expansion is an important open question.
We expand further the Prandtl’s expansion to get the remainder

\[
\begin{align*}
U &= u_e^0(\sqrt{\nu}y) + u_p^0(x, y) + \sqrt{\nu}u_e^1(x, \sqrt{\nu}y) + \sqrt{\nu}u_p^1(x, y) + \varepsilon^{\gamma + \frac{1}{2}}u^\varepsilon(x, y), \\
V &= v_p^0(x, y) + \sqrt{\nu}v_e^1(x, \sqrt{\nu}y) + \sqrt{\nu}v_p^1(x, y) + \varepsilon^{\gamma + \frac{1}{2}}v^\varepsilon(x, y), \\
P &= \sqrt{\nu}p_e^1(x, \sqrt{\nu}y) + \nu p_p^1(x, y) + \nu^{\gamma + \frac{1}{2}}p^\varepsilon(x, y).
\end{align*}
\]

where \([u_e^i, v_e^i, p_e^i] \ i = 1, 2\), are unknown with constructed ‘approximate profiles’. They can be constructed under rather general conditions.

\[
\begin{align*}
\Delta u_e^1 - u_{e y y}^1 &= 0, \ (\text{1st Euler}) \\
[u_e(0) + u]u_{p x}^1 + v_p^1 v_{p y}^0 + v_p^0 v_{p y}^1 + p_x &= \text{given. (1st Prandtl)}
\end{align*}
\]
Theorem (G., Nguyen, 2014)

Assume

\[
[u^\varepsilon, v^\varepsilon]_{y=0} = 0, \quad [u^\varepsilon, v^\varepsilon]_{x=0} = 0, \\
p^\varepsilon - 2\nu u^\varepsilon_x = 0, \quad u^\varepsilon_y + \nu v^\varepsilon_x = 0 \text{ at } x = L.
\]

Let \(\nabla_\varepsilon = [\sqrt{\nu}\partial_x, \partial_y] \). Assume

\[
\min_{0 \leq y \leq \infty} \{ u^0_e (\sqrt{\nu} y) + u^0_p (y) \} > 0
\]

then there exists \(L > 0 \), such that for some \(\gamma > 0 \)

\[
\| \nabla_\nu u^\varepsilon \|_2 + \sqrt{\nu} \| \nabla_\nu v^\varepsilon \|_2 + \nu^{\frac{\gamma}{2}} \| u^\varepsilon \|_\infty + \nu^{\frac{1}{2} + \frac{\gamma}{2}} \| v^\varepsilon \|_\infty \lesssim 1.
\]

In particular, in terms of \(X \) and \(Y \),

\[
\| U(\cdot) - u^0_e(\cdot) - u^0_p(\cdot, \frac{\cdot}{\sqrt{\nu}}) \|_\infty \lesssim \sqrt{\nu} \\
\| V(\cdot) - \sqrt{\nu} v^0_p(\cdot, \frac{\cdot}{\sqrt{\nu}}) - \sqrt{\nu} v^1_e(\cdot) \|_\infty \lesssim \nu^{\frac{1}{2} + \gamma}.
\]
Many boundary layer problems are in steady regime. In the unsteady case, Sammartino and Caflisch [1998] for analytic data.
Many boundary layer problems are in steady regime. In the unsteady case, Sammartino and Caflisch [1998] for analytic data.

The condition of a moving plane occurs in such physical phenomena as shear layers between two uniform flows, wakes, plane jet flows.
Validity of Steady Prandtl Layer Expansion

- Many boundary layer problems are in steady regime. In the unsteady case, Sammartino and Caflisch [1998] for analytic data.
- The condition of a moving plane occurs in such physical phenomena as shear layers between two uniform flows, wakes, plane jet flows.
- $L \downarrow 0$ as $\min_{0 \leq y \leq \infty} \left\{ u_e^0(\sqrt{\nu}y) + u_p^0(y) \right\} \to 0$, so the classical motionless boundary is open, $L \nearrow$ for $|\nabla u_e^0| + |\nabla u_p^0| \searrow$.
Validity of Steady Prandtl Layer Expansion

- Many boundary layer problems are in steady regime. In the unsteady case, Sammartino and Caflisch [1998] for analytic data.
- The condition of a moving plane occurs in such physical phenomena as shear layers between two uniform flows, wakes, plane jet flows.
- $L \downarrow 0$ as $\min_{0 \leq y \leq \infty} \{u_e^0(\sqrt{\nu} y) + u_p^0(y)\} \to 0$, so the classical motionless boundary is open, $L \uparrow$ for $|\nabla u_e^0| + |\nabla u_p^0| \downarrow$.
- The construction of approximate profiles are important and delicate for closure of the estimates and for error estimates (corners).
Many boundary layer problems are in steady regime. In the unsteady case, Sammartino and Caflisch [1998] for analytic data.

The condition of a moving plane occurs in such physical phenomena as shear layers between two uniform flows, wakes, plane jet flows.

$L \downarrow 0$ as $\min_{0 \leq y \leq \infty} \{ u_e^0(\sqrt{\nu}y) + u_p^0(y) \} \to 0$, so the classical motionless boundary is open, $L \nearrow$ for $|\nabla u_e^0| + |\nabla u_p^0| \nearrow$.

The construction of approximate profiles are important and delicate for closure of the estimates and for error estimates (corners).

It is well-known that energy estimates leads to

$$\| \nabla u^\epsilon \|^2_2 + \nu \| \nabla v^\epsilon \|^2_2 \lesssim \int v^\epsilon \partial_y u_s u^\epsilon + ... \lesssim L \| \nabla v^\epsilon \|^2_2 + \text{good},$$

for which $\| \nabla v^\epsilon \|^2_2$ is out of control. The following new estimate is found:

$$\| \nabla v^\epsilon \|^2_2 \lesssim \| \nabla u^\epsilon \|^2_2 + \text{good}.$$
Many boundary layer problems are in steady regime. In the unsteady case, Sammartino and Caflisch [1998] for analytic data.

The condition of a moving plane occurs in such physical phenomena as shear layers between two uniform flows, wakes, plane jet flows.

$L \downarrow 0$ as \(\min_{0 \leq y \leq \infty} \{ u_{e}^{0}(\sqrt{\nu} y) + u_{p}^{0}(y) \} \rightarrow 0 \), so the classical motionless boundary is open, $L \nearrow$ for $|\nabla u_{e}^{0}| + |\nabla u_{p}^{0}| \searrow$.

The construction of approximate profiles are important and delicate for closure of the estimates and for error estimates (corners).

It is well-known that energy estimates lead to

\[
\| \nabla_{\nu} u^{\varepsilon} \|_{2}^{2} + \nu \| \nabla_{\nu} \nu^{\varepsilon} \|_{2}^{2} \lesssim \int \nu^{\varepsilon} \partial_{y} u_{s} u^{\varepsilon} + \ldots \lesssim L \| \nabla_{\nu} \nu^{\varepsilon} \|_{2}^{2} + \text{good},
\]

for which $\| \nabla_{\nu} \nu^{\varepsilon} \|_{2}^{2}$ is out of control. The following new estimate is found:

\[
\| \nabla_{\nu} \nu^{\varepsilon} \|_{2}^{2} \lesssim \| \nabla_{\nu} u^{\varepsilon} \|_{2}^{2} + \text{good}.
\]

The conditions at $x = 0$ and $x = L$ are conveniently chosen.