On the Almost Axisymmetric Flows with Forcing Terms

Marc Sedjro
joint work with Michael Cullen.

RWTH Aachen University

October 7, 2012
Outline

Outline

Outline

- A Toy Model.
Outline

▶ Analysis of the Hamiltonian of Almost Axisymmetric Flows.

▶ A Toy Model.

▶ Challenges in the study of the Almost Axisymmetric Flows with Forcing Terms.
Time varying domain.

The time varying domain occupied by the fluid is given by

\[\Gamma_{r_1^t} := \{(\lambda, r, z) \mid r_0 \leq r \leq r_1^t(\lambda, z), \; z \in [0, H], \; \lambda \in [0, 2\pi]\}, \]

For simplicity, we set \(r_0 = 1 \) in the sequel.
Hamiltonian

The fluid evolves with the velocity \(\mathbf{u} := \mathbf{u}(\lambda, r, z) \) expressed in cylindrical coordinates \((u, v, w)\). The temperature \(\theta \) of the fluid inside the vortex is assumed to be greater that the ambient temperature maintained constant at \(\theta_0 > 0 \).

g is the gravitational constant.

The Hamiltonian of the Almost Axisymmetric Flow is

\[\int_{\Gamma_{r_1}} \left(\frac{u^2}{2} - g \frac{\theta}{\theta_0} \right) r dr dz d\lambda. \]

Important: The Almost Axisymmetric Flows are derived from Boussinesq’s equations with no loss of the Hamiltonian structure (George Craig).
Hamiltonian : Stable Almost axisymmetric flows

Ω : Coriolis coefficient.

\(ru + \Omega r^2 \) : angular momentum

\(\frac{g}{\theta_0} \theta \) : potential temperature.

Stability condition:

On each \(\lambda \)-section of the domain \(\Gamma_{r_1} \), we require that

\[
(r, z) \rightarrow [(ru^\lambda + \Omega r^2)^2, \frac{g}{\theta_0} \theta^\lambda]
\]

be invertible and gradient of a convex function.
Hamiltonian: Stable Almost axisymmetric flows

We made crucial observation that, for stable Almost axisymmetric flows for which the total mass is finite (=1), the Hamiltonian can be expressed in terms of one single measure σ:

$$\mathcal{H}[\sigma] = \int_0^{2\pi} l_0[\sigma, \lambda] + \inf_{\rho \in S} I[\sigma, \lambda](\rho) d\lambda$$

Here, σ is a probability measure such that $\pi_1^{\#}\sigma$ is absolutely continuous with respect to $\mathcal{L}^1_{|[0,2\pi]}$.

$$l_0[\sigma, \lambda] = \int_{\mathbb{R}^2_+} \left(\frac{y_1}{2} - \Omega \sqrt{y_1} - \frac{|y|^2}{2} \right) \sigma, \lambda(dy)$$

$$I[\sigma, \lambda](\rho) := \frac{1}{2} W^2_2\left(\sigma, \frac{1}{(1 - 2x_1)^2} \chi_{D_\rho}(x)\right) + \int_{D_\rho} \left(\frac{\Omega^2}{2(1 - 2x_1)} - \frac{|x|^2}{2} \right) \frac{1}{(1 - 2x_1)^2} dx$$

Here, S is the set of functions $\rho : [0, H] \rightarrow [0, 1/2)$,

$$D_\rho := \{x = (x_1, x_2) \mid x_1 \in [0, H], 0 \leq x_2 \leq \rho(x_1)\}$$
Assume σ_0 is a probability measure on \mathbb{R}^2 and write

$$I[\sigma_0](\rho) = \frac{1}{2} W_2^2(\sigma_0, \frac{1}{(1 - 2x_1)^2} \chi_{D\rho}(x)) + \text{good terms}$$

Existence of a minimizer.

Obstacle : $\{\chi_{D\rho}\}_{\rho \in S}$ is not weakly* closed in L^∞.
Analysis of the Hamiltonian

Assume σ_0 is a probability measure on \mathbb{R}^2 and write

$$I[\sigma_0](\rho) = \frac{1}{2} W_2^2 \left(\sigma_0, \frac{1}{(1 - 2x_1)^2} \chi_{D_\rho}(x) \right) + \text{good terms}$$

Existence of a minimizer.

Obstacle: $\{\chi_{D_\rho}\}_{\rho \in S}$ is not weakly* closed in L^∞.

However,

$$I[\sigma_0](\hat{\rho}) \leq I[\sigma_0](\rho)$$

where $\hat{\rho}$ is the increasingly monotone rearrangement of ρ.

Classical results in the direct methods of the calculus of variations ensures the existence of a minimizer.
Analysis of the Hamiltonian

Uniqueness of minimizers.
Analysis of the Hamiltonian

Uniqueness of minimizers.
Obstacle: No convexity property for \(\rho \rightarrow l[\sigma_0](\rho) \) with respect to any interpolation we can think of.
Analysis of the Hamiltonian

Uniqueness of minimizers.
Obstacle: No convexity property for $\rho \rightarrow I[\sigma_0](\rho)$ with respect to any interpolation we can think of.

We use a Dual formulation of the minimization problem that yields existence and uniqueness.

\begin{equation}
\sup \left\{ (P, \psi) : P = \psi^*, \psi = P^* \right\} \int_{\mathbb{R}^2} \left(\frac{y_1}{2} - \Omega \sqrt{y_1} - \psi(y) \right) \sigma_0(\text{d}y) + \inf_{\rho \in \mathcal{S}} \int_0^H \Pi_P(\rho(x_2), x_2) \text{d}x_2
\end{equation}

\begin{equation}
\Pi_P(x_1, s) = \int_0^s \left(\frac{1}{2(1 - 2x_1)} - P(x_2, x_1) \right) \frac{1}{(1 - 2x_2)^2} \text{d}x_1 \quad \text{for} \quad 0 \leq x_1 < 1.
\end{equation}

(1) has a unique solution.
Analysis of the Hamiltonian.

Regularity of the boundary ∂D_ρ

The dual problem reveals a regularity property of ρ stronger than monotonicity.

More precisely, if $\text{spt}(\sigma_0) \subset (\frac{1}{L_0}, L_0) \times (0, L_0)$ $L_0 > 0$ and P^{σ_0} solve the variational problem (1) then the study of Euler-Lagrange equation of

$$\inf_{\rho \in \mathcal{S}} \int_0^H \Pi_{P^{\sigma_0}}(\rho(x_2), x_2) dx_2$$

yields $C > 0$ such that the minimizer ρ^{σ_0} satisfies

$$\rho^{\sigma_0}(\bar{x}_2) - \rho^{\sigma_0}(x_2) \geq C(\bar{x}_2 - x_2)$$

for all $x_2, \bar{x}_2 \in [0, H]$. Consequently, we obtain that $\partial D_{\rho^{\sigma_0}}$ is piecewise Lipschitz continuous.
A unusual Monge-Ampère equation.

Moreover, assume in addition, σ_0 is absolutely continuous with respect to the Lebesgue measure.

If $(P^{\sigma_0}, \Psi^{\sigma_0}, \rho^{\sigma_0})$ is the variational solution (1) then P^{σ_0} is convex, ∇P^{σ_0} is invertible $(1 - 2x_1)^{-2} \chi_{D_\rho}(x) L^2$ a.e and

$$
\begin{cases}
(i) & \frac{1}{(1-2\partial y_2 \psi)^2} \det \nabla^2 \Psi = \sigma_0 \\
(ii) & P\left(\rho(x_2), x_2\right) = \frac{\Omega^2}{2(1-2\rho(x_2))} \text{ on } \{\rho > 0\} \quad (2) \\
(iii) & \nabla \psi \text{ maps } spt(\sigma_0) \text{ onto } D_\rho.
\end{cases}
$$
Change of variables

Let \((P_\lambda, \Psi_\lambda, \rho_\lambda)\) be the solution to the variational problem (1) corresponding to \(\sigma_\lambda\). Assume \(\sigma\) absolutely continuous with respect to Lebesgue.

Define \(u, \theta, r\) through

\[
(u_\lambda r + \Omega r^2)^2 = \partial_{x_1} P_\lambda, \quad g \frac{\theta_\lambda}{\theta_0} = \partial_{x_2} P_\lambda, \quad 2x_1 = 1 - r^{-2}. \tag{3}
\]

and

\[
\chi_{r_1} r dr dz d\lambda = (1 - 2x_1)^{-2} \chi_{\rho_\lambda} (x) dx_1 dx_2 d\lambda = \sigma dy_1 dy_2 d\lambda.
\]

Then, \((u, \theta, r_1)\) satisfy the stability condition and

\[
\mathcal{H}[\sigma] = \int_{r_1} \left(\frac{u^2}{2} - g \frac{\theta}{\theta_0} \right) r d\lambda dr dz.
\]
Forced Axisymmetric Flows: Toy Model 2D

We remove the λ dependence on the quantities involved in the Almost axisymmetric flows with forcing terms to obtain the forced axisymmetric flows: \(\frac{D}{Dt} := \partial_t + v \partial r + w \partial z \).

\[
\begin{cases}
(r u + \Omega r^2)^2 = r^3 \partial_r [\varphi + \frac{\Omega^2}{2} r^2], & \frac{g}{\theta_0} \theta = \partial_z [\varphi + \frac{\Omega^2}{2} r^2] \quad \text{in } \Gamma_{r_1} \\
\frac{1}{r} \partial_r (rv) + \partial_z w = 0 \quad & \text{in } \Gamma_{r_1} \\
\partial_t r_1 + w \partial_z r_1 = v, \quad & \text{in } \Gamma_{r_1} \\
\frac{D}{Dt} (ru + \Omega r^2) = F, \quad \frac{D}{Dt} \left(\frac{g}{\theta_0} \theta \right) = \frac{g}{\theta_0} S \quad & \text{in } \Gamma_{r_1}
\end{cases}
\]

Here,
\[
\Gamma_{r_1} := \{(r, z) \mid r_1(t, z) \geq r \geq r_0, \ z \in [0, H]\},
\]
\[
\varphi(t, r_1(t, z), z) = 0, \quad \text{on } \partial \{r_1 > r_0\}.
\]

Neumann condition has been imposed on the rigid boundary.

Data: \(F, S \) are prescribed functions.

Unknown: \(u, v, w, \varphi, \theta \) and \(r_1 \)
In view of the change of variable discussed above, existence of a variational solution to the MA equation, formal computations yield

Toy Model \iff

$$
\begin{cases}
\partial_t \sigma_t + \text{div}(\sigma_t V_t[\sigma_t]) = 0 \\
\sigma|_{t=0} = \bar{\sigma}_0
\end{cases}
$$
In view of the change of variable discussed above, existence of a variational solution to the MA equation, formal computations yield

\[
\text{Toy Model} \iff \begin{cases}
\partial_t \sigma_t + \text{div}(\sigma_t V_t[\sigma_t]) = 0 \\
\sigma|_{t=0} = \bar{\sigma}_0
\end{cases}
\]

Task we completed:

Identify the operator \(\sigma \mapsto V_t[\sigma]\).
Forced axisymmetric flows: Velocity field

Regular initial data:

\[V_t[\sigma](y) = \mathbb{L}_t(\nabla \psi^\sigma(y); y) \]

where

\[\mathbb{L}_t(x; y) = \left(2\sqrt{y_1}F_t((1 - 2x_1)^{-\frac{1}{2}}, x_2), \frac{g}{\theta_0}S_t((1 - 2x_1)^{-\frac{1}{2}}, x_2) \right). \]

and

\[\psi^\sigma \] is a solution in the variational problem (1).

General initial data:

Use the Riesz representation theorem to uniquely define \(V_t[\sigma] \) by

\[\int_{\mathbb{R}^2} \langle V_t[\sigma], G \rangle d\sigma = \int_{D_{\rho^\sigma}} e(x_1)\langle \mathbb{L}_t(x, \nabla P^\sigma), G(\nabla P^\sigma) \rangle dx_1 dx_2 \]

\(\forall G \in C_c(\mathbb{R}^2, \mathbb{R}^2) \) and \((P^\sigma, \rho^\sigma)\) solves the variational problem (1).
Existence of solutions for the Forced axisymmetric flows.

- Appropriate conditions of the forcing terms.
- Continuity property in $\sigma \rightarrow V_t[\sigma]$ (and $\sigma \rightarrow \sigma V_t[\sigma]$).

\Rightarrow Global solution in time.
Almost Axisymmetric Flow with Forcing Terms

Back to the full physical model

These equations are given by (here, $\frac{D}{Dt} := \partial_t + \frac{u}{r} \partial_{\lambda} + v \partial r + w \partial z$)

\[
\begin{align*}
 r \left(\frac{Du}{Dt} + \frac{uv}{r} + \frac{1}{r} \partial_{\lambda} \varphi + 2\Omega v \right) &= F, \\
 \frac{u^2}{r} + 2\Omega u &= \partial_r \varphi, \\
 \frac{D\theta}{Dt} &= S, \\
 \frac{1}{r} \partial_r (rv) + \frac{1}{r} \partial_{\lambda} u + \partial_z w &= 0, \\
 \partial_z \varphi - g \frac{\theta}{\theta_0} &= 0, \\
 \partial_t r_1 + \frac{u}{r_1} \partial_{\lambda} r_1 + w \partial_z r_1 &= \nu \text{ on } \{r = r_1\}
\end{align*}
\]

in the region

\[\Gamma_{r_1} := \{(\lambda, r, z) \mid r_1(\lambda, z) \geq r \geq r_0, \; z \in [0, H], \; \lambda \in [0, 2\pi]\},\]

subject to the boundary condition

\[\varphi(t, \lambda, r_1(t, \lambda, z), z) = 0, \; \text{on} \; \partial\{r_1 > r_0\}.\] \hspace{1cm} (7)

Neumann condition has been imposed on the rigid boundary.
Almost axisymmetric Flow with Forcing Terms : Dual space 3D

The equations above can be recast as a transport equation:

$$\partial_t \sigma_t + \text{div}(\sigma_t X_t[\sigma_t]) = 0; \quad \sigma|_{t=0} = \sigma_0 \ll L^3 \quad (8)$$

Here

$$X_t[\sigma](y) = L_t(\nabla \psi^\sigma(y), y)$$

$$\psi^\sigma(\lambda, \cdot)$$ solves the Monge Ampère equations (2)

and

$$L_t(x, y) =$$

$$\left(\frac{\sqrt{y_1}}{r_0} - \Omega - 2x_1\sqrt{y_1}, 2\sqrt{y_1}F_t(\lambda, e^{\frac{1}{4}}(x_1), x_2) + 2x_1\sqrt{y_1}, \frac{g}{\theta_0} S_t(\lambda, e^{\frac{1}{4}}(x_1), x_2) \right)$$

with $x = (\lambda, x_1, x_2), y = (\lambda, y_1, y_2)$ and $e(x_1) = (1 - 2x_1)^{-2}$.
Challenges in the continuity equation

- Defining well the velocity $X_t[\sigma]$.

- Existence and Regularity of
 \[\nabla \psi = \begin{pmatrix} \frac{\partial \psi}{\partial \lambda}, \frac{\partial \psi}{\partial \gamma}, \frac{\partial \psi}{\partial z} \end{pmatrix} \]

- Regularity in a Monge–Ampere equation with respect to a parameter:
 \[\frac{1}{(1 - 2\partial_{y_1} \psi^\lambda)^2} \det \nabla_{y_1, y_2}^2 \psi^\lambda = \sigma^\lambda \]
Thank you for your attention!