## Introduction to Mechanism Design

#### Xianwen Shi University of Toronto

Minischool on Variational Problems in Economics

September 2014

Introduction to Mechanism Design

- A designer would like to make a collective decision according to agents' true preferences.
  - self-interested agents privately know their preferences.
  - when and how can the designer do it?
- Examples
  - monopolistic screening
  - design of auctions
  - optimal taxation
  - provision of public goods
  - design of voting procedures and constitution

## Example: Single Object Allocation

- Designer wants to allocate one object among *I* buyers.
  - the designer's reservation value is normalized to be 0.
- Symmetric independent private values (SIPV)
  - buyers' "types"  $\{\theta_i\}$  are independently drawn from U[0, 1].
  - buyers' valuations for the object depend only on their own type.
- The designer wishes to "implement" the "efficient" allocation
  - efficient allocation: assign object to the bidder who values most.
  - how to do it?
- What if the designer wishes to maximize the revenue?

#### • "Mechanism"

- each bidder *i* submits a bid  $m_i$  in a sealed envelope
- bidder with the highest bid wins the object and pays his bid
- Observation
  - the mechanism specifies winner and payment given bid profile;
  - it "induces" a game where bidders' "strategies" are bids  $m_i$ ;
  - payoff for bidder *i*:  $\theta_i m_i$  if winning, and 0 otherwise.
- Question: can it implement the efficient allocation?

- Second-price sealed bid auction
  - each bidder i submits a bid  $m_i$  in a sealed envelope
  - bidder with the highest bid wins the object but pays the second highest bid
- Questions:
  - can it implement the efficient allocation?
  - how does it compare to FPA: revenue, bidder payoff, etc.?
  - how should a revenue-maximizing designer adjust the auction mechanism?

### Outline

#### Introduction to Bayesian games and mechanism design

- revelation principle
- Gibbard-Satterthwaite impossibility theorem
- Quasilinear; uni-dimensional, independent, private types
- Quasilinear; multidimensional, independent, private types
- Nontransferrable utilities: single-peaked preferences

## **Bayesian Game**

- Players:  $i \in \mathcal{I} = \{1, ..., I\}$
- Types (players' private information):  $\theta_i \in \Theta_i$
- Joint distribution of types (common prior and beliefs):  $\Phi(\theta)$
- Strategies/messages  $m_i: \Theta_i \rightarrow M_i$
- Preference over strategy profiles:  $\tilde{u}_i(m, \theta_i, \theta_{-i})$
- In mechanism design context (mechanism: (M,g))
  - − outcome functions  $g: M_1 \times \cdots \times M_2 \rightarrow Y$  (alternatives)
  - preference over *Y*:  $u_i(y, \theta_i, \theta_{-i}) = u_i(g(m), \theta_i, \theta_{-i}) \equiv \widetilde{u}_i(m, \theta_i, \theta_{-i})$
- Bayesian game (with common prior):  $[\mathcal{I}, \{M_i\}, \{\widetilde{u}_i\}, \{\Theta_i\}, \Phi(\cdot)]$

## Equilibrium Concept

#### Definition

A strategy profile  $(m_1^*(\cdot), ..., m_I^*(\cdot))$  is a dominant strategy equilibrium if,  $\forall i, \forall \theta_i, \forall m_i \in M_i, \forall m_{-i} \in M_{-i}$ ,

$$\widetilde{u}_{i}\left(m_{i}^{*}\left(\theta_{i}\right),m_{-i}\left(\theta_{-i}\right),\theta_{i},\theta_{-i}\right)\geq\widetilde{u}_{i}\left(m_{i},m_{-i}\left(\theta_{-i}\right),\theta_{i},\theta_{-i}\right).$$

#### Definition

A strategy profile  $(m_1^*(\cdot), ..., m_I^*(\cdot))$  is a Bayesian Nash equilibrium if,  $\forall i, \forall \theta_i, \forall m_i \in M_i$ ,

$$\mathbf{E}_{\theta_{-i}}\left[\widetilde{u}_{i}\left(m_{i}^{*}\left(\theta_{i}\right), m_{-i}^{*}\left(\theta_{-i}\right), \theta_{i}, \theta_{-i}\right)\right] \geq \mathbf{E}_{\theta_{-i}}\left[\widetilde{u}_{i}\left(m_{i}, m_{-i}^{*}\left(\theta_{-i}\right), \theta_{i}, \theta_{-i}\right)\right].$$

- Consider a setting with *I* agents,  $\mathcal{I} = \{1, ..., I\}$ .
- The designer/principal must make a collective choice among a set of possible allocations *Y*.
- Each agent privately observes a signal (his type) θ<sub>i</sub> ∈ Θ<sub>i</sub> that determines his preferences over *Y*, described by a utility function u<sub>i</sub> (y, θ<sub>i</sub>) for all i ∈ *I*.
  - common prior: the prior distribution  $\Phi(\theta)$  is common knowledge.
  - private values: utility depends only own type (and allocation).
  - type space:  $\Theta = \Theta_1 \times ... \times \Theta_I$ .
- A social choice function is a mapping  $f: \Theta \to Y$ .

## Messages and Outcome Function

#### Private information

- information  $\theta = (\theta_1, .., \theta_I)$  is dispersed among agents when the allocation *y* is to be decided.
- notation:  $\theta = (\theta_i, \theta_{-i})$ , with  $\theta_{-i} = (\theta_1, ..., \theta_{i-1}, \theta_{i+1}, ..., \theta_I)$ .

#### Messages

- each agent can send a message  $m_i: \Theta_i \to M_i$ .
- agents send their messages independently and simultaneously.
- the message space *M* can be arbitrary:  $M = M_1 \times ... \times M_I$ .
- Outcome function is a mapping  $g: M \to Y$ .
  - after the agents transmit a message  $m \in M$ , a social allocation  $y \in Y$  will be chosen according to g.

# Mechanism and Implementation

### Definition

A mechanism  $\Gamma = (M_1, ..., M_I, g(\cdot))$  is a collection of strategy sets  $(M_1, ..., M_I)$  and an outcome function  $g : M \to Y$ .

A mechanism Γ, together with a type space Θ, a (joint) probability distribution Φ (θ), and Bernoulli utility functions (u<sub>1</sub> (·), ..., u<sub>I</sub> (·)) induces a game with incomplete information where the strategy for agent *i* is a function m<sub>i</sub> : Θ<sub>i</sub> → M<sub>i</sub>.

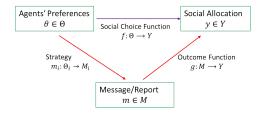
### Definition

A mechanism  $\Gamma = (M_1, ..., M_I, g(\cdot))$  implements the social choice function  $f(\cdot)$  if there is an equilibrium profile  $(m_1^*(\theta_1), ..., m_I^*(\theta_I))$  of the game induced by  $\Gamma$  such that

$$g\left(m_{1}^{*}\left(\theta_{1}\right),...,m_{I}^{*}\left(\theta_{I}\right)\right)=f\left(\theta_{1},...,\theta_{I}\right).$$

- Partial/weak implementation (our focus)
  - a social choice function is partially implementable if it arises in an equilibrium where all agents report their information truthfully.
- Full/Maskin implemenation
  - a social choice function is fully implementable if it arises in every equilibria where all agents report their information truthfully.

# Mechanism Design as Reverse Engineering



- Social choice problem:
  - map agents' preference profiles into allocations.
- Implementation (or mechanism design) problem:
  - designer announces an outcome function mapping the agents' messages into allocations.
  - the outcome function induces a Bayesian game.
  - agents choose messages to reflect their preferences and to influence outcome.

# Key Elements

#### The objective of the designer

- if it is welfare maximization: efficient mechanisms
- if it is revenue maximization: optimal mechanisms
- Incentive constraints
  - the designer must give agents incentives to truthfully report their private information.
  - incentive provision is often costly, leading to inefficient allocation.
- Constrained maximization problem with two classes of constraints
  - the "participation" or "individual rationality" constraint
  - the "incentive compatibility" constraint

# "Timing" of Mechanism Design Problem

Mechanism design as a three-step game of incomplete information

- Principal announces and commits to a "mechanism" or "contract".
- Agents simultaneously decide whether to accept or reject.
- Agents who accept play the game "induced" by the mechanism.
  - agents who reject get some exogenous "reservation utility".

## FPA vs. SPA

- Suppose there are two bidders,  $\theta_1$  and  $\theta_2$ .
- Seller has cost 0, and  $\theta_1, \theta_2 \sim U[0, 1]$ .
- The seller sets zero reserve price:

|                  | First-price auction | Second-price auction |
|------------------|---------------------|----------------------|
| Eqm bidding      | $	heta_i/2$         | $\theta_i$           |
| Mechanism        | indirect            | direct               |
| Solution concept | Bayesian            | dominant strategy    |
| Efficient?       | yes                 | yes                  |
| Revenue          | 1/3                 | 1/3                  |

- revenue-maximizing seller would set reserve r = 1/2.
- both auction mechanisms would generate revenue 5/12.

### Definition

The mechanism  $\Gamma = (M, g(\cdot))$  implements the social choice function  $f(\cdot)$  in dominant strategies if there exists a dominant strategy equilibrium of  $\Gamma$ ,  $m^*(\cdot) = (m_1^*(\cdot), ..., m_I^*(\cdot))$ , such that  $g(m^*(\theta)) = f(\theta)$  for all  $\theta$ .

#### Definition

The mechanism  $\Gamma = (M, g(\cdot))$  implements the social choice function  $f(\cdot)$  in Bayesian strategies if there exists a Bayesian Nash equilibrium of  $\Gamma$ ,  $m^*(\cdot) = (m_1^*(\cdot), ..., m_I^*(\cdot))$ , such that  $g(m^*(\theta)) = f(\theta)$  for all  $\theta$ .

### Definition

A direct revelation mechanism  $\Gamma = (\Theta, f)$  is a mechanism in which  $M_i = \Theta_i$  for all *i* and  $g(\theta) = f(\theta)$  for all  $\theta$ .

#### Definition

The social choice function  $f(\cdot)$  is truthfully implementable (or incentive compatible) if the direct revelation mechanism  $\Gamma = (\Theta, f(\cdot))$  has an equilibrium  $(m_1^*(\theta_1), ..., m_I^*(\theta_I))$  in which  $m_i^*(\theta_i) = \theta_i$  for all  $\theta_i \in \Theta_i$ , for all *i*.

## **Revelation Principle**

- Identification of implementable social choice function is complex
  - difficult to consider all possible mechanism  $g(\cdot)$  on all possible domains of strategies M.
  - a celebrated result, the revelation principle, simplifies the task.

#### Theorem

Let  $\Gamma = \{M, g(\cdot)\}\$  be a mechanism that implements the social choice function  $f(\cdot)$  in dominant strategies. Then  $f(\cdot)$  is truthfully implementable in dominant strategies.

- Remark
  - valid also for implementation in Bayesian strategies.
  - sufficient to restrict attention to "direct revelation mechanisms."

## Example of Direct Mechanism: Second-Price Auction

- One indivisible object, two agents with valuations  $\theta_i$ , i = 1, 2.
- Quasi-linear preferences:  $u_i(y_i, \theta_i) = \theta_i x_i + t_i$ .
- An outcome (alternative) is a vector  $y = (x_1, x_2, t_1, t_2)$ 
  - $-x_i = 1$  if agent *i* gets the object, 0 otherwise;
  - $-t_i$  is the monetary transfer received by agent *i*;
  - hence, the set of alternatives is  $Y = X \times T$ .
- Direct mechanism  $\Gamma = (M, g)$ :
  - message space:  $M_i = \Theta_i$ ,
  - outcome function  $g: M \to Y$  with

$$g(m_1, m_2) = \begin{cases} x_1 = 1, x_2 = 0; \ t_1 = -m_2, t_2 = 0, & \text{if } m_1 \ge m_2 \\ x_1 = 0, x_2 = 1; \ t_1 = 0, t_2 = -m_1, & \text{if } m_1 < m_2 \end{cases}$$

- it implements the efficient allocation in dominant strategies.

## **Dominant Strategy Implementation**

- Dominant strategy implementation implements social choice function in a very robust way:
  - very weak informational requirement
  - independent of players' beliefs
  - the designer doesn't need to know  $\Phi\left(\cdot\right)$  for implementation.
- But can we always implement in dominant strategies?
  - the answer is "no" in general.

#### Definition

The social choice function  $f(\cdot)$  is dictatorial if there is an agent i such that for all  $\theta \in \Theta$ ,

 $f(\theta) \in \{z \in Y : u_i(z, \theta_i) \ge u_i(y, \theta_i) \text{ for all } y \in Y\}.$ 

#### Theorem

Suppose that *Y* contains at least three elements, preferences are rich (containing all possible rational preferences), and  $f(\Theta) = Y$ . Then *f* is truthfully implementable in dominant strategies if, and only if, it is dictatorial.

## Outline

- Introduction to Bayesian games and mechanism design
- Quasilinear; uni-dimensional, independent, private types
  - efficient mechanisms: VCG mechanism, Roberts' theorem
  - optimal mechanisms: Myerson optimal auction
  - equivalence between Bayesian and dominant strategy implementation
- Quasilinear; multidimensional, independent, private types
- Nontransferrable utilities: single-peaked preferences

## **Quasilinear Environment**

• How to get around this impossibility theorem?

- relax the dominant strategy requirement
- focus on restricted domain of preferences:



quasilinear preferences

eaked preferences

• Quasilinear preferences:  $u_i(x, \theta_i) = v_i(x, \theta_i) + t_i$ .

- social choice function:  $f(\cdot) = (x(\cdot), t_1(\cdot), ..., t_I(\cdot))$ , with allocation  $x(\theta) \in X$  and transfer  $t_i \in T_i$ .
- set of social allocations  $Y = X \times T$ .
- an allocation  $x^*(\theta)$  is ex-post efficient if

$$\sum_{j=1}^{I} v_j \left( x^* \left( \theta \right), \theta_j \right) \geq \sum_{j=1}^{I} v_j \left( x, \theta_j \right) \text{ for all } x \in X.$$

# VCG Mechanism

### Theorem (Vickrey-Clarke-Groves)

The social choice function  $f(\cdot) = (x^*(\cdot), t_1(\cdot), ..., t_I(\cdot))$  is truthfully implementable in dominant strategies if, for all i = 1, ..., I,

$$t_{i}\left(\theta_{i},\theta_{-i}\right) = \left[\sum_{j\neq i} v_{j}\left(x^{*}\left(\theta_{i},\theta_{-i}\right),\theta_{j}\right)\right] - \left[\sum_{j\neq i} v_{j}\left(x^{*}_{-i}\left(\theta_{-i}\right),\theta_{j}\right)\right]$$

- Remarks:
  - agent *i* is pivotal iff  $x^*(\hat{\theta}_i, \theta_{-i}) \neq x^*_{-i}(\theta_{-i})$ .
  - agent *i* pays only when pivotal: pivotal mechanism.
  - agent *i* payoff in a pivotal mechanism equals his marginal contribution to social surplus:

$$\sum_{j} v_{j} \left( x^{*} \left( \theta_{i}, \theta_{-i} \right), \theta_{j} \right) - \sum_{j \neq i} v_{j} \left( x^{*}_{-i} \left( \theta_{-i} \right), \theta_{j} \right).$$

### Proof

Suppose truth-telling is not a dominant strategy for some agent *i*.
Then there exist θ<sub>i</sub>, θ<sub>i</sub>, and θ<sub>-i</sub> such that

$$v_{i}(x^{*}(\widehat{\theta}_{i},\theta_{-i}),\theta_{i})+t_{i}(\widehat{\theta}_{i},\theta_{-i})>v_{i}(x^{*}(\theta_{i},\theta_{-i}),\theta_{i})+t_{i}(\theta_{i},\theta_{-i})$$

• Substituting  $t_i(\hat{\theta}_i, \theta_{-i})$  and  $t_i(\theta_i, \theta_{-i})$  yields

$$\sum_{j=1}^{I} v_{j}(x^{*}(\widehat{\theta}_{i}, \theta_{-i}), \theta_{j}) > \sum_{j=1}^{I} v_{j}\left(x^{*}\left(\theta\right), \theta_{j}\right),$$

which contradicts  $x^*(\cdot)$  being an optimal policy.

• Thus,  $f(\cdot)$  must be truthfully implementable in dominant strategies.

## Form of VCG Mechanisms

Vickrey auctions (second-price sealed-bid auctions)

$$-t_i(\theta_i, \theta_{-i}) = 0$$
 if  $x_i(\theta_i, \theta_{-i}) = 0$ , and

- $t_i(\theta_i, \theta_{-i}) = -\max_{j \neq i} v_j(x, \theta_j) \text{ if } x_i(\theta_i, \theta_{-i}) = 1.$
- a special case of VCG mechanism
- More general form of VCG mechanism
  - set the transfer function  $\tilde{t}_i(\theta_i, \theta_{-i})$  as

$$\widetilde{t}_{i}(\theta_{i},\theta_{-i}) = t_{i}(\theta_{i},\theta_{-i}) + h_{i}(\theta_{-i})$$

where  $h_i(\theta_{-i})$  some functions does not depend on  $\theta_i$ .

### Theorem (Green and Laffont, 1977)

Suppose that for each i,  $\Theta_i = [\underline{\theta}_i, \overline{\theta}_i]$ , or that  $\Theta_i$  is smoothly path connected. That is, for each two points  $\theta, \theta' \in \Theta$ , there is a differentiable function  $f : [0, 1] \to \Theta$  such that  $f(0) = \theta$  and  $f(1) = \theta'$ . In addition, for each decision outcome x,  $v_i(x, \theta_i)$  is differentiable in its second argument. Then any efficient, dominant strategy incentive compatible direct mechanism is a VCG mechanism.

#### Theorem (Roberts, 1979)

Let  $v_i(x) \in V_i$  denote agent *i*'s resulting value if alternative *x* is chosen, where  $V_i$  is the space of all possible types of agent *i*. Suppose the set of allocation *X* is finite,  $|X| \ge 3$ , and the domain of preferences is unrestricted with  $V = \mathbb{R}^{|X|}$ . Then, for every DIC allocation rule  $x : V \to X$ , there exist non-negative weights  $k_1, \dots, k_I$ , not all of them equal to zero, and a deterministic real-valued function  $C : X \to \mathbb{R}$  such that, for all  $v \in V$ ,

$$x(v) \in \arg \max_{x \in X} \left\{ \sum_{i=1}^{I} k_i v_i(x) + C(x) \right\}.$$

### Remark

• If x(v) is DIC, then

$$x(v) \in \arg \max_{x \in X} \left\{ \sum_{i=1}^{I} k_i v_i(x) + C(x) \right\}.$$

- quasilinear preferences, but possibly multi-dimensional types.

- Every DIC allocation rule must be weighted VCG.
- Relation to Gibbard-Satterthwaite Theorem:
  - suppose transfers are not allowed.
  - with unrestricted domain, if  $k_i > 0$ , agent *i* can misreport some  $v_i$  such that  $v_i(x) v_i(y)$  for all  $y \neq x$  is suitably large, so that agent *i* can ensure that any alternative *x* is chosen; thus, if  $k_i > 0$ , we must have  $v_i(x(v)) \ge v_i(y)$  for all *y*.
  - similarly, if  $k_j > 0, j \neq i$ , it must be  $v_j(x(v)) \ge v_j(y)$  for all y.
  - but by suitable choice of v, this is not always possible, so only one  $k_i > 0$ , i.e., dictatorship.

# Bayesian (Efficient) Implementation

Implementation in dominant strategies often too demanding.

- VCG is ex post efficient, but
- it generally does not satisfy budget balance.
- Under a weaker solution concept of Bayesian Nash equilibrium, we can implement ex post efficient outcome with budget balance
  - expected externality mechanism or AGV mechanisms
  - d'Aspremont and Gerard-Varet (1979), and Arrow (1979).
- Myerson-Satterthwaite impossibility theorem
  - no efficient mechanism satisfies interim IR, IC and BB.

- Auction design problem:
  - how to sell an object to I potential bidders to maximize revenue?
- We follow a two-step procedure to characterize optimal mechanisms:
  - first characterize the implementable mechanisms,
  - then find the one that maximizes the seller's revenue.
- As a by-product, we also prove the revenue equivalence theorem.

- A seller wants to sell an indivisible object to one of *I* buyers.
- Independent private values, one-dimensional types
  - the value of the object to individual *i* is  $\theta_i$ ,
  - $\theta_i$  is randomly drawn from commonly known distribution  $F_i$  with support  $[\underline{\theta}_i, \overline{\theta}_i]$ ,
  - types are assumed to be statistically independent.
- The seller's reservation value for the object is normalized to 0.

- By the revelation principle, we can focus on direct mechanisms.
- A direct mechanism consists of a pair of functions:
  - allocation rule  $x_i(\theta)$ : the probability of agent *i* getting the object
    - $\Box x_i = 0$  if agent *i* does not get the object,
    - $\Box$   $x_i = 1$  if agent *i* gets the object.
  - payment rule  $t_i(\theta)$ : the monetary transfer from agent *i*.

## IC and IR Constraints

Given the selling mechanism (x(·), t(·)), a type-θ<sub>i</sub> bidder's expected payoff by reporting θ<sub>i</sub> is

$$\mathbb{E}_{\theta_{-i}}\left[u_i(\hat{\theta}_i,\theta_i;\theta_{-i})\right] = \theta_i \mathbb{E}_{\theta_{-i}}\left[x_i(\hat{\theta}_i,\theta_{-i})\right] - \mathbb{E}_{\theta_{-i}}\left[t_i(\hat{\theta}_i,\theta_{-i})\right].$$

- Feasible mechanisms
  - individually rational:

$$\mathbb{E}_{\theta_{-i}}[u_i\left(\theta_i, \theta_i; \theta_{-i}\right)] \ge 0 \text{ for all } \theta_i \tag{IR}$$

incentive compatible:

$$\theta_{i} \in \arg \max_{\hat{\theta}_{i} \in \left[\underline{\theta}_{i}, \overline{\theta}_{i}\right]} \mathbb{E}_{\theta_{-i}} \left[ u_{i}(\hat{\theta}_{i}, \theta_{i}; \theta_{-i}) \right] \text{ for all } \theta_{i}$$
(IC)

### **Envelope Condition**

• Define bidder i's expected utility with truth-telling as

$$\begin{aligned} U_i\left(\theta_i\right) &\equiv & \mathbb{E}_{\theta_{-i}}\left[u_i\left(\theta_i, \theta_i; \theta_{-i}\right)\right] \\ &= & \max_{\hat{\theta}_i} \mathbb{E}_{\theta_{-i}}\left[u_i(\hat{\theta}_i, \theta_i; \theta_{-i})\right] \\ &= & \max_{\hat{\theta}_i} \mathbb{E}_{\theta_{-i}}\left[\theta_i x_i(\hat{\theta}_i, \theta_{-i}) - t_i(\hat{\theta}_i, \theta_{-i})\right]. \end{aligned}$$

• The envelope theorem implies

$$U_{i}(\theta_{i}) = U_{i}(\underline{\theta}_{i}) + \mathbb{E}_{\theta_{-i}} \int_{\underline{\theta}_{i}}^{\theta_{i}} x_{i}(s, \theta_{-i}) ds.$$

# Characterization of IC Constraints

### Theorem (Myerson 1981)

A selling mechanism  $(x(\theta), t(\theta))$  is Bayesian incentive compatible (BIC) iff, for all *i* and  $\theta_i$ , (*i*)  $\mathbb{E}_{\theta_{-i}}[x_i(\theta_i, \theta_{-i})]$  is nondecreasing in  $\theta_i$ , and (*ii*)  $U_i(\theta_i) = U_i(\underline{\theta}_i) + \int_{\theta_i}^{\theta_i} \mathbb{E}_{\theta_{-i}}[x_i(s, \theta_{-i})] ds.$ 

#### Theorem (Maskin and Laffont, 1979)

A selling mechanism  $(x(\theta), t(\theta))$  is dominant strategy incentive compatible (DIC) iff, for all *i*, and for all  $\theta$ , (*i*)  $x_i(\theta_i, \theta_{-i})$  is nondecreasing in  $\theta_i$ , and (*ii*)  $u_i(\theta_i, \theta_i; \theta_{-i}) = u_i(\underline{\theta}_i, \underline{\theta}_i; \theta_{-i}) + \int_{\underline{\theta}_i}^{\theta_i} x_i(s, \theta_{-i}) ds$ .

- Remark: we also say allocation rule  $x(\theta)$  is BIC (DIC) if there exists a transfer  $t(\theta)$  such that (x, t) is BIC (DIC).
- Remark: allocation rule x (θ) is BIC (DIC) if it is "average" (component-wise) monotone.

# Proof of Necessity (BIC)

• IC constraints imply that for  $\theta_i > \hat{\theta}_i$ ,

$$\begin{split} & \mathbb{E}_{\theta_{-i}}[\theta_{i}x_{i}\left(\theta_{i},\theta_{-i}\right)-t_{i}\left(\theta_{i},\theta_{-i}\right)] & \geq \quad \mathbb{E}_{\theta_{-i}}[\theta_{i}x_{i}(\hat{\theta}_{i},\theta_{-i})-t_{i}(\hat{\theta}_{i},\theta_{-i})] \\ & \mathbb{E}_{\theta_{-i}}[\hat{\theta}_{i}x_{i}(\hat{\theta}_{i},\theta_{-i})-t_{i}(\hat{\theta}_{i},\theta_{-i})] & \geq \quad \mathbb{E}_{\theta_{-i}}[\hat{\theta}_{i}x_{i}\left(\theta_{i},\theta_{-i}\right)-t_{i}\left(\theta_{i},\theta_{-i}\right)] \end{split}$$

Add two inequalities together and simplify

$$(\theta_i - \hat{\theta}_i) \mathbb{E}_{\theta_{-i}} \left[ x_i \left( \theta_i, \theta_{-i} \right) - x_i (\hat{\theta}_i, \theta_{-i}) \right] \ge 0.$$

Thus,  $\mathbb{E}_{\theta_{-i}}[x_i(\theta_i, \theta_{-i}) - x_i(\hat{\theta}_i, \theta_{-i})] \ge 0.$ 

• The FOC condition follows from the envelope theorem.

# Proof of Sufficiency (BIC)

- Suppose  $\theta_i$  wants to pretend  $\hat{\theta}_i < \theta_i$ .
- By FOC, we have

$$U_{i}(\theta_{i}) - U_{i}(\hat{\theta}_{i}) = \int_{\hat{\theta}_{i}}^{\theta_{i}} \mathbb{E}_{\theta_{-i}} \left[ x_{i}(s,\theta_{-i}) \right] ds \ge \int_{\hat{\theta}_{i}}^{\theta_{i}} \mathbb{E}_{\theta_{-i}} \left[ x_{i}(\hat{\theta}_{i},\theta_{-i}) \right] ds$$
$$= (\theta_{i} - \hat{\theta}_{i}) \mathbb{E}_{\theta_{-i}} \left[ x_{i}(\hat{\theta}_{i},\theta_{-i}) \right]$$

Hence

$$\begin{split} U_{i}(\theta_{i}) &\geq U_{i}(\hat{\theta}_{i}) + (\theta_{i} - \hat{\theta}_{i}) \mathbb{E}_{\theta_{-i}} \left[ x_{i}(\hat{\theta}_{i}, \theta_{-i}) \right] \\ &= \mathbb{E}_{\theta_{-i}} \left[ \hat{\theta}_{i} x_{i}(\hat{\theta}_{i}, \theta_{-i}) - t_{i}(\hat{\theta}_{i}, \theta_{-i}) \right] \\ &+ (\theta_{i} - \hat{\theta}_{i}) \mathbb{E}_{\theta_{-i}} \left[ x_{i}(\hat{\theta}_{i}, \theta_{-i}) \right] \\ &= \mathbb{E}_{\theta_{-i}} [\theta_{i} x_{i}(\hat{\theta}_{i}, \theta_{-i}) - t_{i}(\hat{\theta}_{i}, \theta_{-i})] \end{split}$$

• The case with  $\theta_i < \hat{\theta}_i$  can proved analogously.

### From Allocation-Transfers to Allocation-Utilities

• By definition of  $U_i(\theta_i)$ ,

$$\begin{split} \mathbb{E}_{\theta_{-i}}\left[t_i\left(\theta_i,\theta_{-i}\right)\right] &= \mathbb{E}_{\theta_{-i}}\left[\theta_i x_i\left(\theta_i,\theta_{-i}\right)\right] - U_i\left(\theta_i\right) \\ &= \mathbb{E}_{\theta_{-i}}\left[\theta_i x_i\left(\theta_i,\theta_{-i}\right)\right] - U_i\left(\underline{\theta}_i\right) - \mathbb{E}_{\theta_{-i}}\int_{\underline{\theta}_i}^{\theta_i} x_i\left(s,\theta_{-i}\right)ds. \end{split}$$

• Hence, we can write  $\mathbb{E}_{\theta}[t_i(\theta)]$  as

$$\mathbb{E}_{\theta}[\theta_{i}x_{i}(\theta)] - U_{i}(\underline{\theta}_{i}) - \mathbb{E}_{\theta_{-i}}\int_{\underline{\theta}_{i}}^{\overline{\theta}_{i}} \left[\int_{\underline{\theta}_{i}}^{\theta_{i}} x_{i}(s,\theta_{-i}) ds\right] f_{i}(\theta_{i}) d\theta_{i}$$

$$= \mathbb{E}_{\theta}[\theta_{i}x_{i}(\theta)] - U_{i}(\underline{\theta}_{i}) - \mathbb{E}_{\theta_{-i}}\int_{\underline{\theta}_{i}}^{\overline{\theta}_{i}} (1 - F_{i}(\theta_{i})) x_{i}(\theta_{i},\theta_{-i}) d\theta_{i}$$

$$= \mathbb{E}_{\theta}\left[\left(\theta_{i} - \frac{1 - F_{i}(\theta_{i})}{f_{i}(\theta_{i})}\right) x_{i}(\theta)\right] - U_{i}(\underline{\theta}_{i})$$

## Reformulating the Seller's Problem

Thus, the seller's revenue can be written as

$$\Pi = \sum_{i=1}^{I} \mathbb{E}_{\theta} \left[ t_i \left( \theta \right) \right] = -\sum_{i=1}^{I} U_i \left( \underline{\theta}_i \right) + \mathbb{E}_{\theta} \sum_{i=1}^{I} \left[ \left( \theta_i - \frac{1 - F_i \left( \theta_i \right)}{f_i \left( \theta_i \right)} \right) x_i \left( \theta \right) \right]$$

• Therefore, the seller's maximization problem is to choose  $\{x_i(\theta)\}$  to maximize  $\Pi$  subject to

 $\begin{array}{rcl} \mathsf{IR} & : & U_i\left(\underline{\theta}_i\right) \geq 0 \text{ for all } i \\ \mathsf{Monotonicity} & : & \mathbb{E}_{\theta_{-i}}\left[x_i\left(\theta_i, \theta_{-i}\right)\right] \text{ is nondecreasing in } \theta_i. \end{array}$ 

#### Theorem

Suppose a pair of BNEs of two different auction procedures are such that, for every buyer *i*,

- buyer *i* has the same probability of winning the object for each possible realization of  $\theta = (\theta_1, ..., \theta_I)$ ;
- 2 buyer *i* with type  $\underline{\theta}_i$  has the same expected utility. Then these two auctions generate the same revenue.

• First notice that the optimal selling mechanism should set

$$U_i(\underline{\theta}_i)=0.$$

• Second, since there is only one object, the allocation function  $x_i(\theta)$  has to satisfy

$$x_i(\theta) \in [0,1]$$
 and  $\sum_{i=1}^{I} x_i(\theta) \leq 1$ .

## Virtual Surplus Function

• Define the virtue surplus function  $J_i(\theta_i)$  as

$$J_{i}\left( heta_{i}
ight)= heta_{i}-rac{1-F_{i}\left( heta_{i}
ight)}{f_{i}\left( heta_{i}
ight)},$$

• The optimal allocation rule should maximize  $\mathbb{E}_{\theta} \left[ \sum_{i=1}^{I} J_i(\theta_i) x_i(\theta) \right], \text{ subject to}$ 

$$\begin{split} & x_{i}\left(\theta\right)\in\left[0,1\right], \sum_{i=1}^{I}x_{i}\left(\theta\right)\leq1, \\ & \mathbb{E}_{\theta_{-i}}\left[x_{i}\left(\theta_{i},\theta_{-i}\right)\right] \text{ is nondecreasing in }\theta_{i} \end{split}$$

## Pointwise Maximization

• Since  $x_i(\theta)$  is nonnegative and  $\sum_{i=1}^{I} x_i(\theta) \le 1$ , we can write

$$\sum_{i=1}^{I} J_i(\theta_i) x_i(\theta) = \sum_{i=1}^{I} x_i(\theta) J_i(\theta_i) + \left(1 - \sum_{i=1}^{I} x_i(\theta)\right) \cdot 0$$

which is just a weighted average of I + 1 numbers:

$$J_{1}\left(\theta_{1}\right), J_{2}\left(\theta_{2}\right), ..., J_{I}\left(\theta_{I}\right), 0_{2}$$

with weights being

$$x_{1}\left(\theta\right), x_{2}\left(\theta\right), ...., x_{I}\left(\theta\right), \left(1 - \sum_{i=1}^{I} x_{i}\left(\theta\right)\right).$$

• Optimal allocation (weight):

$$- x_i(\theta) = 0 \text{ if } J_i(\theta_i) < 0, - x_i(\theta) = 0 \text{ if } J_i(\theta_i) < J_k(\theta_k) \text{ with } k \neq i, - x_i(\theta) = 1 \text{ if } J_i(\theta_i) > \max\{0, \max_{k \neq i} J_k(\theta_k)\}.$$

# **Optimal Auction**

• The optimal probability for agent *i* to win the object is

$$x_{i}(\theta_{i}, \theta_{-i}) = \begin{cases} 1 & \text{if } J_{i}(\theta_{i}) > \max \left\{ 0, \max_{k \neq i} J_{k}(\theta_{k}) \right\} \\ 0 & \text{otherwise} \end{cases}$$

- note that  $J_{i}(\theta_{i}) = \max \{0, \max_{k \neq i} J_{k}(\theta_{k})\}$  has probability zero.

 If we assume J<sub>i</sub> (θ<sub>i</sub>) is nondecreasing in θ<sub>i</sub>, then x<sub>i</sub> (θ<sub>i</sub>, θ<sub>-i</sub>) is nondecreasing in θ<sub>i</sub>, which in turn implies

 $\mathbb{E}_{\theta_{-i}}[x_i(\theta_i, \theta_{-i})]$  is nondecreasing in  $\theta_i$ .

Therefore, above  $x_i(\theta_i, \theta_{-i})$  actually solves the original problem.

- Suppose buyers are ex-ante symmetric, i.e.,  $F_i = F$  for all *i*.
- Suppose further that *F* has monotone hazard rate, that is,  $f(\theta_i) / [1 F(\theta_i)]$  is nondecreasing in  $\theta_i$ .
- As a result  $J_i(\theta_i) = J(\theta_i)$  for all *i* and  $J(\theta_i)$  is increasing in  $\theta_i$ .

## Optimal Auction: SPA with Reserve Price

• The optimal selling mechanism sets

$$x_{i}(\theta_{i}, \theta_{-i}) = \begin{cases} 1 & \text{if } J(\theta_{i}) > \max\left\{0, \max_{k \neq i} \left[J(\theta_{k})\right]\right\} \\ 0 & \text{otherwise} \end{cases}$$

or equivalently

$$x_i(\theta_i, \theta_{-i}) = \begin{cases} 1 & \text{if } \theta_i > \max\{r, \max_{k \neq i} \theta_k\} \\ 0 & \text{otherwise} \end{cases}$$

• Optimal selling mechanism: SPA with optimal reserve r solves

$$r - [1 - F(r)] / f(r) = 0.$$

• RET: all standard auctions with optimal *r* are optimal.

,

# Equivalence between Bayesian and Dominant Strategy Implementation

• Revenue (more generally payoff) equivalence theorem

- first price auction (BIC) = second price auction (DIC)
- equivalence in terms of allocation and transfers

• Equivalence in terms of interim utility holds more generally.

- linear utilities, private, uni-dimensional, independent types
- Gershkov et al. (2013), applying a theorem due to Gutmann et al. (1991)
- for any BIC mechanism, there exists a DIC mechanism that delivers the same interim utilities for all agents and the same ex ante expected social surplus.

## Gutmann et al. (1991)

#### Theorem

Let  $x(\theta_1, \theta_2)$  be measurable on  $[0, 1]^2$  and such that  $0 \le x(\theta_1, \theta_2) \le 1$ ,

$$\begin{aligned} \xi\left(\theta_{1}\right) &= \int_{0}^{1} x\left(\theta_{1},\theta_{2}\right) d\theta_{1} \text{ is nondecreasing in } \theta_{1}, \\ \eta\left(\theta_{2}\right) &= \int_{0}^{1} x\left(\theta_{1},\theta_{2}\right) d\theta_{2} \text{ is nondecreasing in } \theta_{2}. \end{aligned}$$

Then there exists  $\hat{x}(\theta_1, \theta_2)$  measurable  $[0, 1]^2$  satisfying  $0 \le \hat{x}(\theta_1, \theta_2) \le 1$ , having the same marginals as *x*, and such that  $\hat{x}(\theta_1, \theta_2)$  is nondecreasing in  $\theta_1$  and  $\theta_2$  separately.

### Theorem (Myerson 1981)

A selling mechanism  $(x(\theta), t(\theta))$  is Bayesian incentive compatible (BIC) iff, for all *i* and  $\theta_i$ , (*i*)  $\mathbb{E}_{\theta_{-i}}[x_i(\theta_i, \theta_{-i})]$  is nondecreasing in  $\theta_i$ , and (*ii*)  $U_i(\theta_i) = U_i(\underline{\theta}_i) + \int_{\theta_i}^{\theta_i} \mathbb{E}_{\theta_{-i}}[x_i(s, \theta_{-i})] ds.$ 

### Theorem (Maskin and Laffont, 1979)

A selling mechanism  $(x(\theta), t(\theta))$  is dominant strategy incentive compatible (DIC) iff, for all *i*, and for all  $\theta$ , (*i*)  $x_i(\theta_i, \theta_{-i})$  is nondecreasing in  $\theta_i$ , and (*ii*)  $u_i(\theta_i, \theta_i; \theta_{-i}) = u_i(\underline{\theta}_i, \underline{\theta}_i; \theta_{-i}) + \int_{\underline{\theta}_i}^{\theta_i} x_i(s, \theta_{-i}) ds$ .

# **Discrete Version**

### Theorem

Let  $(x_{ij})$  be  $m \times n$  matrix with  $0 \le x_{ij} \le 1$  having nondecreasing row sums and nondecreasing column sums. Then there exists another  $m \times n$  matrix  $(\hat{x}_{ij})$  with  $0 \le \hat{x}_{ij} \le 1$ , which has exactly the same row sums and column sums as  $(x_{ij})$ , such that  $\hat{x}_{ij}$  is nondecreasing in both *i* and *j*.

#### Proof.

- Consider the (unique) *m* × *n* matrix (*x*<sub>ij</sub>) with 0 ≤ *x*<sub>ij</sub> ≤ 1, having the same row sum and column sum as (*x*<sub>ij</sub>), and minimizing ∑<sub>i,i</sub>(*x*<sub>ij</sub>)<sup>2</sup>.
- Suppose  $0 \le \hat{x}_{i+1,j} < \hat{x}_{ij} \le 1$  for some i, j. Since  $\sum_k \hat{x}_{ik} \le \sum_k \hat{x}_{i+1,k}$  (row-sum monotonicity), there exists  $1 \le k \le n$  for which  $0 \le \hat{x}_{ik} < \hat{x}_{i+1,k} \le 1$ .
- Now increase  $\hat{x}_{i+1,j}$  and  $\hat{x}_{ik}$  by  $\varepsilon$ , and decrease  $\hat{x}_{ij}$  and  $\hat{x}_{i+1,k}$  by  $\varepsilon$ . We get a new matrix  $(\tilde{x}_{ij})$  with  $0 \le \hat{x}_{ij} \le 1$ , with the same row sums and column sums, but  $\sum_{i,j} (\tilde{x}_{ij})^2 < \sum_{i,j} (\hat{x}_{ij})^2$ . A contradiction.

## Example

- Symmetric single-unit auction, two bidders, two equally-likely types,  $\underline{\theta}$  and  $\overline{\theta}$ .
  - allocation rule can be represented by a  $2 \times 2$  matrix.
- Consider the BIC but not DIC allocation rule:

$$x(\theta_1, \theta_2) = \left(\begin{array}{cc} 1/2 & 1/4\\ 1/4 & 1/2 \end{array}\right)$$

- rows = agent 1's type, columns = agent 2's type.
- entries = probabilities that the object is assigned to either agent.
- Family of allocation rules with the same marginals  $(0 \le \varepsilon \le 1)$  :

$$x_{\varepsilon}(\theta_1, \theta_2) = \begin{pmatrix} 1/2 - \varepsilon & 1/4 + \varepsilon \\ 1/4 + \varepsilon & 1/2 - \varepsilon \end{pmatrix} \Longrightarrow \widehat{x}(\theta_1, \theta_2) = \begin{pmatrix} 3/8 & 3/8 \\ 3/8 & 3/8 \end{pmatrix}$$

- minimizing the sum of squared entries of  $x_{\varepsilon}(\theta_1, \theta_2)$  yields  $\varepsilon = 1/8$ .
- $-\widehat{x}(\theta_1,\theta_2)$  is everywhere non-decreasing, so DIC.

Consider the following general social choice environment

- linear utilities, private, uni-dimensional, independent types
- *K* alternatives:  $u_i^k(\theta_i, t_i) = a_i^k \theta_i + c_i^k + t_i$
- direct mechanisms:  $\{x^{k}(\theta)\}_{k=1}^{K}$  and  $\{t_{i}(\theta)\}_{i=1}^{I}$
- relevant function:  $v_i(\theta) \equiv \sum_{k=1}^{K} a_i^k x^k(\theta)$
- Allocation rule {x<sup>k</sup> (θ)} is BIC (DIC) iff v<sub>i</sub> (θ<sub>i</sub>, θ<sub>-i</sub>) is average (component-wise) monotone.

# Gershkov et al. (2013)

### Theorem

Let  $\Theta_i$  be connected for all  $i \in \mathcal{I}$  and let (x, t) denote a BIC mechanism. An interim-utility equivalent DIC mechanism is given by  $(\hat{x}, \hat{t})$ , where the allocation rule  $\hat{x}$  solves

$$\min_{\{\widehat{x}^{k}(\theta)\}} \mathbb{E}_{\theta} \sum_{i \in \mathcal{I}} \left[ \widehat{v}_{i}(\theta) \right]^{2},$$

subject to  $\hat{x}^{k}(\theta) \geq 0, \forall \theta, \forall k, \sum_{k=1}^{K} \hat{x}^{k}(\theta) = 1, \forall \theta, \text{ and }$ 

$$\begin{split} \mathbb{E}_{\theta_{-i}}\left[\widehat{v}_{i}(\theta)\right] &= \mathbb{E}_{\theta_{-i}}\left[v_{i}(\theta)\right], \forall \theta_{i}, \forall i, \\ \mathbb{E}_{\theta}\left[\widehat{x}^{k}\left(\theta\right)\right] &= \mathbb{E}_{\theta}\left[x^{k}\left(\theta\right)\right], \forall k. \end{split}$$

#### Limits of BIC-DIC equivalence

 stronger equivalence concept; interdependent values; multi-dimensional types; nonlinear utilities

- Introduction to Bayesian games and mechanism design
- Quasilinear; uni-dimensional, independent, private types
- Quasilinear; multidimensional, independent, private types
  - Rochet theorem: cyclical monotonicity
- Nontransferrable utilities: single-peaked preferences

# Rochet (1987): Setup

Quasilinear preferences

$$u(\theta, x, t) = v(x, \theta) - t$$

- allocation rule *x*, transfer *t*, and type  $\theta \in \Theta$
- DIC and private values: without loss to consider single agent problem
- An allocation rule *x* is DIC if there exists  $t : \Theta \to \mathbb{R}$  such that

$$v(x(\theta), \theta) - t(\theta) \ge v(x(\theta'), \theta) - t(\theta') \quad \forall \theta, \theta' \in \Theta$$

## Rochet's Theorem

### Theorem (Rochet, 1987)

A necessary and sufficient condition for  $x(\cdot)$  to be DIC is that, for all finite cycles  $\theta_0, \theta_1, ..., \theta_{N+1} = \theta_0$  in  $\Theta$ ,

$$\sum_{k=0}^{N} \left[ v\left( x\left( \theta_{k} \right), \theta_{k+1} \right) - v\left( x\left( \theta_{k} \right), \theta_{k} \right) \right] \leq 0.$$

If types are one dimensional, the above theorem is equvalent to

### Theorem (Spence 1974, Mirrless 1976)

Suppose  $\Theta = [\underline{\theta}, \overline{\theta}]$ , and v is twice differentiable satisfying

$$\frac{\partial^2 v\left(x,\theta\right)}{\partial \theta \partial x} > 0 \text{ for all } \theta \text{ and } x$$

Then cyclical monotonicity is equivalent to the monotonicity of  $x(\theta)$ .

# Proof of Rochet's Theorem: Necessity

- Let  $x(\cdot)$  be DIC with transfer  $t(\cdot)$ , and  $\theta_0, \theta_1, ..., \theta_{N+1} = \theta_0$  be a finite cycle.
- DIC implies that, for all  $k \in \{0, ..., N\}$ , type  $\theta_{k+1}$  will not mimic type  $\theta_k$ :

$$v(x(\theta_{k+1}),\theta_{k+1}) - t(\theta_{k+1}) \ge v(x(\theta_k),\theta_{k+1}) - t(\theta_k)$$

which is equivalent to

$$t(\theta_k) - t(\theta_{k+1}) \ge v(x(\theta_k), \theta_{k+1}) - v(x(\theta_{k+1}), \theta_{k+1})$$

Adding up yields

$$\sum_{k=0}^{N} \left[ v\left( x\left( \theta_{k} \right), \theta_{k+1} \right) - v\left( x\left( \theta_{k+1} \right), \theta_{k+1} \right) \right] \leq 0,$$

which is equivalent to

$$\sum_{k=0}^{N} \left[ v\left( x\left( \theta_{k} \right), \theta_{k+1} \right) - v\left( x\left( \theta_{k} \right), \theta_{k} \right) \right] \leq 0.$$

# **Proof: Sufficiency**

- Suppose cyclic mononicity holds.
- Take an arbitrary  $\theta_0 \in \Theta$ , and set for any  $\theta$  in  $\Theta$

$$U\left(\theta\right) \equiv \sup_{\left\{\text{all chains from } \theta_0 \text{ to } \theta_{N+1} = \theta\right\}} \sum_{k=0}^{N} \left[ v\left(x\left(\theta_k\right), \theta_{k+1}\right) - v\left(x\left(\theta_k\right), \theta_k\right) \right].$$

• By definition,  $U(\theta_0) = 0$  and  $U(\theta)$  is finite because

$$U(\theta_{0}) \geq U(\theta) + v(x(\theta), \theta_{0}) - v(x(\theta), \theta).$$

• By definition again,

$$U(\theta) \geq U(\theta') + v(x(\theta'), \theta) - v(x(\theta'), \theta').$$

• By setting  $t(\theta) = v(x(\theta), \theta) - U(\theta)$ , we have

$$v\left(x\left(\theta\right),\theta\right)-t\left(\theta\right)\geq v\left(x\left(\theta'\right),\theta\right)-t\left(\theta'\right) \ \forall \theta,\theta'\in\Theta.$$

# **Linear Utilities**

### Theorem

Let  $\Theta$  be a convex subset of  $\mathbb{R}^k$ , v be linear in  $\theta$  and twice continuously differentiable in x. Then a continuously differentiable allocation rule  $x(\cdot)$  is DIC iff there exists a function  $U : \Theta \to \mathbb{R}$  such that,  $\forall \theta \in \Theta$ ,

$$\frac{\partial v\left(x\left(\theta\right),\theta\right)}{\partial \theta}=\nabla U\left(\theta\right)$$

and  $\forall \theta_0, \theta_1 \in \Theta$ ,

 $v\left(x\left(\theta_{0}\right),\theta_{1}\right)-v\left(x\left(\theta_{0}\right),\theta_{0}\right)+v\left(x\left(\theta_{1}\right),\theta_{0}\right)-v\left(x\left(\theta_{1}\right),\theta_{1}\right)\leq0.$ 

#### Remark

- multidimensional analoge of Myerson (1981), Maskin and Laffont (1979).
- the first condition is often called integrability condition.
- the second condition is called weak (2-cycle) monotonicity.

# **DIC Implementation with Multi-dimensional Types**

- Private, independent types, and quasilinear preferences
- Any domain:
  - cyclical monotonicity (Rochet 1987, Rockafellar 1970)
- Restricted domain
  - finite # of alternatives and convex domain: weak (2-cycle) monotonicity sufficient
  - Bikhchandani et al. (2006), Saks and Yu (2005), Ashlagi et al. (2010)
- Unrestricted domain
  - all DIC rules are weighted VCGs (Roberts 1979).

- Introduction to Bayesian games and mechanism design
- Quasilinear; uni-dimensional, independent, private types
- Quasilinear; multidimensional, independent, private types
- Nontransferrable utilities: single-peaked preferences
  - Moulin (1980)'s theorem: generalized median voter schemes

# Moulin (1980)

- *I* agents and a linearly ordered set *A* of alternatives (say,  $A = \mathbb{R}$ ).
- Full domain of single-peaked preferences on A.
- Each agent *i* is assumed to report only the peak *x<sub>i</sub>* of their preferences.

#### Theorem

A voting scheme  $\pi : \mathbb{R}^{I} \to \mathbb{R}$  is strategy-proof, efficient, and anonymous if, and only if there exist (I - 1) real numbers  $\alpha_{1}, ..., \alpha_{n-1} \in \mathbb{R} \cup \{-\infty\} \cup \{+\infty\}$  such that,  $\forall (x_{1}, ..., x_{I})$ ,

$$\pi(x_1,...,x_I) = median(x_1,...,x_I,\alpha_1,...,\alpha_{n-1}).$$

 Remark: later literature shows that "top-only" restriction can be removed.

# Implementation without Transfers

Strategy proof rules with single-peaked preferences

| Preferences | Quasilinear           | Single-peaked                     |
|-------------|-----------------------|-----------------------------------|
| simple rule | VCG                   | median voter scheme               |
| full domain | weighted VCG          | generalized median (Moulin, 1980) |
| any domain  | cyclical monotonicity | ????                              |
| restricted  | many papers           | many papers                       |

- Gershkov, Moldovanu and Shi (2014): single-crossing preferences
  - a modified successive voting procedure can replicate the outcome of any anonymous, unanimous and strategy-proof rule.
  - alternatives are voted in a pre-specified order, and at each step an alternative is either adopted (and voting stops), or eliminated from further consideration (and the next alternative is considered).
  - characterize utitilarian optimal voting rule.

# **Other Topics**

- Correlated types, full surplus extraction, robust mechanism design
  - Myerson (1981) example
  - Cremer/McLean (1985, 1988), Bergemann/Morris (2005)
- Interdependent values and information externality example
  - impossibility theorem (Maskin, 1992, Jehiel and Moldovanu, 2001)
- Dynamic mechanism design
  - Courty and Li (2000), Eso and Szentes (2007), Gershkov and Moldovanu (2009), Pavan, Segal and Toikka (2013)
  - Bergemann and Valimaki (2010), Athey and Segal (2014)
- Endogenous information structure
  - Bergemann and Valimaki (2002), Shi (2012)
  - Bergemann and Pesendorfer (2007), Eso and Szentes (2007), Li and Shi (2013)

## Selected References

- Books
  - Mas-Colell et al. (1995), *Microeconomic Theory*, Chapter 23.
  - Borgers (2014), An Introduction to the Theory of Mechanism Design.
  - Vohra (2011), *Mechanism Design: A Linear Programming Approach.*
- Articles
  - Myerson (1981), "Optimal Auction Design," *Mathematics of Operations Research*, 58-71.
  - Rochet (1987), "A Necessary and Sufficient Condition for Rationalizability in a Quasilinear Context," *Journal of Mathematical Economics*, 191-200.
  - Roberts (1979), "The Characterization of Implementable Choice Rules," in Aggregation and Revelation of Preferences, J.J. Laffont eds, 321-349.
  - Moulin (1980), "On Strategy-Proofness and Single Peakedness," *Public Choice*, 437-455.

It is one of the first duties of a professor, for example, in any subject, to exaggerate a little both the importance of his subject and his own importance in it.

- G. H. Hardy (1940), A Mathematician's Apology

#### Theorem

Let  $\Theta$  be a convex subset of  $\mathbb{R}^k$ , v be linear in  $\theta$  and continuously differentiable in x. Then an allocation rule  $x(\cdot)$  is DIC iff there exists a convex function  $U: \Theta \to \mathbb{R}$  such that

$$\forall \theta \in \Theta, \, rac{\partial v\left(x\left( heta
ight), heta
ight)}{\partial heta} \in \partial U\left( heta
ight)$$

where  $\partial U(\theta)$  is the subdifferential of U at  $\theta$ .

Proof. ( $\Rightarrow$ ) Define  $U(\theta) \equiv \sup_{\theta' \in \Theta} \{v(\theta, x(\theta')) - t(\theta')\}$ . This implies  $U(\theta) \geq U(\theta') + v(\theta, x(\theta')) - v(\theta', x(\theta'))$ . It follows from linearity that  $U(\theta) \geq U(\theta') + \frac{\partial v(x(\theta'), \theta')}{\partial \theta} (\theta - \theta')$ . ( $\Leftarrow$ ) Set  $t(\theta) = v(\theta, x(\theta)) - U(\theta)$  and apply the definition of  $\partial U(\theta)$  and linearity of v. (goback)

- Two bidders, each may have a valuation  $\theta_i = 10$  or  $\theta_i = 100$ .
- Joint probability distribution for  $(\theta_1, \theta_2)$  is

|                  | $\theta_2 = 10$ | $\theta_2 = 100$ |
|------------------|-----------------|------------------|
| $\theta_1 = 10$  | 1/3             | 1/6              |
| $\theta_1 = 100$ | 1/6             | 1/3              |

so these two values are not independent.

• The seller's valuation is 0.

# Full Surplus Extraction Mechanism

#### Consider the following auction mechanism

- -(100, 100): sell it to either bidder for \$100 with equal probability.
- (100, 10) or (10, 100): sell it to high bidder for \$100 and charge low bidder \$30.
- (10,10): give \$15 to one of them, and give the object and \$5 to the other, with equal probability.

• Seller extracts the full surplus (10/3 + 100/6 + 100/6 + 100/3 = 70):

$$\pi = (-15 - 5)/3 + (100 + 30)/3 + 100/3 = 70$$

## The Mechanism Is Feasible

#### • IR constraints:

$$- \theta_1 = 10: U_1(\theta_1) = (15) 2/3 + (-30) /3 = 0; - \theta_1 = 100: U_1(\theta_1) = (0) /3 + (0) 2/3 = 0.$$

#### • IC constraints:

$$- \theta_{1} = 10, \theta_{1}' = 100:$$

$$U_{1}(\theta_{1}, \theta_{1}') = \frac{2}{3}(10 - 100) + \frac{1}{3}\left(\frac{1}{2}(10 - 100)\right) = -75 < 0.$$

$$- \theta_{1} = 100, \theta_{1}' = 10:$$

$$U_{1}(\theta_{1}, \theta_{1}') = \frac{1}{3}\left(\frac{1}{2}(15) + \frac{1}{2}(5 + 100)\right) + \frac{2}{3}(-30) = 0.$$

## Decomposition of the Mechanism

- We can decompose the mechanism into two parts
  - sell the object to one of the highest bidders at the highest bidders' valuations.
  - if a bidder reports value 10, invite the bidder to accept a side-bet: pay 30 if the other bidder's value is 100, get 15 if the other bidder's value is 10.
- The side-bet has zero expected payoff if the bidder's true value is 10, but if he lies then this side-bet would have negative value.
- What's wrong?
  - one-to-one mapping between beliefs and (payoff) types.

- Cremer and McLean (1985, 1988): finite type space
  - if types are statistically correlated, seller can fully extract the surplus
  - can be implemented in dominant strategies
- McAfee and Reny (1992): infinite type space
  - extend it to a more general mechanism design setting
- Solution:
  - Neeman (2004): beliefs determines preferences (BDP) property

# Information Externality: Example

- Single object auction with n agents
  - valuation functions  $v_i(\theta^i, \theta^{-i}) = g^i(\theta^i) + h^i(\theta^{-i})$ .
  - $-\theta^k = (\theta_1^k, \theta_2^k)$  for some agent *k*, and all other agent signals are one-dimensional
  - suppose private marginal rate of substitution of bidder's information differ from social rate of substitution:

$$\frac{\sum_{j} \partial v_j / \partial \theta_1^k}{\sum_{j} \partial v_j / \partial \theta_2^k} \neq \frac{\partial v_k / \partial \theta_1^k}{\partial v_k / \partial \theta_2^k}$$

- solution concept: Bayesian Nash equilibrium
- two agent (k and j) example:  $u_k = \theta_1^k + 2\theta_2^k$  and  $u_j = 2\theta_1^k + \theta_2^k$ .
- No efficient auction exists
  - consider  $\theta^k, \widehat{\theta}^k$  such that  $g^k(\theta^k) = g^k(\widehat{\theta}^k)$ .
  - agent k indifferent but not efficient allocation.