Fields Institute Tutorial

September 12, 2014

Mechanism

$N=$ set of agents.
$\Gamma=$ finite set of at least three outcomes.
$T \subseteq \Re^{|\Gamma|}$ set of (multi-dimensional) types.
$T^{n}=$ set of all n-agent profiles of types.
Allocation rule is a function

$$
f: T^{n} \rightarrow \Gamma
$$

For each $\alpha \in \Gamma$ there is a $\mathbf{t} \in T^{n}$ such that $f(\mathbf{t})=\alpha$.

Mechanism

Payment rule is a function P such that

$$
P: T^{n} \rightarrow \Re^{n}
$$

In profile $\left(t^{1}, \ldots t^{n}\right)$ agent i has type t^{i} she makes a payment of $P_{i}\left(t^{1}, \ldots, t^{n}\right)$.

Value agent i with type $t \in T$ assigns to allocation $\alpha \in \Gamma$ is $v^{i}(\alpha \mid t)=t_{\alpha}$.

Incentive Compatability

For all agents i and all types $s^{i} \neq t^{i}$:

$$
\begin{gathered}
v^{i}\left(f\left(t^{i}, t^{-i}\right) \mid t^{i}\right)-P_{i}\left(t^{i}, t^{-i}\right) \\
\geq v^{i}\left(f\left(s^{i}, t^{-i}\right) \mid t\right)-P_{i}\left(s^{i}, t^{-i}\right) \forall t^{-i} .
\end{gathered}
$$

Suppress dependence on i, t^{-i}

$$
\begin{gathered}
v(f(t) \mid t)-P(t) \geq v(f(s) \mid t)-P(s) \\
t_{f(t)}-P(t) \geq t_{f(s)}-P(s)
\end{gathered}
$$

Incentive Compatability

$$
\begin{align*}
t_{f(t)}-P(t) & \geq t_{f(s)}-P(s) \tag{1}\\
s_{f(s)}-P(s) & \geq s_{f(t)}-P(t) \tag{2}
\end{align*}
$$

Add (1) and (2)

$$
\begin{gathered}
t_{f(t)}+s_{f(s)} \geq t_{f(s)}+s_{f(t)} \\
t_{f(t)}-t_{f(s)} \geq-\left[s_{f(s)}-s_{f(t)}\right]
\end{gathered}
$$

2-cycle inequality

$$
\left[t_{f(t)}-t_{f(s)}\right]+\left[s_{f(s)}-s_{f(t)}\right] \geq 0
$$

Incentive Compatability

f is dominant strategy IC if $\exists P$ such that:

$$
t_{f(t)}-P(t) \geq t_{f(s)}-P(s)
$$

Fix f, find P such that

$$
\begin{equation*}
P(t)-P(s) \leq t_{f(t)}-t_{f(s)} \tag{3}
\end{equation*}
$$

Incentive Graph

$$
P(t)-P(s) \leq t_{f(t)}-t_{f(s)}
$$

A vertex for each type t
From vertex s to vertex t an edge of length $t_{f(t)}-t_{f(s)}$
From vertex t to vertex s an edge of length $s_{f(s)}-s_{f(t)}$
System 3 is feasible iff Incentive graph has no (-)ve cycles.

Incentive Compatability

2-cycle inequality

$$
\left[t_{f(t)}-t_{f(s)}\right]+\left[s_{f(s)}-s_{f(t)}\right] \geq 0
$$

All 2-cycles in network are of non-negative length.

For many preference domains, 2-cycles non (-)ve \Rightarrow all cycles are non (-)ve
T is convex

Roberts' Theorem

$|\Gamma| \geq 3, T=\Re^{|\Gamma|}$, if f is onto and DSIC \exists non-negative weights $\left\{w_{i}\right\}_{i \in N}$ and weights $\left\{D_{\alpha}\right\}_{\alpha \in \Gamma}$ such that

$$
f(t) \in \arg \max _{\alpha \in \Gamma} \sum_{i} w_{i} t_{\alpha}^{i}-D_{\alpha}
$$

(equivalent) There is a solution $w,\left\{D_{\gamma}\right\}_{\gamma \in \Gamma}$ to the following:

$$
D_{\alpha}-D_{\gamma} \leq \sum_{i=1}^{n} w_{i}\left(t_{\alpha}^{i}-t_{\gamma}^{i}\right) \forall \gamma, \text { t s.t. } f(\mathbf{t})=\alpha
$$

Roberts' Theorem

Fix a non-zero and nonnegative vector w.
Network Γ_{w} will have one node for each $\gamma \in \Gamma$.
For each ordered pair (β, α) introduce a directed arc from β to α of length

$$
I_{w}(\beta, \alpha)=\inf _{\mathbf{t}: f(\mathbf{t})=\alpha} \sum_{i=1}^{n} w_{i}\left(t_{\alpha}^{i}-t_{\beta}^{i}\right)
$$

Is there a choice of w for which Γ_{w} has no negative length cycles?

Roberts' Theorem

$$
\begin{aligned}
& U(\beta, \alpha)=\left\{d \in \mathbb{R}^{n}: \exists \mathbf{t} \in T^{n} \text { s.t. } f(\mathbf{t})=\alpha \text {, s.t. } d^{i}=\right. \\
& \left.t_{\alpha}^{i}-t_{\beta}^{i} \forall i\right\} .
\end{aligned}
$$

$$
I_{w}(\beta, \alpha)=\inf _{d \in U(\beta, \alpha)} w \cdot d
$$

Roberts' Theorem

Suppose a cycle $C=\alpha_{1} \rightarrow \ldots \rightarrow \alpha_{k} \rightarrow \alpha_{1}$ through elements of Γ.

From each α_{j} pick a profile $\mathbf{t}[j]$ such that $f(\mathbf{t}[j])=\alpha_{j}$.

Associate with the cycle C a vector b whose $i^{\text {th }}$ component is
$b^{i}=\left(t_{\alpha_{1}}^{i}[1]-t_{\alpha_{k}}^{i}[1]\right)+\left(t_{\alpha_{2}}^{i}[2]-t_{\alpha_{1}}^{i}[2]\right)+\ldots+\left(t_{\alpha_{k}}^{i}[k]-t_{\alpha_{k-1}}^{i}[k]\right)$.

Let $K \subseteq \mathbb{R}^{n}$ be the set of vectors that can be associated with some cycle through the elements of Γ.

Roberts' Theorem

Asserts the existence of a feasible w such that $w \cdot b \geq 0$ for all $b \in K$.

1. If $b \in K$ is associated with cycle $\alpha_{1} \rightarrow \ldots \rightarrow \alpha_{k} \rightarrow \alpha_{1}$, then b is associated with the cycle $\alpha_{1} \rightarrow \alpha_{k} \rightarrow \alpha_{1}$.
2. If $b \in K$ is associated with a cycle through (α, β), then b is associated with a cycle through (γ, θ) for all $(\gamma, \theta) \neq(\alpha, \beta)$. So, restrict to just one cycle.
3. The set K is convex.
4. K is disjoint from the negative orthant, invoke separating hyperplane theorem.

Roberts' Theorem

Lemma

Suppose $f(\mathbf{t})=\alpha$ and $s \in T^{n}$ such that $s_{\alpha}^{i}-s_{\beta}^{i}>t_{\alpha}^{i}-t_{\beta}^{i}$ for all i. Then $g(\mathbf{s}) \neq \beta$.

Consider the profile (s^{1}, \mathbf{t}^{-1}) and suppose that $s_{\alpha}^{1}-s_{\beta}^{1}>t_{\alpha}^{1}-t_{\beta}^{1}$ and $g\left(s^{1}, \mathbf{t}^{-1}\right)=\beta$. This violates 2-cycle.

Roberts' Theorem

For every pair $\alpha, \beta \in \Gamma$ define

$$
h(\beta, \alpha)=\inf _{t \in T^{n}: g(\mathbf{t})=\alpha} \max _{i} t_{\alpha}^{i}-t_{\beta}^{i}=\inf _{d \in U(\beta, \alpha)} \max _{i} d^{i}
$$

Lemma
For every pair $\alpha, \beta \in \Gamma, h(\beta, \alpha)$ is finite.

Roberts' Theorem

Lemma
For all $\alpha, \beta \in \Gamma, h(\alpha, \beta)+h(\beta, \alpha)=0$.

Roberts' Theorem

Suppose $h(\alpha, \beta)+h(\beta, \alpha)>0$.
Choose $\mathbf{t} \in T^{n}$ to satisfy

$$
\begin{gather*}
t_{\alpha}^{i}-t_{\beta}^{i}<h(\beta, \alpha) \forall i \tag{4}\\
t_{\beta}^{i}-t_{\alpha}^{i}<h(\alpha, \beta) \forall i \tag{5}\\
t_{\gamma}^{i}-t_{\alpha}^{i}<h(\alpha, \gamma) \forall i \forall \gamma \neq \alpha, \beta \tag{6}
\end{gather*}
$$

(4) implies that $g(\mathbf{t}) \neq \alpha$. (5) implies that $g(\mathbf{t}) \neq \beta$.

Together with (6) we deduce that $g(\mathbf{t}) \notin \Gamma$ a contradiction.

Rationalizability (quasi-linear Afriat)

Set of purchase decisions $\left\{p_{i}, x_{i}\right\}_{i=1}^{n}$ is rationalizable by

- locally non-satiated,
- quasi-linear,
- concave utility function $u: \mathbb{R}_{+}^{m} \mapsto \mathbb{R}$
- for some budget B
if for all i,

$$
x_{i} \in \arg \max \left\{u(x)+s: p_{i} \cdot x+s=B, x \in \mathbb{R}_{+}^{m}\right\}
$$

Rationalizability

If at price $p_{i}, p_{i} \cdot x_{j} \leq B$, it must be that x_{j} delivers less utility than x_{i}.

$$
\begin{gathered}
u\left(x_{i}\right)+B-p_{i} \cdot x_{i} \geq u\left(x_{j}\right)+B-p_{i} \cdot x_{j} \\
\Rightarrow u\left(x_{j}\right)-u\left(x_{i}\right) \leq p_{i} \cdot\left(x_{j}-x_{i}\right)
\end{gathered}
$$

Given set $\left\{\left(p_{i}, x_{i}\right)\right\}_{i=1}^{n}$ we formulate the system:

$$
y_{j}-y_{i} \leq p_{i} \cdot\left(x_{j}-x_{i}\right), \forall i, j \text { s.t. } \quad p_{i} \cdot x_{j} \leq B
$$

Rationalizability

$$
\begin{equation*}
y_{j}-y_{i} \leq p_{i} \cdot\left(x_{j}-x_{i}\right), \forall i, j \text { s.t. } \quad p_{i} \cdot x_{j} \leq B \tag{7}
\end{equation*}
$$

1. One node for each i.
2. For each ordered pair (i, j) such that $p_{i} \cdot x_{j} \leq B$, an arc with length $p_{i} \cdot\left(x_{j}-x_{i}\right)$.
3. The system (7) is feasible iff. associated network has no negative length cycles.

Rationalizability

Use any feasible choice of $\left\{y_{j}\right\}_{j=1}^{n}$ to construct a concave utility.

Set $u\left(x_{i}\right)=y_{i}$.

For any other $x \in \mathbb{R}_{+}^{n}$ set

$$
u(x)=\min _{i=1, \ldots, n}\left\{u\left(x_{i}\right)+p_{i} \cdot\left(x-x_{i}\right)\right\}
$$

Cardinal Matching (TU)

Cardinal Matching

Given a graph $G=(V, E)$, find a matching that maximizes a weighted sum of the edges.

Bipartite: Poly time, natural LP formulation has integral extreme points

Non-bipartite: Poly time, natural LP formulation is $1 / 2$ fractional, exact formulation exponential

Ordinal Matching (NTU)

Given $G(V, E)$ and 'preferences over edges' find a matching that 'respects' preferences.

Bipartite Stable Matching: $(D \cup H, E), D=$ doctors and $H=$ hospitals (unit capacity)

Each $d \in D$ has a strict preference ordering \succ_{d} over H and each $h \in H$ has a strict \succ_{h} over D.

Stable Matching

A matching $\mu: D \rightarrow H$ is blocked by the pair (d, h) if 1. $\mu(d) \neq h$
2. $h \succ_{d} \mu(d)$
3. $d \succ_{h} \mu^{-1}(h)$

A matching μ is stable if it is not blocked.

Stable Matching

Bipartite Graph
$D \cup H=$ set of vertices (doctors and hospitals)
$E=$ set of edges
$\delta(v) \subseteq E$ set of edges incident to $v \in D \cup H$

Each $v \in D \cup H$ has a strict ordering \succ_{v} over edges in $\delta(v)$

Stable Matching

$$
\sum_{e \in \delta(v)} x_{e} \leq 1 \forall v \in D \cup H
$$

For all $e \in E$ there is a $v \in D \cup H$ such that $e \in \delta(v)$ and

$$
\sum_{f \succ_{v} e} x_{f}+x_{e}=1
$$

Scarf＇s Lemma

$Q=$ an $n \times m$ nonnegative matrix and $r \in \mathbb{R}_{+}^{n}$ ．
$Q_{i}=$ the $i^{\text {th }}$ row of matrix Q.
$\mathcal{P}=\left\{x \in \mathbb{R}_{+}^{m}: Q x \leq r\right\}$.

Each row $i \in[n]$ of Q has a strict order \succ_{i} over the set of columns j for which $q_{i, j}>0$（the columns that intersect it）．

A vector $x \in \mathcal{P}$ dominates column j if there exists a row i such that $Q_{i} x=r_{i}$ and $k \succeq_{i} j$ for all $k \in[m]$ such that $q_{i, k}>0$ and $x_{k}>0$ ．

We say x dominates column j at row i ． \qquad

Scarf's Lemma

Kiralyi \& Pap version

Let Q be an $n \times m$ nonnegative matrix, $r \in \mathbb{R}_{+}^{n}$ and $\mathcal{P}=\left\{x \in \mathbb{R}_{+}^{m}: Q x \leq r\right\}$. Then, \mathcal{P} has a vertex that dominates every column of Q.

Stable Matching with Couples

$D^{1}=$ set of single doctors
$D^{2}=$ set of couples, each couple $c \in D^{2}$ is denoted
$c=(f, m)$
$D=D^{1} \cup\left\{m_{c} \mid c \in D^{2}\right\} \cup\left\{f_{c} \mid c \in D^{2}\right\}$.

Each $s \in D^{1}$ has a strict preference relation \succ_{s} over $H \cup\{\emptyset\}$

Each $c \in D^{2}$ has a strict preference relation \succ_{c} over $H \cup\{\emptyset\} \times H \cup\{\emptyset\}$

Stable Matching with Couples

Hospital $h \in H$ has a capacity $k_{h}>0$

Preference of hospital h over subsets of D is summarized by choice function $c h_{h}():. 2^{D} \rightarrow 2^{D}$.
$c h_{h}($.$) is responsive$
h has a strict priority ordering \succ_{h} over elements of $D \cup\{\emptyset\}$.
$c h_{h}\left(D^{*}\right)$, consists of the (upto) k_{h} highest priority doctors among the feasible doctors in D^{*}.

Blocking

$\mu=$ matching
$\mu_{h}=$ the subset of doctors matched to h
μ_{s} position that single doctor s receives
$\mu_{f_{c}}, \mu_{m_{c}}$ are the positions that the female member, the male member of the couple c obtain in the matching

Blocking

μ is individual rational if

- $c h_{h}\left(\mu_{h}\right)=\mu_{h}$ for any hospital h
- $\mu_{s} \succeq_{s} \emptyset$ for any single doctor s
- $\left(\mu_{f_{c}}, \mu_{m_{c}}\right) \succeq_{c}\left(\emptyset, \mu_{m_{c}}\right)$ $\left(\mu_{f_{c}}, \mu_{m_{c}}\right) \succeq_{c}\left(\mu_{f_{c}}, \emptyset\right)$ $\left(\mu_{f_{c}}, \mu_{m_{c}}\right) \succeq_{c}(\emptyset, \emptyset)$ for any couple c

Blocking

Matching μ can be blocked as follows

1. A pair $s \in D^{1}$ and $h \in H$ can block μ if $h \succ_{s} \mu(s)$ and $s \in c h_{h}(\mu(h) \cup s)$.
2. A triple $\left(c, h, h^{\prime}\right) \in D^{2} \times(H \cup\{\emptyset\}) \times(H \cup\{\emptyset\})$ with $h \neq h^{\prime}$ can block μ if $\left(h, h^{\prime}\right) \succ_{c} \mu(c), f_{c} \in c h_{h}\left(\mu(h) \cup f_{c}\right)$ when $h \neq \emptyset$ and $m_{c} \in c h_{h^{\prime}}\left(\mu\left(h^{\prime}\right) \cup m_{c}\right)$ when $h^{\prime} \neq \emptyset$.
3. A pair $(c, h) \in D^{2} \times H$ can block μ if $(h, h) \succ_{c} \mu(c)$ and $\left(f_{c}, m_{c}\right) \subseteq c h_{h}(\mu(h) \cup c)$.

Matching with Couples

Each doctor in D^{1} has a strict preference ordering over the elements of $H \cup\{\emptyset\}$

Each couple in D^{2} has a strict preference ordering over $H \cup\{\emptyset\} \times H \cup\{\emptyset\}$

Each hospital has responsive preferences
(Nguyen \& Vohra) For any capacity vector k, there exists a k^{\prime} and a stable matching with respect to k^{\prime}, such that $\max _{h \in H}\left|k_{h}-k_{h}^{\prime}\right| \leq 4$. Furthermore,
$\sum_{h \in H} k_{h} \leq \sum_{h \in H} k_{h}^{\prime} \leq \sum_{h \in H} k_{h}+9$.

Matching with Couples

Apply Scarf's Lemma to get a 'fractionally' stable solution
$Q=$ constraint matrix of a 'generalized' transportation problem

Rows correspond to $D^{1} \cup D^{2}$ and H

Column corresponds to an assignment of a single doctor to a hospital or a couple to a pair of slots

Each row has an ordering over the columns that intersect it

Generalized Transportation Problem

$x_{d}(S)=1$ if $S \subseteq H$ is assigned to agent $d \in D$ and zero otherwise.

$$
x_{d}(S)=0 \text { for all }|S|>\alpha
$$

$$
\begin{gathered}
\sum_{S \subseteq H} x_{d}(S) \leq 1 \forall d \in D(\text { dem }) \\
\sum_{i \in D} \sum_{S \ni h} x_{d}(S) \leq k_{h} \forall h \in H(\text { supp })
\end{gathered}
$$

Iterative Rounding

Solve the LP to get a fractional extreme point solution x^{*}.

If every variable is 0 or fractional, there must exist a $h \in H$ such that

$$
\sum_{d \in D} \sum_{S \ni h}\left\lceil x_{d}^{*}(S)\right\rceil \leq k_{h}+\alpha-1
$$

Rounding

For every extreme point x^{*} and u optimized at x^{*}, there is an integer y such that $u \cdot y \geq u \cdot x^{*}$ and

$$
\begin{gathered}
\sum_{S \subseteq H} y_{d}(S) \leq 1 \forall d \in D \\
\sum_{d \in D} \sum_{S \ni h} y_{d}(S) \leq k_{h}+\alpha-1 \forall h \in H
\end{gathered}
$$

