

Fields Institute Tutorial

September 12, 2014

Rakesh Vohra

1

N = set of agents. $\Gamma = \text{finite set of at least three outcomes.}$ $T \subseteq \Re^{|\Gamma|}$ set of (multi-dimensional) types. $T^n = \text{set of all } n\text{-agent profiles of types.}$ **Allocation rule** is a function

$$f: T^n \to \Gamma$$
.

For each $\alpha \in \Gamma$ there is a $\mathbf{t} \in T^n$ such that $f(\mathbf{t}) = \alpha$.

Payment rule is a function P such that

$$P: T^n \to \Re^n$$
.

In profile (t^1, \ldots, t^n) agent *i* has type t^i she makes a payment of $P_i(t^1, \ldots, t^n)$.

Value agent *i* with type $t \in T$ assigns to allocation $\alpha \in \Gamma$ is $v^i(\alpha|t) = t_{\alpha}$.

For all agents *i* and all types $s^i \neq t^i$:

$$egin{aligned} &v^i(f(t^i,t^{-i})|t^i) - P_i(t^i,t^{-i})\ &\geq v^i(f(s^i,t^{-i})|t) - P_i(s^i,t^{-i}) \ orall \ t^{-i}. \end{aligned}$$

Suppress dependence on i, t^{-i}

$$egin{aligned} & v(f(t)|t) - P(t) \geq v(f(s)|t) - P(s) \ & t_{f(t)} - P(t) \geq t_{f(s)} - P(s) \end{aligned}$$

Incentive Compatability

$$t_{f(t)} - P(t) \ge t_{f(s)} - P(s)$$
(1)
$$s_{f(s)} - P(s) \ge s_{f(t)} - P(t).$$
(2)

Add (1) and (2)

$$t_{f(t)} + s_{f(s)} \geq t_{f(s)} + s_{f(t)}.$$

$$t_{f(t)} - t_{f(s)} \ge -[s_{f(s)} - s_{f(t)}].$$

2-cycle inequality

$$[t_{f(t)} - t_{f(s)}] + [s_{f(s)} - s_{f(t)}] \ge 0.$$

f is dominant strategy IC if $\exists P$ such that:

$$t_{f(t)} - P(t) \geq t_{f(s)} - P(s)$$

Fix f, find P such that

$$P(t) - P(s) \le t_{f(t)} - t_{f(s)}.$$
 (3)

$$P(t)-P(s)\leq t_{f(t)}-t_{f(s)}.$$

A vertex for each type *t*

From vertex s to vertex t an edge of length $t_{f(t)} - t_{f(s)}$

From vertex t to vertex s an edge of length $s_{f(s)} - s_{f(t)}$

System 3 is feasible iff Incentive graph has no (-)ve cycles.

2-cycle inequality

$$[t_{f(t)} - t_{f(s)}] + [s_{f(s)} - s_{f(t)}] \ge 0.$$

All 2-cycles in network are of non-negative length.

For many preference domains, 2-cycles non (-)ve \Rightarrow all cycles are non (-)ve

T is convex

8

 $|\Gamma| \ge 3$, $T = \Re^{|\Gamma|}$, if f is onto and DSIC \exists non-negative weights $\{w_i\}_{i \in N}$ and weights $\{D_{\alpha}\}_{\alpha \in \Gamma}$ such that

$$f(t)\in rg\max_{lpha\in \Gamma}\sum_i w_i t^i_lpha - D_lpha$$

(equivalent) There is a solution $w, \{D_{\gamma}\}_{\gamma \in \Gamma}$ to the following:

$$D_{lpha} - D_{\gamma} \leq \sum_{i=1}^{n} w_i (t^i_{lpha} - t^i_{\gamma}) \ orall \gamma, \ \mathbf{t} \ \mathrm{s.t.} \ f(\mathbf{t}) = lpha$$

Fix a non-zero and nonnegative vector w.

Network Γ_w will have one node for each $\gamma \in \Gamma$.

For each ordered pair (β, α) introduce a directed arc from β to α of length

$$I_{\mathsf{w}}(\beta,\alpha) = \inf_{\mathbf{t}:f(\mathbf{t})=\alpha} \sum_{i=1}^{n} w_i(t_{\alpha}^i - t_{\beta}^i).$$

Is there a choice of w for which Γ_w has no negative length cycles?

$$U(\beta, \alpha) = \{ d \in \mathbb{R}^n : \exists \mathbf{t} \in T^n \text{ s.t. } f(\mathbf{t}) = \alpha, \text{ s.t. } d^i = t^i_\alpha - t^i_\beta \forall i \}.$$

 $I_w(\beta, \alpha) = \inf_{d \in U(\beta, \alpha)} w \cdot d.$

э

Suppose a cycle $C = \alpha_1 \rightarrow \ldots \rightarrow \alpha_k \rightarrow \alpha_1$ through elements of Γ .

From each α_j pick a profile $\mathbf{t}[j]$ such that $f(\mathbf{t}[j]) = \alpha_j$.

Associate with the cycle *C* a vector *b* whose i^{th} component is $b^i = (t^i_{\alpha_1}[1] - t^i_{\alpha_k}[1]) + (t^i_{\alpha_2}[2] - t^i_{\alpha_1}[2]) + \ldots + (t^i_{\alpha_k}[k] - t^i_{\alpha_{k-1}}[k]).$

Let $K \subseteq \mathbb{R}^n$ be the set of vectors that can be associated with some cycle through the elements of Γ .

Asserts the existence of a feasible w such that $w \cdot b \ge 0$ for all $b \in K$.

- 1. If $b \in K$ is associated with cycle $\alpha_1 \to \ldots \to \alpha_k \to \alpha_1$, then b is associated with the cycle $\alpha_1 \to \alpha_k \to \alpha_1$.
- If b ∈ K is associated with a cycle through (α, β), then b is associated with a cycle through (γ, θ) for all (γ, θ) ≠ (α, β). So, restrict to just one cycle.
- 3. The set K is convex.
- 4. K is disjoint from the negative orthant, invoke separating hyperplane theorem.

Lemma

Suppose $f(\mathbf{t}) = \alpha$ and $s \in T^n$ such that $s^i_{\alpha} - s^i_{\beta} > t^i_{\alpha} - t^i_{\beta}$ for all *i*. Then $g(\mathbf{s}) \neq \beta$.

Consider the profile (s^1, \mathbf{t}^{-1}) and suppose that $s^1_{\alpha} - s^1_{\beta} > t^1_{\alpha} - t^1_{\beta}$ and $g(s^1, \mathbf{t}^{-1}) = \beta$. This violates 2-cycle.

For every pair $\alpha, \beta \in \Gamma$ define

$$h(\beta, \alpha) = \inf_{t \in T^n: g(\mathbf{t}) = \alpha} \max_i t^i_\alpha - t^i_\beta = \inf_{d \in U(\beta, \alpha)} \max_i d^i.$$

Lemma

For every pair $\alpha, \beta \in \Gamma$, $h(\beta, \alpha)$ is finite.

Lemma For all $\alpha, \beta \in \Gamma$, $h(\alpha, \beta) + h(\beta, \alpha) = 0$.

Suppose $h(\alpha, \beta) + h(\beta, \alpha) > 0$.

Choose $\mathbf{t} \in T^n$ to satisfy

$$t^{i}_{\alpha} - t^{i}_{\beta} < h(\beta, \alpha) \; \forall i$$
(4)

$$t^{i}_{\beta} - t^{i}_{\alpha} < h(\alpha, \beta) \; \forall i$$
(5)

$$\mathbf{t}_{\gamma}^{i} - \mathbf{t}_{\alpha}^{i} < \mathbf{h}(\alpha, \gamma) \; \forall i \; \forall \gamma \neq \alpha, \beta$$
(6)

(4) implies that $g(\mathbf{t}) \neq \alpha$. (5) implies that $g(\mathbf{t}) \neq \beta$. Together with (6) we deduce that $g(\mathbf{t}) \notin \Gamma$ a contradiction.

Set of purchase decisions $\{p_i, x_i\}_{i=1}^n$ is **rationalizable** by

- locally non-satiated,
- quasi-linear,
- concave utility function $u : \mathbb{R}^m_+ \mapsto \mathbb{R}$
- ► for some budget *B*

if for all *i*,

$$x_i \in \arg \max\{u(x) + s : p_i \cdot x + s = B, x \in \mathbb{R}^m_+\}.$$

If at price p_i , $p_i \cdot x_j \leq B$, it must be that x_j delivers less utility than x_i .

$$u(x_i) + B - p_i \cdot x_i \ge u(x_j) + B - p_i \cdot x_j$$

 $\Rightarrow u(x_j) - u(x_i) \le p_i \cdot (x_j - x_i)$

Given set $\{(p_i, x_i)\}_{i=1}^n$ we formulate the system:

$$y_j - y_i \leq p_i \cdot (x_j - x_i), \ \forall i, j \text{ s.t. } p_i \cdot x_j \leq B$$

$$y_j - y_i \leq p_i \cdot (x_j - x_i), \ \forall i, j \text{ s.t. } p_i \cdot x_j \leq B$$
 (7)

- 1. One node for each *i*.
- 2. For each ordered pair (i, j) such that $p_i \cdot x_j \leq B$, an arc with length $p_i \cdot (x_j x_i)$.
- 3. The system (7) is feasible iff. associated network has no negative length cycles.

Use any feasible choice of $\{y_j\}_{j=1}^n$ to construct a concave utility.

Set $u(x_i) = y_i$.

For any other $x \in \mathbb{R}^n_+$ set

$$u(x) = \min_{i=1,...,n} \{ u(x_i) + p_i \cdot (x - x_i) \}.$$

Cardinal Matching

Given a graph G = (V, E), find a matching that maximizes a weighted sum of the edges.

Bipartite: Poly time, natural LP formulation has integral extreme points

Non-bipartite: Poly time, natural LP formulation is $1/2 \,$ fractional, exact formulation exponential

Given G(V, E) and 'preferences over edges' find a matching that 'respects' preferences.

Bipartite Stable Matching: $(D \cup H, E)$, D = doctors and H = hospitals (unit capacity)

Each $d \in D$ has a strict preference ordering \succ_d over H and each $h \in H$ has a strict \succ_h over D.

A matching $\mu: D \rightarrow H$ is *blocked* by the pair (d, h) if

- 1. $\mu(d) \neq h$
- 2. $h \succ_d \mu(d)$
- 3. $d \succ_h \mu^{-1}(h)$

A matching μ is stable if it is not blocked.

Bipartite Graph

- $D \cup H$ = set of vertices (doctors and hospitals)
- E = set of edges
- $\delta(\mathbf{v}) \subseteq E$ set of edges incident to $\mathbf{v} \in D \cup H$
- Each $v \in D \cup H$ has a strict ordering \succ_v over edges in $\delta(v)$

Stable Matching

$$\sum_{e \in \delta(v)} x_e \leq 1 \,\,\forall v \in D \cup H$$

For all $e \in E$ there is a $v \in D \cup H$ such that $e \in \delta(v)$ and

$$\sum_{f\succ_v e} x_f + x_e = 1$$

Scarf's Lemma

Q = an $n \times m$ nonnegative matrix and $r \in \mathbb{R}^n_+$.

 Q_i = the i^{th} row of matrix Q.

$$\mathcal{P} = \{ x \in \mathbb{R}^m_+ : Qx \le r \}.$$

Each row $i \in [n]$ of Q has a strict order \succ_i over the set of columns j for which $q_{i,j} > 0$ (the columns that intersect it).

A vector $x \in \mathcal{P}$ **dominates** column j if there exists a row i such that $Q_i x = r_i$ and $k \succeq_i j$ for all $k \in [m]$ such that $q_{i,k} > 0$ and $x_k > 0$.

We say x dominates column j at row i, \ldots ,

Kiralyi & Pap version

Let Q be an $n \times m$ nonnegative matrix, $r \in \mathbb{R}^n_+$ and $\mathcal{P} = \{x \in \mathbb{R}^m_+ : Qx \leq r\}$. Then, \mathcal{P} has a vertex that dominates every column of Q.

$$D^1 = \text{set of single doctors}$$

 $D^2 = \text{set of couples, each couple } c \in D^2 \text{ is denoted } c = (f, m)$

$$D = D^1 \cup \{m_c | c \in D^2\} \cup \{f_c | c \in D^2\}.$$

Each $s \in D^1$ has a strict preference relation \succ_s over $H \cup \{\emptyset\}$

Each
$$c \in D^2$$
 has a strict preference relation \succ_c over $H \cup \{\emptyset\} \times H \cup \{\emptyset\}$

29

Hospital $h \in H$ has a capacity $k_h > 0$

Preference of hospital *h* over subsets of *D* is summarized by choice function $ch_h(.): 2^D \to 2^D$.

 $ch_h(.)$ is responsive

h has a strict priority ordering \succ_h over elements of $D \cup \{\emptyset\}$.

 $ch_h(D^*)$, consists of the (upto) k_h highest priority doctors among the feasible doctors in D^* .

30

- $\mu = \mathsf{matching}$
- $\mu_h =$ the subset of doctors matched to h
- μ_s position that single doctor s receives
- $\mu_{\it f_c}, \mu_{\it m_c}$ are the positions that the female member, the male member of the couple c obtain in the matching

$\boldsymbol{\mu}$ is individual rational if

- $ch_h(\mu_h) = \mu_h$ for any hospital h
- $\mu_s \succeq_s \emptyset$ for any single doctor s

►
$$(\mu_{f_c}, \mu_{m_c}) \succeq_c (\emptyset, \mu_{m_c})$$

 $(\mu_{f_c}, \mu_{m_c}) \succeq_c (\mu_{f_c}, \emptyset)$
 $(\mu_{f_c}, \mu_{m_c}) \succeq_c (\emptyset, \emptyset)$
for any couple c

Matching μ can be blocked as follows

- 1. A pair $s \in D^1$ and $h \in H$ can block μ if $h \succ_s \mu(s)$ and $s \in ch_h(\mu(h) \cup s)$.
- 2. A triple $(c, h, h') \in D^2 \times (H \cup \{\emptyset\}) \times (H \cup \{\emptyset\})$ with $h \neq h'$ can block μ if $(h, h') \succ_c \mu(c)$, $f_c \in ch_h(\mu(h) \cup f_c)$ when $h \neq \emptyset$ and $m_c \in ch_{h'}(\mu(h') \cup m_c)$ when $h' \neq \emptyset$.
- 3. A pair $(c, h) \in D^2 \times H$ can block μ if $(h, h) \succ_c \mu(c)$ and $(f_c, m_c) \subseteq ch_h(\mu(h) \cup c)$.

Each doctor in D^1 has a strict preference ordering over the elements of $H \cup \{\emptyset\}$

Each couple in D^2 has a strict preference ordering over $H \cup \{\emptyset\} \times H \cup \{\emptyset\}$

Each hospital has responsive preferences

(Nguyen & Vohra) For any capacity vector k, there exists a k' and a stable matching with respect to k', such that $\max_{h \in H} |k_h - k'_h| \le 4$. Furthermore, $\sum_{h \in H} k_h \le \sum_{h \in H} k'_h \le \sum_{h \in H} k_h + 9$.

Apply Scarf's Lemma to get a 'fractionally' stable solution

Q = constraint matrix of a 'generalized' transportation problem

Rows correspond to $D^1 \cup D^2$ and H

Column corresponds to an assignment of a single doctor to a hospital or a couple to a pair of slots

Each row has an ordering over the columns that intersect it

 $x_d(S) = 1$ if $S \subseteq H$ is assigned to agent $d \in D$ and zero otherwise.

$$x_d(S) = 0$$
 for all $|S| > \alpha$

$$\sum_{S \subseteq H} x_d(S) \le 1 \,\,\forall d \in D \,\,(dem)$$
$$\sum_{i \in D} \sum_{S \ni h} x_d(S) \le k_h \,\,\forall h \in H \,\,(supp)$$

Solve the LP to get a fractional extreme point solution x^* .

If every variable is 0 or fractional, there must exist a $h \in H$ such that

$$\sum_{d\in D}\sum_{S\ni h} \lceil x_d^*(S)\rceil \leq k_h + \alpha - 1$$

For every extreme point x^* and u optimized at x^* , there is an integer y such that $u \cdot y \ge u \cdot x^*$ and

$$\sum_{S\subseteq H} y_d(S) \leq 1 \,\,\forall d \in D$$

 $\sum_{d\in D}\sum_{S\ni h}y_d(S)\leq k_h+\alpha-1\;\forall h\in H$