Economic applications of Matching Models
 Summer School 'Variational problems in physics, economics, and geometry'

Pierre-André Chiappori

Columbia University

Toronto, September 2014

Matching models in economics

- Basic setting:

Matching models in economics

- Basic setting:
- Two heterogenous populations (X and Y)

Matching models in economics

- Basic setting:
- Two heterogenous populations (X and Y)
- When matched, $x \in X$ and $y \in Y$ create a surplus

Matching models in economics

- Basic setting:
- Two heterogenous populations (X and Y)
- When matched, $x \in X$ and $y \in Y$ create a surplus
- Questions:

Matching models in economics

- Basic setting:
- Two heterogenous populations (X and Y)
- When matched, $x \in X$ and $y \in Y$ create a surplus
- Questions:
- Who matched with whom?

Matching models in economics

- Basic setting:
- Two heterogenous populations (X and Y)
- When matched, $x \in X$ and $y \in Y$ create a surplus
- Questions:
- Who matched with whom?
- (In some versions) How is the surplus allocated?

Matching models in economics

- Basic setting:
- Two heterogenous populations (X and Y)
- When matched, $x \in X$ and $y \in Y$ create a surplus
- Questions:
- Who matched with whom?
- (In some versions) How is the surplus allocated?
- Examples:

Matching models in economics

- Basic setting:
- Two heterogenous populations (X and Y)
- When matched, $x \in X$ and $y \in Y$ create a surplus
- Questions:
- Who matched with whom?
- (In some versions) How is the surplus allocated?
- Examples:
- Marriage market (X women, Y men)

Matching models in economics

- Basic setting:
- Two heterogenous populations (X and Y)
- When matched, $x \in X$ and $y \in Y$ create a surplus
- Questions:
- Who matched with whom?
- (In some versions) How is the surplus allocated?
- Examples:
- Marriage market (X women, Y men)
- Labor contract (X workers, Y employers; X CEOs, Y firms; ...)

Matching models in economics

- Basic setting:
- Two heterogenous populations (X and Y)
- When matched, $x \in X$ and $y \in Y$ create a surplus
- Questions:
- Who matched with whom?
- (In some versions) How is the surplus allocated?
- Examples:
- Marriage market (X women, Y men)
- Labor contract (X workers, Y employers; X CEOs, Y firms; ...)
- Credit (X firms, Y banks)

Matching models in economics

- Basic setting:
- Two heterogenous populations (X and Y)
- When matched, $x \in X$ and $y \in Y$ create a surplus
- Questions:
- Who matched with whom?
- (In some versions) How is the surplus allocated?
- Examples:
- Marriage market (X women, Y men)
- Labor contract (X workers, Y employers; X CEOs, Y firms; ...)
- Credit (X firms, Y banks)
- Hedonic models (X buyers, Y sellers, Z products), etc.

Matching models in economics

- Basic setting:
- Two heterogenous populations (X and Y)
- When matched, $x \in X$ and $y \in Y$ create a surplus
- Questions:
- Who matched with whom?
- (In some versions) How is the surplus allocated?
- Examples:
- Marriage market (X women, Y men)
- Labor contract (X workers, Y employers; X CEOs, Y firms; ...)
- Credit (X firms, Y banks)
- Hedonic models (X buyers, Y sellers, Z products), etc.
- Extensions:

Matching models in economics

- Basic setting:
- Two heterogenous populations (X and Y)
- When matched, $x \in X$ and $y \in Y$ create a surplus
- Questions:
- Who matched with whom?
- (In some versions) How is the surplus allocated?
- Examples:
- Marriage market (X women, Y men)
- Labor contract (X workers, Y employers; X CEOs, Y firms; ...)
- Credit (X firms, Y banks)
- Hedonic models (X buyers, Y sellers, Z products), etc.
- Extensions:
- Many to one: $s\left(x_{1}, \ldots, x_{n}, y\right)$

Matching models in economics

- Basic setting:
- Two heterogenous populations (X and Y)
- When matched, $x \in X$ and $y \in Y$ create a surplus
- Questions:
- Who matched with whom?
- (In some versions) How is the surplus allocated?
- Examples:
- Marriage market (X women, Y men)
- Labor contract (X workers, Y employers; X CEOs, Y firms; ...)
- Credit (X firms, Y banks)
- Hedonic models (X buyers, Y sellers, Z products), etc.
- Extensions:
- Many to one: $s\left(x_{1}, \ldots, x_{n}, y\right)$
- Many to many: $s\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{k}\right)$

Matching models in economics

- Basic setting:
- Two heterogenous populations (X and Y)
- When matched, $x \in X$ and $y \in Y$ create a surplus
- Questions:
- Who matched with whom?
- (In some versions) How is the surplus allocated?
- Examples:
- Marriage market (X women, Y men)
- Labor contract (X workers, Y employers; X CEOs, Y firms; ...)
- Credit (X firms, Y banks)
- Hedonic models (X buyers, Y sellers, Z products), etc.
- Extensions:
- Many to one: $s\left(x_{1}, \ldots, x_{n}, y\right)$
- Many to many: $s\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{k}\right)$
- Roommate $X=Y$, etc.

Matching models in economics

- Basic setting:
- Two heterogenous populations (X and Y)
- When matched, $x \in X$ and $y \in Y$ create a surplus
- Questions:
- Who matched with whom?
- (In some versions) How is the surplus allocated?
- Examples:
- Marriage market (X women, Y men)
- Labor contract (X workers, Y employers; X CEOs, Y firms; ...)
- Credit (X firms, Y banks)
- Hedonic models (X buyers, Y sellers, Z products), etc.
- Extensions:
- Many to one: $s\left(x_{1}, \ldots, x_{n}, y\right)$
- Many to many: $s\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{k}\right)$
- Roommate $X=Y$, etc.
- This presentation: marriage market only (although some hedonic)

A few relevant questions

1. Assortative matching and inequality

- Burtless (EER 1999): over 1979-1996, 'The changing correlation of husband and wife earnings has tended to reinforce the effect of greater pay disparity.'

A few relevant questions

1. Assortative matching and inequality

- Burtless (EER 1999): over 1979-1996, 'The changing correlation of husband and wife earnings has tended to reinforce the effect of greater pay disparity.'
- Maybe $1 / 3$ of the increase in household-level inequality (Gini) comes from rise of single-adult households and $1 / 6$ from increased assortative matching.

A few relevant questions

1. Assortative matching and inequality

- Burtless (EER 1999): over 1979-1996, 'The changing correlation of husband and wife earnings has tended to reinforce the effect of greater pay disparity.'
- Maybe $1 / 3$ of the increase in household-level inequality (Gini) comes from rise of single-adult households and $1 / 6$ from increased assortative matching.
- Several questions; in particular:

A few relevant questions

1. Assortative matching and inequality

- Burtless (EER 1999): over 1979-1996, 'The changing correlation of husband and wife earnings has tended to reinforce the effect of greater pay disparity.'
- Maybe $1 / 3$ of the increase in household-level inequality (Gini) comes from rise of single-adult households and $1 / 6$ from increased assortative matching.
- Several questions; in particular:
- Why did correlation change? Did 'preferences for assortativeness' change?

A few relevant questions

1. Assortative matching and inequality

- Burtless (EER 1999): over 1979-1996, 'The changing correlation of husband and wife earnings has tended to reinforce the effect of greater pay disparity.'
- Maybe $1 / 3$ of the increase in household-level inequality (Gini) comes from rise of single-adult households and $1 / 6$ from increased assortative matching.
- Several questions; in particular:
- Why did correlation change? Did 'preferences for assortativeness' change?
- How do we compare single-adult households and couples? What about intrahousehold inequality?

A few relevant questions (cont.)

2. College premium and the demand for college education Motivation: remarkable increase in female education, labor supply, incomes worldwide during the last decades.

Figure 3: Fraction of 30- to 34-Year-Olds with College Education, Countries Above
Median Per Capita GDP and Below Per Capita GDP, by Sex

Source: See Figure 1.
Source: Becker-Hubbard-Murphy 2009

College premium and the demand for college education

In the US:

Figure 13: Completed Education by Sex, Age 30-40, US 1968-2005

Source: Current Population Surveys.

College premium and the demand for college education

Questions:

(1) Why such different responses by gender?

College premium and the demand for college education

Questions:

(1) Why such different responses by gender?

- Answer (CIW 2009): 'Marital college premium'

College premium and the demand for college education

Questions:

(1) Why such different responses by gender?

- Answer (CIW 2009): 'Marital college premium'
- \rightarrow how can we compute that?

College premium and the demand for college education

Questions:

(1) Why such different responses by gender?

- Answer (CIW 2009): 'Marital college premium'
- \rightarrow how can we compute that?
- \rightarrow how can we identify that?

College premium and the demand for college education

Questions:

(1) Why such different responses by gender?

- Answer (CIW 2009): 'Marital college premium'
- \rightarrow how can we compute that?
- \rightarrow how can we identify that?
- \rightarrow A structural model is needed!

College premium and the demand for college education

Questions:

(1) Why such different responses by gender?

- Answer (CIW 2009): 'Marital college premium'
- \rightarrow how can we compute that?
- \rightarrow how can we identify that?
- \rightarrow A structural model is needed!
(2) In particular, why the surge in demand for 'College +'

College premium and the demand for college education

Questions:

(1) Why such different responses by gender?

- Answer (CIW 2009): 'Marital college premium'
- \rightarrow how can we compute that?
- \rightarrow how can we identify that?
- \rightarrow A structural model is needed!
(2) In particular, why the surge in demand for 'College +'
- Answer (Lo 2014): Changes in marital prospects

College premium and the demand for college education

Questions:

(1) Why such different responses by gender?

- Answer (CIW 2009): 'Marital college premium'
- \rightarrow how can we compute that?
- \rightarrow how can we identify that?
- \rightarrow A structural model is needed!
(2) In particular, why the surge in demand for 'College +'
- Answer (Lo 2014): Changes in marital prospects
- \rightarrow Why?

College premium and the demand for college education

Questions:

(1) Why such different responses by gender?

- Answer (CIW 2009): 'Marital college premium'
- \rightarrow how can we compute that?
- \rightarrow how can we identify that?
- \rightarrow A structural model is needed!
(2) In particular, why the surge in demand for 'College +'
- Answer (Lo 2014): Changes in marital prospects
- \rightarrow Why?
- How can we model that?

College premium and the demand for college education

Questions:

(1) Why such different responses by gender?

- Answer (CIW 2009): 'Marital college premium'
- \rightarrow how can we compute that?
- \rightarrow how can we identify that?
- \rightarrow A structural model is needed!
(2) In particular, why the surge in demand for 'College +'
- Answer (Lo 2014): Changes in marital prospects
- \rightarrow Why?
- How can we model that?
- Testable predictions?

College premium and the demand for college education

Questions:

(1) Why such different responses by gender?

- Answer (CIW 2009): 'Marital college premium'
- \rightarrow how can we compute that?
- \rightarrow how can we identify that?
- \rightarrow A structural model is needed!
(2) In particular, why the surge in demand for 'College +'
- Answer (Lo 2014): Changes in marital prospects
- \rightarrow Why?
- How can we model that?
- Testable predictions?
- Do they fit the data?

A few relevant questions (cont.)

3. Abortion and female empowerment

- Roe vs. Wade (1973): de facto legalization of abortion in the US
- General claim (feminist literature): important source of 'female empowerment'
- Question: what is the mechanism?
- In particular, what about women:
- who do want children
- who would not use abortion (e.g. for religious reasons), etc.

Roadmap

(1) Matching models: general presentation
(2) The case of Transferable Utility (TU)
(3) Applications:

- Intra-household allocation: back-of-the-envelope computations
- Roe vs Wade and female empowerment
- Women's demand for highest education
(9) Extensions

Matching models: three main families

(1) Matching under NTU (Gale-Shapley)

Idea: no transfer possible between matched partners
(2) Matching under TU (Becker-Shapley-Shubik)

- Transfers possible without restrictions
- Technology: constant 'exchange rate' between utiles
- In particular: (strong) version of interpersonal comparison of utilities
- \rightarrow requires restrictions on preferences
(3) Matching under Imperfectly TU (ITU)
- Transfers possible
- But no restriction on preferences
- \rightarrow technology involves variable 'exchange rate'
... plus 'general' approaches ('matching with contracts', from
Crawford-Knoer and Kelso-Crawford to Milgrom-Hatfield-Kominers and friends)
... and links with: auction theory, general equilibrium.

Matching models: three main families

Similarities and differences

- All aimed at understanding who is matched with whom
- Only the last 2 address how the surplus is divided
- Only the third allows for impact on the group's aggregate behavior

Formal structure: Common components

- Compact, separable metric spaces X, Y ('women, men') with finite measures F and G. Note that the spaces may be multidimensional
- Spaces X, Y often 'completed' to allow for singles: $\bar{X}=X \cup\{\varnothing\}, \bar{Y}=Y \cup\{\varnothing\}$
- A matching defines of a measure h on $X \times Y$ (or $\bar{X} \times \bar{Y})$ such that the marginals of h are F and G
- The matching is pure if the support of the measure is included in the graph of some function ϕ
Translation: matching is pure if $y=\phi(x)$ a.e.
\rightarrow no 'randomization'

Formal structure: differences

- Defining the problem: populations X, Y plus

Formal structure: differences

- Defining the problem: populations X, Y plus
- NTU: two funtions $u(x, y), v(x, y)$

Formal structure: differences

- Defining the problem: populations X, Y plus
- NTU: two funtions $u(x, y), v(x, y)$
- TU: one function $s(x, y)$ (intrapair allocation is endogenous)

Formal structure: differences

- Defining the problem: populations X, Y plus
- NTU: two funtions $u(x, y), v(x, y)$
- TU: one function $s(x, y)$ (intrapair allocation is endogenous)
- ITU: Pareto frontier $u=F(x, y, v)$

Formal structure: differences

- Defining the problem: populations X, Y plus
- NTU: two funtions $u(x, y), v(x, y)$
- TU: one function $s(x, y)$ (intrapair allocation is endogenous)
- ITU: Pareto frontier $u=F(x, y, v)$
- Defining the solution

Formal structure: differences

- Defining the problem: populations X, Y plus
- NTU: two funtions $u(x, y), v(x, y)$
- TU: one function $s(x, y)$ (intrapair allocation is endogenous)
- ITU: Pareto frontier $u=F(x, y, v)$
- Defining the solution
- NTU: only the measure h; stability as usual

Formal structure: differences

- Defining the problem: populations X, Y plus
- NTU: two funtions $u(x, y), v(x, y)$
- TU: one function $s(x, y)$ (intrapair allocation is endogenous)
- ITU: Pareto frontier $u=F(x, y, v)$
- Defining the solution
- NTU: only the measure h; stability as usual
- TU: measure h and two functions $u(x), v(y)$ such that

$$
u(x)+v(y)=s(x, y) \text { for }(x, y) \in \operatorname{Supp}(h)
$$

and stability

$$
u(x)+v(y) \geq s(x, y) \text { for all }(x, y)
$$

Formal structure: differences

- Defining the problem: populations X, Y plus
- NTU: two funtions $u(x, y), v(x, y)$
- TU: one function $s(x, y)$ (intrapair allocation is endogenous)
- ITU: Pareto frontier $u=F(x, y, v)$
- Defining the solution
- NTU: only the measure h; stability as usual
- TU: measure h and two functions $u(x), v(y)$ such that

$$
u(x)+v(y)=s(x, y) \text { for }(x, y) \in \operatorname{Supp}(h)
$$

and stability

$$
u(x)+v(y) \geq s(x, y) \text { for all }(x, y)
$$

- ITU: measure h and two functions $u(x), v(y)$ such that

$$
u(x)=F(x, y, v(y)) \text { for }(x, y) \in \operatorname{Supp}(h)
$$

and stability

$$
u(x) \geq F(x, y, v(y)) \text { for all }(x, y)
$$

Formal structure: differences (cont.)

- Characterization:

Formal structure: differences (cont.)

- Characterization:
- NTU: existence (Gale-Shapley), uniqueness not guaranteed (lattice structure of the set of stable matchings)

Formal structure: differences (cont.)

- Characterization:
- NTU: existence (Gale-Shapley), uniqueness not guaranteed (lattice structure of the set of stable matchings)
- ITU: existence (Kelso-Crawford's generalization of Gale-Shapley), uniqueness not guaranteed

Formal structure: differences (cont.)

- Characterization:
- NTU: existence (Gale-Shapley), uniqueness not guaranteed (lattice structure of the set of stable matchings)
- ITU: existence (Kelso-Crawford's generalization of Gale-Shapley), uniqueness not guaranteed
- TU: highly specific

Formal structure: differences (cont.)

- Characterization:
- NTU: existence (Gale-Shapley), uniqueness not guaranteed (lattice structure of the set of stable matchings)
- ITU: existence (Kelso-Crawford's generalization of Gale-Shapley), uniqueness not guaranteed
- TU: highly specific
- Stability equivalent to surplus maximization

Formal structure: differences (cont.)

- Characterization:
- NTU: existence (Gale-Shapley), uniqueness not guaranteed (lattice structure of the set of stable matchings)
- ITU: existence (Kelso-Crawford's generalization of Gale-Shapley), uniqueness not guaranteed
- TU: highly specific
- Stability equivalent to surplus maximization
- therefore: existence easy to establish (optimal transportation)

Formal structure: differences (cont.)

- Characterization:
- NTU: existence (Gale-Shapley), uniqueness not guaranteed (lattice structure of the set of stable matchings)
- ITU: existence (Kelso-Crawford's generalization of Gale-Shapley), uniqueness not guaranteed
- TU: highly specific
- Stability equivalent to surplus maximization
- therefore: existence easy to establish (optimal transportation)
- 'generic' uniqueness

Formal structure: differences (cont.)

- Characterization:
- NTU: existence (Gale-Shapley), uniqueness not guaranteed (lattice structure of the set of stable matchings)
- ITU: existence (Kelso-Crawford's generalization of Gale-Shapley), uniqueness not guaranteed
- TU: highly specific
- Stability equivalent to surplus maximization
- therefore: existence easy to establish (optimal transportation)
- 'generic' uniqueness
- In a nutshell

Formal structure: differences (cont.)

- Characterization:
- NTU: existence (Gale-Shapley), uniqueness not guaranteed (lattice structure of the set of stable matchings)
- ITU: existence (Kelso-Crawford's generalization of Gale-Shapley), uniqueness not guaranteed
- TU: highly specific
- Stability equivalent to surplus maximization
- therefore: existence easy to establish (optimal transportation)
- 'generic' uniqueness
- In a nutshell
- NTU: intragroup allocation exogenously imposed; transfers are ruled out by assumption

Formal structure: differences (cont.)

- Characterization:
- NTU: existence (Gale-Shapley), uniqueness not guaranteed (lattice structure of the set of stable matchings)
- ITU: existence (Kelso-Crawford's generalization of Gale-Shapley), uniqueness not guaranteed
- TU: highly specific
- Stability equivalent to surplus maximization
- therefore: existence easy to establish (optimal transportation)
- 'generic' uniqueness
- In a nutshell
- NTU: intragroup allocation exogenously imposed; transfers are ruled out by assumption
- TU and ITU: intragroup allocation endogenous; transfers are paramount and determined (or constrained) by equilibrium conditions

Formal structure: differences (cont.)

- Characterization:
- NTU: existence (Gale-Shapley), uniqueness not guaranteed (lattice structure of the set of stable matchings)
- ITU: existence (Kelso-Crawford's generalization of Gale-Shapley), uniqueness not guaranteed
- TU: highly specific
- Stability equivalent to surplus maximization
- therefore: existence easy to establish (optimal transportation)
- 'generic' uniqueness
- In a nutshell
- NTU: intragroup allocation exogenously imposed; transfers are ruled out by assumption
- TU and ITU: intragroup allocation endogenous; transfers are paramount and determined (or constrained) by equilibrium conditions
- TU: life much easier (GQL \rightarrow equivalent to surplus maximization) but price to pay: couple's (aggregate) behavior does not depend on 'powers', therefore on equilibrium conditions

Implications (crucial for empirical implementation)

- NTU: stable matchings solve

$$
u(x)=\max _{z}\{U(x, z) \mid V(x, z) \geq v(z)\}
$$

and

$$
v(y)=\max _{z}\{V(z, y) \mid U(z, y) \geq u(z)\}
$$

for some pair of functions u and v.

Implications (crucial for empirical implementation)

- NTU: stable matchings solve

$$
u(x)=\max _{z}\{U(x, z) \mid V(x, z) \geq v(z)\}
$$

and

$$
v(y)=\max _{z}\{V(z, y) \mid U(z, y) \geq u(z)\}
$$

for some pair of functions u and v.

- TU: stable matchings solve

$$
u(x)=\max _{z}\{s(x, z)-v(z)\} \text { and } v(y)=\max _{z}\{s(z, y)-u(z)\}
$$

for some pair of functions u and v.

Implications (crucial for empirical implementation)

- NTU: stable matchings solve

$$
u(x)=\max _{z}\{U(x, z) \mid V(x, z) \geq v(z)\}
$$

and

$$
v(y)=\max _{z}\{V(z, y) \mid U(z, y) \geq u(z)\}
$$

for some pair of functions u and v.

- TU: stable matchings solve

$$
u(x)=\max _{z}\{s(x, z)-v(z)\} \text { and } v(y)=\max _{z}\{s(z, y)-u(z)\}
$$

for some pair of functions u and v.

- ITU: stable matchings solve

$$
u(x)=\max _{z}\{F(x, z, v(z))\} \text { and } v(y)=\max _{z}\left\{F^{-1}(z, y, u(z))\right\}
$$

for some pair of functions u and v.

Roadmap

(1) Matching models: general presentation
(2) The case of Transferable Utility (TU)
(3) Applications:

- Intra-household allocation: back-of-the-envelope computations
- Roe vs Wade and female empowerment
- Women's demand for highest education
(9) Extensions

Transferable Utility (TU)

Definition

A group satisfies TU if there exists monotone transformations of individual utilities such that the Pareto frontier is an hyperplane $u(x)+v(y)=s(x, y)$ for all values of prices and income.

Note that:

- TU is a property of a group (not an individual)
- TU is an ordinal property; it does not require linear, quasi-linear of convex preferences
\rightarrow in particular, can be applied to risk sharing!

Transferable Utility on the Marriage Market

Application to the Marriage Market
\rightarrow Basic question: when assuming TU, what restrictions on preferences?

- Need a model of household decision
\rightarrow here: collective model; indeed
- assumes efficiency (which matching models do)
- encompasses unitary, bargaining, 'equilibrium', 'separate spheres',... as particular cases
- Public and private consumptions; utilities $u_{i}\left(q_{i}, Q\right)$
- TU if and only if 'Generalized Gorman' (Chiappori, Gugl 2014): conditional indirect utility is affine in (private) expenditures, with identical coefficients
- Then common model: x, y incomes and $s(x, y)=H(x+y)$

Basic result

- If a matching is stable, the corresponding measure satisfies the surplus maximization problem, which is an optimal transportation problem (Monge-Kantorovitch):
Find a measure h on $X \times Y$ such that the marginals of h are F and G, and h solves

$$
\max _{h} \int_{X \times Y} s(x, y) d h(x, y)
$$

Hence: linear programming

Basic result

- If a matching is stable, the corresponding measure satisfies the surplus maximization problem, which is an optimal transportation problem (Monge-Kantorovitch):
Find a measure h on $X \times Y$ such that the marginals of h are F and G, and h solves

$$
\max _{h} \int_{X \times Y} s(x, y) d h(x, y)
$$

Hence: linear programming

- Dual problem: dual functions $u(x), v(y)$ and solve

$$
\min _{u, v} \int_{X} u(x) d F(x)+\int_{Y} v(y) d G(y)
$$

under the constraint

$$
u(x)+v(y) \geq s(x, y) \text { for all }(x, y) \in X \times Y
$$

Basic result

- If a matching is stable, the corresponding measure satisfies the surplus maximization problem, which is an optimal transportation problem (Monge-Kantorovitch):
Find a measure h on $X \times Y$ such that the marginals of h are F and G, and h solves

$$
\max _{h} \int_{X \times Y} s(x, y) d h(x, y)
$$

Hence: linear programming

- Dual problem: dual functions $u(x), v(y)$ and solve

$$
\min _{u, v} \int_{X} u(x) d F(x)+\int_{Y} v(y) d G(y)
$$

under the constraint

$$
u(x)+v(y) \geq s(x, y) \text { for all }(x, y) \in X \times Y
$$

- In particular, the dual variables u and v describe an intrapair allocation compatible with a stable matching

Links with hedonic models

- Hedonic models: defined by set of buyers X, sellers Y, products Z
- Buyers: utility $u(x, z)-P(z)$ which is maximized over z
- Sellers: profit $P(z)-c(y, z)$ which is maximized over z
- Equilibrium: $P(z)$ such that markets clear $(\rightarrow$ measure over $X \times Y \times Z)$
- Canonical correspondence between QL hedonic models and matching models under TU (Chiappori, McCann, Nesheim 2010). Specifically, consider a hedonic model and define surplus:

$$
s(x, y)=\max _{z \in Z}(U(x, z)-c(y, z))
$$

Let η be the marginal of α over $X \times Y, u(x)$ and $v(y)$ by

$$
u(x)=\max _{z \in K} U(x, z)-P(z) \text { and } v(y)=\max _{z \in K} P(z)-c(y, z)
$$

Then (η, u, v) defines a stable matching. Conversely, to each stable matching corresponds an equilibrium hedonic price schedule.

Proof

Start from:

$$
u(x)+v(y) \geq s(x, y) \geq U(x, z)-c(y, z) \quad \text { on } X \times Y \times Z
$$

hence

$$
c(y, z)+v(y) \geq U(x, z)-u(x) \quad \text { on } X \times Y \times Z
$$

and

$$
\inf _{y \in Y}\{c(y, z)+v(y)\} \geq \sup _{x \in X}\{U(x, z)-u(x)\} \quad \text { on } Z .
$$

Take any $P(z)$ such that

$$
\inf _{y \in Y}\{c(y, z)+v(y)\} \geq P(z) \geq \sup _{x \in X}\{u(x, z)-u(x)\} \quad \text { on } Z .
$$

Supermodularity and assortative matching

One-dimensional:

- s is supermodular if whenever $x \geq x^{\prime}$ and $y \geq y^{\prime}$ then

$$
s(x, y)+s\left(x^{\prime}, y^{\prime}\right) \geq s\left(x, y^{\prime}\right)+s\left(x^{\prime}, y\right)
$$

- Then stable matching is assortative; indeed, surplus maximization
- Interpretation: single crossing (Spence - Mirrlees). Assume that s is C^{1} then

$$
s(x, y)-s\left(x^{\prime}, y\right) \geq s\left(x, y^{\prime}\right)-s\left(x^{\prime}, y^{\prime}\right)
$$

and $\partial s / \partial x$ increasing in y; if s is C^{2} then

$$
\frac{\partial^{2} s}{\partial x \partial y} \geq 0
$$

- Of course, similar results with submodularity $(\partial s / \partial x$ decreasing in y)
- In both case, $\partial s / \partial x$ monotonic in y; if strict then injective

Supermodularity and assortative matching

- Problem: both super- (or sub-) modularity and assortative matching are typically one-dimensional
- Generalization (CMcCN ET 2010):

Definition

A surplus function $s: X \times Y \longrightarrow[0, \infty[$ is said to be X-twisted if there is a set $X_{L} \subset X_{0}$ of zero volume such that $\partial^{x} s\left(x_{0}, y_{1}\right)$ is disjoint from $\partial^{x} s\left(x_{0}, y_{2}\right)$ for all $x_{0} \in X_{0} \backslash X_{L}$ and $y_{1} \neq y_{2}$ in Y.

- Then the stable matching is unique and pure

Definition

The matching is pure if the measure μ is born by the graph of a function: for almost all x there exists exactly one y such that x matched with y.
\rightarrow excludes 'mixed strategies'

Roadmap

(1) Matching models: general presentation
(2) The case of Transferable Utility (TU)
(3) Applications:

- Intra-household allocation: back-of-the-envelope computations
- Roe vs Wade and female empowerment
- Women's demand for highest education
(9) Extensions

Intra-household allocation

Simple framework:

- One-dimensional heterogeneity (income, actual or potential)
- Surplus: convex function of total income $\rightarrow s(x, y)=H(x+y)$ Note that supermodular \rightarrow assortative matching: if F and G respective CDFs,

$$
\begin{aligned}
1-F(x) & =1-G(y) \Rightarrow x=\phi(y)=F^{-1}[G(y)] \\
& \Rightarrow y=\psi(x)=G^{-1}[F(x)]
\end{aligned}
$$

- Income distributions: 'linear shift': $F(t)=G(\alpha t-\beta)$ for some $\alpha<1, \beta>0$
In particular, ϕ and ψ affine:

$$
\psi(x)=\alpha x-\beta, \quad \phi(y)=\frac{y+\beta}{\alpha}
$$

- Works pretty well in practice, even with $\beta=0$

Intra-household allocation

Then:

- Stability:

$$
u(x)=\max _{y}(s(x, y)-v(y))
$$

therefore

$$
\begin{aligned}
u^{\prime}(x) & =\frac{\partial s}{\partial x}(x, \psi(x))=H^{\prime}(x+\psi(x)) \text { and } v^{\prime}(y)=H^{\prime}(y+\phi(y) \\
& \Rightarrow u(x)=K^{\prime}+\frac{1}{1+\alpha} H(x+\psi(x)), \\
v(y) & =K+\frac{\alpha}{1+\alpha} H(\phi(y)+y)
\end{aligned}
$$

- Pinning down K and K^{\prime} :
- the sum is known (from the surplus function)
- if more women than men, the last married woman is indifferent between marriage and singlehood

Intra-household allocation

Consider an upward shift in female income: y becomes $k y$ with $k>1$. Then:

- same matching patterns,
- but changes in the redistribution of surplus:

$$
\begin{aligned}
& \frac{\partial v_{k}}{\partial k}=\frac{\alpha y}{\alpha+1} H^{\prime}(y+x)+\frac{\alpha}{(\alpha+1)^{2}} H(y+x) \text { and } \\
& \frac{\partial u_{k}}{\partial k}=\frac{y}{\alpha+1} H^{\prime}(y+x)-\frac{\alpha}{(\alpha+1)^{2}} H(y+x)
\end{aligned}
$$

- Note the 2 components: increased total surplus and redistribution!

Roadmap

(1) Matching models: general presentation
(2) The case of Transferable Utility (TU)
(3) Applications:

- Intra-household allocation: back-of-the-envelope computations
- Roe vs Wade and female empowerment
- Women's demand for highest education
(9) Extensions

Abortion and female empowerment

Background

- 73: Roe vs Wade

Abortion and female empowerment

Background

- 73: Roe vs Wade
- Did all women benefit?

Abortion and female empowerment

Background

- 73: Roe vs Wade
- Did all women benefit?
- Some obviously did

Abortion and female empowerment

Background

- 73: Roe vs Wade
- Did all women benefit?
- Some obviously did
- But what about women who would not use abortion?

Abortion and female empowerment

Background

- 73: Roe vs Wade
- Did all women benefit?
- Some obviously did
- But what about women who would not use abortion?
- In particular, what about 'GE' effect?

Abortion and female empowerment

Background

- 73: Roe vs Wade
- Did all women benefit?
- Some obviously did
- But what about women who would not use abortion?
- In particular, what about 'GE' effect?
- Model:

Abortion and female empowerment

Background

- 73: Roe vs Wade
- Did all women benefit?
- Some obviously did
- But what about women who would not use abortion?
- In particular, what about ' $G E$ ' effect?
- Model:
- Men: identical, income Y, preferences

$$
U_{H}\left(c_{H}, k\right)=c_{H}+u_{H} k
$$

Abortion and female empowerment

Background

- 73: Roe vs Wade
- Did all women benefit?
- Some obviously did
- But what about women who would not use abortion?
- In particular, what about ' $G E$ ' effect?
- Model:
- Men: identical, income Y, preferences

$$
U_{H}\left(c_{H}, k\right)=c_{H}+u_{H} k
$$

- Women: income y if no child, $y^{\prime}<y$ if child; preferences:

$$
U(c, k)=c+u k
$$

where u distributed over $[0, U] \rightarrow$ single women have a child if

$$
u \geq \bar{u}=y-y^{\prime}
$$

Abortion and female empowerment

Background

- 73: Roe vs Wade
- Did all women benefit?
- Some obviously did
- But what about women who would not use abortion?
- In particular, what about ' $G E$ ' effect?
- Model:
- Men: identical, income Y, preferences

$$
U_{H}\left(c_{H}, k\right)=c_{H}+u_{H} k
$$

- Women: income y if no child, $y^{\prime}<y$ if child; preferences:

$$
U(c, k)=c+u k
$$

where u distributed over $[0, U] \rightarrow$ single women have a child if

$$
u \geq \bar{u}=y-y^{\prime}
$$

- Couples: may have a child; unwanted children possible, proba. p

Abortion and female empowerment

- Couples: benefit of a child $u_{H}+u$, cost $y-y^{\prime} \rightarrow$ married couple plans to have a child if

$$
u \geq y-y^{\prime}-u_{H}=\underline{u}
$$

- Therefore:
- women of 'high' type ($u \geq \bar{u}$) always choose to have a child
- women of 'intermediate' type ($\underline{u}<u<\bar{u}$) choose to have a child only when married, and need compensation $y-y^{\prime}-u$
- women of 'low' type ($u \leq \underline{u}$) never choose to have a child (may have unwanted child)

Abortion and female empowerment

Matching: Maximum husband's utility as a function of the wife's taste Assumption: more women than men

Three possible regimes

(1) Males very scarce \rightarrow no surplus for women
(2) Males scarce \rightarrow marginal woman intermediate, determines surplus
(3) Males abundant \rightarrow maximum female surplus

Impact of birth control

- Definition: changes the probability of unwanted pregnancies

Impact of birth control

- Definition: changes the probability of unwanted pregnancies
- Therefore: increase in total surplus for some couples

Impact of birth control

- Definition: changes the probability of unwanted pregnancies
- Therefore: increase in total surplus for some couples
- ... but changes in allocation of surplus for all couples

Impact of birth control

Graph:

Impact of birth control

Graph:

Roadmap

(1) Matching models: general presentation
(2) The case of Transferable Utility (TU)
(3) Applications:

- Intra-household allocation: back-of-the-envelope computations
- Roe vs Wade and female empowerment
- Women's demand for highest education
(9) Extensions

Reproductive capital and women's demand for higher education

Source: Corinne Low's dissertation (2014)

- Basic remark: sharp decline in female fertility between 35 and 45

Rates of Infertility and Miscarriage Increasing Sharply with Age

Source: Heffner 2004, "Advanced Maternal Age: How old is too old?"

Reproductive capital and women's demand for higher education

Source: Corinne Low's dissertation (2014)

- Basic remark: sharp decline in female fertility between 35 and 45
- Consequence: matching patterns and age

Spousal Income vs Age at Marriage (1955-1966 birth cohort, 2010 ACS)

Reproductive capital and women's demand for higher education

Source: Corinne Low's dissertation (2014)

- Basic remark: sharp decline in female fertility between 35 and 45
- Consequence: matching patterns and age
- Consider the choice between

Reproductive capital and women's demand for higher education

Source: Corinne Low's dissertation (2014)

- Basic remark: sharp decline in female fertility between 35 and 45
- Consequence: matching patterns and age
- Consider the choice between
- entering the MM after college

Reproductive capital and women's demand for higher education

Source: Corinne Low's dissertation (2014)

- Basic remark: sharp decline in female fertility between 35 and 45
- Consequence: matching patterns and age
- Consider the choice between
- entering the MM after college
- delaying, in order to acquire a 'college +' degree

Reproductive capital and women's demand for higher education

Source: Corinne Low's dissertation (2014)

- Basic remark: sharp decline in female fertility between 35 and 45
- Consequence: matching patterns and age
- Consider the choice between
- entering the MM after college
- delaying, in order to acquire a 'college +' degree
- Pros and cons of delaying:

Reproductive capital and women's demand for higher education

Source: Corinne Low's dissertation (2014)

- Basic remark: sharp decline in female fertility between 35 and 45
- Consequence: matching patterns and age
- Consider the choice between
- entering the MM after college
- delaying, in order to acquire a 'college +' degree
- Pros and cons of delaying:
- Pro: higher education \rightarrow higher wage, etc.

Reproductive capital and women's demand for higher education

Source: Corinne Low's dissertation (2014)

- Basic remark: sharp decline in female fertility between 35 and 45
- Consequence: matching patterns and age
- Consider the choice between
- entering the MM after college
- delaying, in order to acquire a 'college +' degree
- Pros and cons of delaying:
- Pro: higher education \rightarrow higher wage, etc.
- Con: delayed entry \rightarrow loss of 'reproductive capital'

Reproductive capital and women's demand for higher education

Source: Corinne Low's dissertation (2014)

- Basic remark: sharp decline in female fertility between 35 and 45
- Consequence: matching patterns and age
- Consider the choice between
- entering the MM after college
- delaying, in order to acquire a 'college +' degree
- Pros and cons of delaying:
- Pro: higher education \rightarrow higher wage, etc.
- Con: delayed entry \rightarrow loss of 'reproductive capital'
- Impact on marital prospects?

Model

- Two commodities, private consumption and child expenditures; utility:

$$
u_{i}=c_{i}(Q+1), i=h, w
$$

and budget constraint (y_{i} denotes i 's income)

$$
c_{h}+c_{w}+Q=y_{h}+y_{w}
$$

Model

- Two commodities, private consumption and child expenditures; utility:

$$
u_{i}=c_{i}(Q+1), i=h, w
$$

and budget constraint (y_{i} denotes i 's income)

$$
c_{h}+c_{w}+Q=y_{h}+y_{w}
$$

- Transferable utility: any efficient allocation maximizes $u_{h}+u_{w}$; therefore surplus with a child

$$
s\left(y_{h}, y_{w}\right)=\frac{\left(y_{h}+y_{w}+1\right)^{2}}{4}
$$

and without a child $(Q=0)$

$$
s\left(y_{h}, y_{w}\right)=y_{h}+y_{w}
$$

therefore, if π probability of a child:

$$
s\left(y_{h}, y_{w}\right)=\pi \frac{\left(y_{h}+y_{w}+1\right)^{2}}{4}+(1-\pi)\left(y_{h}+y_{w}\right)
$$

Populations

- Men: differ in income $\rightarrow y_{h}$ uniform on $[1, Y]$

Populations

- Men: differ in income $\rightarrow y_{h}$ uniform on $[1, Y]$
- Women: more complex

Populations

- Men: differ in income $\rightarrow y_{h}$ uniform on $[1, Y]$
- Women: more complex
- differ in skills $\rightarrow s$ uniform on $[0, S]$

Populations

- Men: differ in income $\rightarrow y_{h}$ uniform on $[1, Y]$
- Women: more complex
- differ in skills $\rightarrow s$ uniform on $[0, S]$
- may choose to invest \rightarrow income:

Populations

- Men: differ in income $\rightarrow y_{h}$ uniform on $[1, Y]$
- Women: more complex
- differ in skills $\rightarrow s$ uniform on $[0, S]$
- may choose to invest \rightarrow income:
- $y_{w}=\lambda s$ if invest (with $\lambda>1$)

Populations

- Men: differ in income $\rightarrow y_{h}$ uniform on $[1, Y]$
- Women: more complex
- differ in skills $\rightarrow s$ uniform on $[0, S]$
- may choose to invest \rightarrow income:
- $y_{w}=\lambda s$ if invest (with $\lambda>1$)
- $y_{w}=s$ if not

Populations

- Men: differ in income $\rightarrow y_{h}$ uniform on $[1, Y]$
- Women: more complex
- differ in skills $\rightarrow s$ uniform on $[0, S]$
- may choose to invest \rightarrow income:
- $y_{w}=\lambda s$ if invest (with $\lambda>1$)
- $y_{w}=s$ if not
- but investment implies fertility loss

Populations

- Men: differ in income $\rightarrow y_{h}$ uniform on $[1, Y]$
- Women: more complex
- differ in skills $\rightarrow s$ uniform on $[0, S]$
- may choose to invest \rightarrow income:
- $y_{w}=\lambda s$ if invest (with $\lambda>1$)
- $y_{w}=s$ if not
- but investment implies fertility loss
- $\pi=p$ if invest

Populations

- Men: differ in income $\rightarrow y_{h}$ uniform on $[1, Y]$
- Women: more complex
- differ in skills $\rightarrow s$ uniform on $[0, S]$
- may choose to invest \rightarrow income:
- $y_{w}=\lambda s$ if invest (with $\lambda>1$)
- $y_{w}=s$ if not
- but investment implies fertility loss
- $\pi=p$ if invest
- $\pi=P>p$ if not

Populations

- Men: differ in income $\rightarrow y_{h}$ uniform on $[1, Y]$
- Women: more complex
- differ in skills $\rightarrow s$ uniform on $[0, S]$
- may choose to invest \rightarrow income:
- $y_{w}=\lambda s$ if invest (with $\lambda>1$)
- $y_{w}=s$ if not
- but investment implies fertility loss
- $\pi=p$ if invest
- $\pi=P>p$ if not
- Therefore: once investment decisions have been made, bidimensional matching model, and three questions:

Populations

- Men: differ in income $\rightarrow y_{h}$ uniform on $[1, Y]$
- Women: more complex
- differ in skills $\rightarrow s$ uniform on $[0, S]$
- may choose to invest \rightarrow income:
- $y_{w}=\lambda s$ if invest (with $\lambda>1$)
- $y_{w}=s$ if not
- but investment implies fertility loss
- $\pi=p$ if invest
- $\pi=P>p$ if not
- Therefore: once investment decisions have been made, bidimensional matching model, and three questions:
- who marries whom?

Populations

- Men: differ in income $\rightarrow y_{h}$ uniform on $[1, Y]$
- Women: more complex
- differ in skills $\rightarrow s$ uniform on $[0, S]$
- may choose to invest \rightarrow income:
- $y_{w}=\lambda s$ if invest (with $\lambda>1$)
- $y_{w}=s$ if not
- but investment implies fertility loss
- $\pi=p$ if invest
- $\pi=P>p$ if not
- Therefore: once investment decisions have been made, bidimensional matching model, and three questions:
- who marries whom?
- how is the surplus distributed?

Populations

- Men: differ in income $\rightarrow y_{h}$ uniform on $[1, Y]$
- Women: more complex
- differ in skills $\rightarrow s$ uniform on $[0, S]$
- may choose to invest \rightarrow income:
- $y_{w}=\lambda s$ if invest (with $\lambda>1$)
- $y_{w}=s$ if not
- but investment implies fertility loss
- $\pi=p$ if invest
- $\pi=P>p$ if not
- Therefore: once investment decisions have been made, bidimensional matching model, and three questions:
- who marries whom?
- how is the surplus distributed?
- what is the impact on (ex ante) investment?

Resolution

- Two stage: invest in stage 1, match in stage 2

Resolution

- Two stage: invest in stage 1 , match in stage 2
- Resolution: backwards (start with stage 2 cond. on stage 1 , then stage 1)

Resolution

- Two stage: invest in stage 1 , match in stage 2
- Resolution: backwards (start with stage 2 cond. on stage 1 , then stage 1)
- Assumption: there exists some \bar{s} such that

$$
\text { invest iff } s \geq \bar{s}
$$

Then:

Resolution

- Two stage: invest in stage 1, match in stage 2
- Resolution: backwards (start with stage 2 cond. on stage 1 , then stage 1)
- Assumption: there exists some \bar{s} such that

$$
\text { invest iff } s \geq \bar{s}
$$

Then:

- There exists a stable match; generically unique

Resolution

- Two stage: invest in stage 1 , match in stage 2
- Resolution: backwards (start with stage 2 cond. on stage 1 , then stage 1)
- Assumption: there exists some \bar{s} such that

$$
\text { invest iff } s \geq \bar{s}
$$

Then:

- There exists a stable match; generically unique
- For given fertility, assortative matching on income

Resolution

- Two stage: invest in stage 1 , match in stage 2
- Resolution: backwards (start with stage 2 cond. on stage 1 , then stage 1)
- Assumption: there exists some \bar{s} such that

$$
\text { invest iff } s \geq \bar{s}
$$

Then:

- There exists a stable match; generically unique
- For given fertility, assortative matching on income
- Matching and fertility: three possible regimes

Resolution

- Two stage: invest in stage 1 , match in stage 2
- Resolution: backwards (start with stage 2 cond. on stage 1 , then stage 1)
- Assumption: there exists some \bar{s} such that

$$
\text { invest iff } s \geq \bar{s}
$$

Then:

- There exists a stable match; generically unique
- For given fertility, assortative matching on income
- Matching and fertility: three possible regimes
- Regime 1: negative assortative matching (can be discarded)

1. Negative assortative

Resolution

- Two stage: invest in stage 1 , match in stage 2
- Resolution: backwards (start with stage 2 cond. on stage 1, then stage 1)
- Assumption: there exists some \bar{s} such that

$$
\text { invest iff } s \geq \bar{s}
$$

Then:

- There exists a stable match; generically unique
- For given fertility, assortative matching on income
- Matching and fertility: three possible regimes
- Regime 1: negative assortative matching (can be discarded)
- Regime 2: positive assortative matching

Resolution

- Two stage: invest in stage 1 , match in stage 2
- Resolution: backwards (start with stage 2 cond. on stage 1, then stage 1)
- Assumption: there exists some \bar{s} such that

$$
\text { invest iff } s \geq \bar{s}
$$

Then:

- There exists a stable match; generically unique
- For given fertility, assortative matching on income
- Matching and fertility: three possible regimes
- Regime 1: negative assortative matching (can be discarded)
- Regime 2: positive assortative matching
- Regime 3: intermediate

Resolution

- Two stage: invest in stage 1 , match in stage 2
- Resolution: backwards (start with stage 2 cond. on stage 1, then stage 1)
- Assumption: there exists some \bar{s} such that

$$
\text { invest iff } s \geq \bar{s}
$$

Then:

- There exists a stable match; generically unique
- For given fertility, assortative matching on income
- Matching and fertility: three possible regimes
- Regime 1: negative assortative matching (can be discarded)
- Regime 2: positive assortative matching
- Regime 3: intermediate
- Which regime? Depends on the parameters. In particular:

Resolution

- Two stage: invest in stage 1 , match in stage 2
- Resolution: backwards (start with stage 2 cond. on stage 1 , then stage 1)
- Assumption: there exists some \bar{s} such that

$$
\text { invest iff } s \geq \bar{s}
$$

Then:

- There exists a stable match; generically unique
- For given fertility, assortative matching on income
- Matching and fertility: three possible regimes
- Regime 1: negative assortative matching (can be discarded)
- Regime 2: positive assortative matching
- Regime 3: intermediate
- Which regime? Depends on the parameters. In particular:
- If λ small and P / p large, regime 3

Resolution

- Two stage: invest in stage 1 , match in stage 2
- Resolution: backwards (start with stage 2 cond. on stage 1, then stage 1)
- Assumption: there exists some \bar{s} such that

$$
\text { invest iff } s \geq \bar{s}
$$

Then:

- There exists a stable match; generically unique
- For given fertility, assortative matching on income
- Matching and fertility: three possible regimes
- Regime 1: negative assortative matching (can be discarded)
- Regime 2: positive assortative matching
- Regime 3: intermediate
- Which regime? Depends on the parameters. In particular:
- If λ small and P / p large, regime 3
- If λ large and P / p not too large, regime 2

Stage 1: investment choice

\rightarrow Graph

Empirical predictions

Basic intuition: we have moved from ' λ small, P / p large' to ' λ large, P / p not too large' Why?

- Increase in λ : dramatic increase in 'college + premium'

Wage income premium over women with some college

Empirical predictions

Basic intuition: we have moved from ' λ small, P / p large' to ' λ large, P / p not too large' Why?

- Increase in λ : dramatic increase in 'college + premium'
- Decrease in P / p : two factors

Empirical predictions

Basic intuition: we have moved from ' λ small, P / p large' to ' λ large, P / p not too large' Why?

- Increase in λ : dramatic increase in 'college + premium'
- Decrease in P / p : two factors
- progress in assisted reproduction

Empirical predictions

Basic intuition: we have moved from ' λ small, P / p large' to ' λ large, P / p not too large' Why?

- Increase in λ : dramatic increase in 'college + premium'
- Decrease in P / p : two factors
- progress in assisted reproduction
- (much more important): dramatic change in desired family size

Notes: "Don't know/refused" responses not shown. Respondents were asked: "What is the ideal number of children for a family to have?"

Empirical predictions

Basic intuition: we have moved from ' λ small, P / p large' to ' λ large, P / p not too large' Why?

- Increase in λ : dramatic increase in 'college + premium'
- Decrease in P / p : two factors
- progress in assisted reproduction
- (much more important): dramatic change in desired family size
- Consequence: according to the model:

Empirical predictions

Basic intuition: we have moved from ' λ small, P / p large' to ' λ large, P / p not too large' Why?

- Increase in λ : dramatic increase in 'college + premium'
- Decrease in P / p : two factors
- progress in assisted reproduction
- (much more important): dramatic change in desired family size
- Consequence: according to the model:
- Before the 80 s: college + women marry 'below' college graduate

Empirical predictions

Basic intuition: we have moved from ' λ small, P / p large' to ' λ large, P / p not too large' Why?

- Increase in λ : dramatic increase in 'college + premium'
- Decrease in P / p : two factors
- progress in assisted reproduction
- (much more important): dramatic change in desired family size
- Consequence: according to the model:
- Before the 80 s: college + women marry 'below' college graduate
- After the 80s: college + women marry 'above' college graduate

Empirical predictions

Basic intuition: we have moved from ' λ small, P / p large' to ' λ large, P / p not too large' Why?

- Increase in λ : dramatic increase in 'college + premium'
- Decrease in P / p : two factors
- progress in assisted reproduction
- (much more important): dramatic change in desired family size
- Consequence: according to the model:
- Before the 80 s: college + women marry 'below' college graduate
- After the 80s: college + women marry 'above' college graduate
- What about data?

Spousal income by wife's education level, white women 41-50

Marriage rates by education level, white women 41-50

Currently divorced rates by education level, white women 41-50

$-\leftarrow-$	Highly Educated	\square	College Graduates ---- everyone Else
$95 \% \mathrm{Cl}$			

Generalization: the 'true' bidimensional model

Source: Chiappori, McCann, Pass (in progress)

- Idea: same model, but both incomes and probabilities are continuous

Generalization: the 'true' bidimensional model

Source: Chiappori, McCann, Pass (in progress)

- Idea: same model, but both incomes and probabilities are continuous
- Therefore: $X \subset \mathbb{R}^{2}, Y \subset \mathbb{R}$

Generalization: the 'true' bidimensional model

Source: Chiappori, McCann, Pass (in progress)

- Idea: same model, but both incomes and probabilities are continuous
- Therefore: $X \subset \mathbb{R}^{2}, Y \subset \mathbb{R}$
- Stability:

$$
u\left(x_{1}, x_{2}\right)=\max _{y} s\left(x_{1}, x_{2}, y\right)-v(y)
$$

Assume purity, then $y=f\left(x_{1}, x_{2}\right)$ and envelope theorem:

$$
\begin{aligned}
\frac{\partial u}{\partial x_{1}} & =\frac{\partial s}{\partial x_{1}}\left(x_{1}, x_{2}, f\left(x_{1}, x_{2}\right)\right) \\
\frac{\partial u}{\partial x_{2}} & =\frac{\partial s}{\partial x_{2}}\left(x_{1}, x_{2}, f\left(x_{1}, x_{2}\right)\right)
\end{aligned}
$$

Generalization: the 'true' bidimensional model

Source: Chiappori, McCann, Pass (in progress)

- Idea: same model, but both incomes and probabilities are continuous
- Therefore: $X \subset \mathbb{R}^{2}, Y \subset \mathbb{R}$
- Stability:

$$
u\left(x_{1}, x_{2}\right)=\max _{y} s\left(x_{1}, x_{2}, y\right)-v(y)
$$

Assume purity, then $y=f\left(x_{1}, x_{2}\right)$ and envelope theorem:

$$
\begin{aligned}
\frac{\partial u}{\partial x_{1}} & =\frac{\partial s}{\partial x_{1}}\left(x_{1}, x_{2}, f\left(x_{1}, x_{2}\right)\right) \\
\frac{\partial u}{\partial x_{2}} & =\frac{\partial s}{\partial x_{2}}\left(x_{1}, x_{2}, f\left(x_{1}, x_{2}\right)\right)
\end{aligned}
$$

- CDR give the pdf in f

$$
\frac{\partial^{2} s}{\partial x_{1} \partial y} \frac{\partial f}{\partial x_{2}}=\frac{\partial^{2} s}{\partial x_{2} \partial y} \frac{\partial f}{\partial x_{1}}
$$

Generalization: the 'true' bidimensional model

Actually, if ϕ defined by

$$
f\left(x_{1}, x_{2}\right)=y \rightarrow x_{2}=\phi\left(x_{1}, y\right)
$$

then DE in ϕ :

$$
\frac{\partial \phi}{\partial x_{1}}=\frac{\frac{\partial^{2} s\left(x_{1}, \phi\left(x_{1}, y\right), y\right)}{\partial x_{1} \partial y}}{\frac{\partial^{2} s\left(x_{1}, \phi\left(x_{1}, y\right), y\right)}{\partial x_{2} \partial y}}
$$

In our case:

$$
\frac{\partial \phi}{\partial p}=-\frac{1}{p}(\phi(p, y)+y-1)
$$

gives

$$
\phi(p, y)=1-y+\frac{K(y)}{p}
$$

and $K(y)$ pinned down by the measure conditions

The uniform case: iso-husband curves

A stochastic version

Finally, how can we capture traits that are unobservable (to the econometrician)?
\rightarrow Usual idea: unobserved heterogeneity represented by a random component (say, in the surplus function)
\rightarrow A simple framework:

- Men and women belong to observable classes (e.g. education)

A stochastic version

Finally, how can we capture traits that are unobservable (to the econometrician)?
\rightarrow Usual idea: unobserved heterogeneity represented by a random component (say, in the surplus function)
\rightarrow A simple framework:

- Men and women belong to observable classes (e.g. education)
- If $i \in I$ and $j \in J$, surplus

$$
s_{i, j}=Z^{I, J}+\varepsilon_{i, j}
$$

A stochastic version

Finally, how can we capture traits that are unobservable (to the econometrician)?
\rightarrow Usual idea: unobserved heterogeneity represented by a random component (say, in the surplus function)
\rightarrow A simple framework:

- Men and women belong to observable classes (e.g. education)
- If $i \in I$ and $j \in J$, surplus

$$
s_{i, j}=Z^{I, J}+\varepsilon_{i, j}
$$

- Question: what distribution for the εs ? \rightarrow various ideas:

A stochastic version

Finally, how can we capture traits that are unobservable (to the econometrician)?
\rightarrow Usual idea: unobserved heterogeneity represented by a random component (say, in the surplus function)
\rightarrow A simple framework:

- Men and women belong to observable classes (e.g. education)
- If $i \in I$ and $j \in J$, surplus

$$
s_{i, j}=Z^{I, J}+\varepsilon_{i, j}
$$

- Question: what distribution for the εs ? \rightarrow various ideas:
- iid (hard to support)

A stochastic version

Finally, how can we capture traits that are unobservable (to the econometrician)?
\rightarrow Usual idea: unobserved heterogeneity represented by a random component (say, in the surplus function)
\rightarrow A simple framework:

- Men and women belong to observable classes (e.g. education)
- If $i \in I$ and $j \in J$, surplus

$$
s_{i, j}=Z^{I, J}+\varepsilon_{i, j}
$$

- Question: what distribution for the εs ? \rightarrow various ideas:
- iid (hard to support)
- separable (Choo-Siow, Chiappori-Salanié-Weiss)

$$
\varepsilon_{i, j}=\alpha_{i}^{J}+\beta_{j}^{\prime}
$$

A stochastic version

Finally, how can we capture traits that are unobservable (to the econometrician)?
\rightarrow Usual idea: unobserved heterogeneity represented by a random component (say, in the surplus function)
\rightarrow A simple framework:

- Men and women belong to observable classes (e.g. education)
- If $i \in I$ and $j \in J$, surplus

$$
s_{i, j}=Z^{I, J}+\varepsilon_{i, j}
$$

- Question: what distribution for the εs ? \rightarrow various ideas:
- iid (hard to support)
- separable (Choo-Siow, Chiappori-Salanié-Weiss)

$$
\varepsilon_{i, j}=\alpha_{i}^{J}+\beta_{j}^{\prime}
$$

- both:

$$
\varepsilon_{i, j}=\alpha_{i}^{J}+\beta_{j}^{\prime}+\eta_{i j}
$$

A stochastic version (cont.)

- Therefore model: stochastic OT...

A stochastic version (cont.)

- Therefore model: stochastic OT...
- ... and main issue: distribution of dual variables?

A stochastic version (cont.)

- Therefore model: stochastic OT...
- ... and main issue: distribution of dual variables?
- In general: nothing known on the distributions of the us and vs

A stochastic version (cont.)

- Therefore model: stochastic OT...
- ... and main issue: distribution of dual variables?
- In general: nothing known on the distributions of the us and vs
- One result (CSW):

Theorem: In the Choo Siow specification, there exists $U^{I, J}$ and $V^{I, J}, I, J=1, \ldots, K$, with $U^{I, J}+V^{I, J}=Z^{I, J}$, such that for any matched couple $(i \in \bar{I}, j \in \bar{J})$

$$
u_{i}=U^{\bar{T}, \bar{J}}+\alpha_{i}^{\bar{J}} \text { and } u_{i}=V^{\bar{\Pi}, \bar{J}}+\beta_{j}^{\bar{\top}}
$$

A stochastic version (cont.)

- Therefore model: stochastic OT...
- ... and main issue: distribution of dual variables?
- In general: nothing known on the distributions of the us and vs
- One result (CSW):

Theorem: In the Choo Siow specification, there exists $U^{I, J}$ and $V^{I, J}, I, J=1, \ldots, K$, with $U^{I, J}+V^{I, J}=Z^{I, J}$, such that for any matched couple $(i \in \bar{I}, j \in \bar{J})$

$$
u_{i}=U^{\bar{\top}, \bar{J}}+\alpha_{i}^{\bar{J}} \text { and } u_{i}=V^{\bar{I}, \bar{J}}+\beta_{j}^{\bar{\top}}
$$

- Corollary: a NSC for $i \in I$ being matched with a spouse in J is:

$$
U^{I J}+\alpha_{i}^{I J} \geq U^{\prime 0}+\alpha_{i}^{\prime 0} \text { and } U^{I J}+\alpha_{i}^{I J} \geq U^{I K}+\alpha_{i}^{\prime K} \text { for all } K
$$

A stochastic version (cont.)

- Therefore model: stochastic OT...
- ... and main issue: distribution of dual variables?
- In general: nothing known on the distributions of the us and vs
- One result (CSW):

Theorem: In the Choo Siow specification, there exists $U^{I, J}$ and $V^{I, J}, I, J=1, \ldots, K$, with $U^{I, J}+V^{I, J}=Z^{I, J}$, such that for any matched couple $(i \in \bar{I}, j \in \bar{J})$

$$
u_{i}=U^{\bar{\top}, \bar{J}}+\alpha_{i}^{\bar{J}} \text { and } u_{i}=V^{\bar{I}, \bar{J}}+\beta_{j}^{\bar{\top}}
$$

- Corollary: a NSC for $i \in I$ being matched with a spouse in J is:

$$
U^{I J}+\alpha_{i}^{I J} \geq U^{\prime 0}+\alpha_{i}^{\prime 0} \text { and } U^{I J}+\alpha_{i}^{I J} \geq U^{I K}+\alpha_{i}^{I K} \text { for all } K
$$

- Estimation by logits; then one can compute

$$
G(I)=E\left[\max _{J} U^{\bar{I}, J}+\alpha_{i}^{J} \mid i \in I\right]
$$

and $G(I)-G\left(I^{\prime}\right)$ is the marital premium from getting I instead of I^{\prime}

A stochastic version (cont.)

- Identification

A stochastic version (cont.)

- Identification
- Static framework (CS): exactly identified under strong parametric restrictions on the distribution

A stochastic version (cont.)

- Identification
- Static framework (CS): exactly identified under strong parametric restrictions on the distribution
- Generalization (CSW): several 'markets' (here cohorts), common value (or trend) of the 'supermodular kernel' (the Zs)

A stochastic version (cont.)

- Identification
- Static framework (CS): exactly identified under strong parametric restrictions on the distribution
- Generalization (CSW): several 'markets' (here cohorts), common value (or trend) of the 'supermodular kernel' (the Zs)
- Then overidentification of a more general model (e.g. heteroskedasticity)

A stochastic version (cont.)

- Identification
- Static framework (CS): exactly identified under strong parametric restrictions on the distribution
- Generalization (CSW): several 'markets' (here cohorts), common value (or trend) of the 'supermodular kernel' (the Zs)
- Then overidentification of a more general model (e.g. heteroskedasticity)
- Results

College premia (men)

white men

College premia (women)

white women

Conclusion

(1) Frictionless matching: a powerful and tractable tool for theoretical analysis, especially when not interested in frictions
(2) Crucial property: intramatch allocation of surplus derived from equilibrium conditions
(3) Applied theory: many applications (abortion, female education, divorce laws, children, ...)
(1) Can be taken to data; structural econometric model, over identified
(Multidimensional versions: index (COQD 2010), general (GS 2010)
(0) Extensions

- ITU: theory; empirical applications still to be developed

Conclusion

(1) Frictionless matching: a powerful and tractable tool for theoretical analysis, especially when not interested in frictions
(2) Crucial property: intramatch allocation of surplus derived from equilibrium conditions
(3) Applied theory: many applications (abortion, female education, divorce laws, children, ...)
(1) Can be taken to data; structural econometric model, over identified
(6) Multidimensional versions: index (COQD 2010), general (GS 2010)
(0) Extensions

- ITU: theory; empirical applications still to be developed
- Endogenous distributions (two stage game): preferences shocks, investement in education, etc.

Conclusion

(1) Frictionless matching: a powerful and tractable tool for theoretical analysis, especially when not interested in frictions
(2) Crucial property: intramatch allocation of surplus derived from equilibrium conditions
(3) Applied theory: many applications (abortion, female education, divorce laws, children, ...)
(1) Can be taken to data; structural econometric model, over identified
(6) Multidimensional versions: index (COQD 2010), general (GS 2010)
(- Extensions

- ITU: theory; empirical applications still to be developed
- Endogenous distributions (two stage game): preferences shocks, investement in education, etc.
- Econometrics: continuous variables (Dupuy-Galichon 2012)

Conclusion

(1) Frictionless matching: a powerful and tractable tool for theoretical analysis, especially when not interested in frictions
(2) Crucial property: intramatch allocation of surplus derived from equilibrium conditions
(3) Applied theory: many applications (abortion, female education, divorce laws, children, ...)
(1) Can be taken to data; structural econometric model, over identified
(6) Multidimensional versions: index (COQD 2010), general (GS 2010)
(- Extensions

- ITU: theory; empirical applications still to be developed
- Endogenous distributions (two stage game): preferences shocks, investement in education, etc.
- Econometrics: continuous variables (Dupuy-Galichon 2012)
- Dynamics

