A unified framework for complementarity in quantum information

Jason Crann

with D. Kribs, R. Levene and I. Todorov.

Carleton University and Université Lille 1

Recent Developments in Quantum Groups Operator Algebras and Applications

February 7th, 2015

Schrödinger picture: Quantum states evolve under completely positive trace preserving (CPTP) maps

$$\mathcal{E}_*: \mathcal{T}(H_S) \to \mathcal{T}(H_S).$$

Schrödinger picture: Quantum states evolve under completely positive trace preserving (CPTP) maps

$$\mathcal{E}_*: \mathcal{T}(H_S) \to \mathcal{T}(H_S).$$

By Stinespring's dilation theorem:

$$\mathcal{E}_*(\rho) = (\mathrm{id} \otimes \mathrm{tr}_E)(U(\rho \otimes |\psi_E\rangle\!\langle\psi_E|)U^*).$$

Schrödinger picture: Quantum states evolve under completely positive trace preserving (CPTP) maps

$$\mathcal{E}_*: \mathcal{T}(H_S) \to \mathcal{T}(H_S).$$

By Stinespring's dilation theorem:

$$\mathcal{E}_*(\rho) = (\mathrm{id} \otimes \mathrm{tr}_E)(U(\rho \otimes |\psi_E\rangle\!\langle\psi_E|)U^*).$$

Complementary channel: $\mathcal{E}^c_* : \mathcal{T}(H_S) \to \mathcal{T}(H_E)$:

$$\mathcal{E}_*^c(\rho) = (\operatorname{tr}_S \otimes \operatorname{id})(U(\rho \otimes |\psi_E\rangle \langle \psi_E|)U^*).$$

Schrödinger picture: Quantum states evolve under completely positive trace preserving (CPTP) maps

$$\mathcal{E}_*: \mathcal{T}(H_S) \to \mathcal{T}(H_S).$$

By Stinespring's dilation theorem:

$$\mathcal{E}_*(\rho) = (\mathrm{id} \otimes \mathrm{tr}_E)(U(\rho \otimes |\psi_E\rangle\!\langle\psi_E|)U^*).$$

Complementary channel: $\mathcal{E}^c_* : \mathcal{T}(H_S) \to \mathcal{T}(H_E)$:

$$\mathcal{E}_*^{c}(\rho) = (\operatorname{tr}_S \otimes \operatorname{id})(U(\rho \otimes |\psi_E\rangle \langle \psi_E|)U^*).$$

Note: Complement is defined up to partial isometry.

Schrödinger picture: Quantum states evolve under completely positive trace preserving (CPTP) maps

$$\mathcal{E}_*: \mathcal{T}(H_S) \to \mathcal{T}(H_S).$$

By Stinespring's dilation theorem:

$$\mathcal{E}_*(\rho) = (\mathrm{id} \otimes \mathrm{tr}_E)(U(\rho \otimes |\psi_E\rangle\!\langle\psi_E|)U^*).$$

Complementary channel: $\mathcal{E}^c_* : \mathcal{T}(H_S) \to \mathcal{T}(H_E)$:

$$\mathcal{E}_*^c(\rho) = (\operatorname{tr}_S \otimes \operatorname{id})(U(\rho \otimes |\psi_E\rangle\langle\psi_E|)U^*).$$

Note: Complement is defined up to partial isometry.

 \mathcal{E}_* and \mathcal{E}_*^c have dual properties

Correctable subsystems [Kribs-Laflamme-Poulin '05]

If $H_S = (H_A \otimes H_B)$, then B is a correctable subsystem for

$$\mathcal{E}_*: \mathcal{T}(H_S) \to \mathcal{T}(H_S)$$

if \exists a CPTP map $\mathcal{R}_*: \mathcal{T}(H_S) \to \mathcal{T}(H_S)$ such that

$$\mathcal{R}_* \circ \mathcal{E}_* = \mathcal{F}_* \otimes id_B$$

for some CPTP map $\mathcal{F}_*: \mathcal{T}(H_A) \to \mathcal{T}(H_S)$.

Correctable subsystems [Kribs-Laflamme-Poulin '05]

If $H_S = (H_A \otimes H_B)$, then B is a correctable subsystem for

$$\mathcal{E}_*: \mathcal{T}(H_S) \to \mathcal{T}(H_S)$$

if \exists a CPTP map $\mathcal{R}_* : \mathcal{T}(H_S) \to \mathcal{T}(H_S)$ such that

$$\mathcal{R}_* \circ \mathcal{E}_* = \mathcal{F}_* \otimes id_B$$

for some CPTP map $\mathcal{F}_*: \mathcal{T}(H_A) \to \mathcal{T}(H_S)$.

IDEA: Information stored in B is recoverable after the channel.

ε -Correctable subsystems

If $H_S = (H_A \otimes H_B)$, then B is an ε -correctable subsystem for

$$\mathcal{E}_*: \mathcal{T}(H_S) \to \mathcal{T}(H_S)$$

if \exists a CPTP map $\mathcal{R}_*: \mathcal{T}(H_S) \to \mathcal{T}(H_S)$ such that

$$\|\mathcal{R}_* \circ \mathcal{E}_* - \mathcal{F}_* \otimes \mathrm{id}_B\|_{cb} < \varepsilon$$

for some CPTP map $\mathcal{F}_*: \mathcal{T}(H_A) \to \mathcal{T}(H_S)$.

IDEA: Information stored in B is ε -recoverable after the channel.

Private subsystems [Bartlett-Rudolph-Spekkens '04]

If $H_S = (H_A \otimes H_B)$, then B is a private subsystem for

$$\mathcal{E}_*: \mathcal{T}(H_S) \to \mathcal{T}(H_S)$$

if \exists a CPTP map $\mathcal{F}_*: \mathcal{T}(H_A) \to \mathcal{T}(H_S)$ such that

$$\mathcal{E}_* = \mathcal{F}_* \otimes \operatorname{tr}_B$$
.

Private subsystems [Bartlett-Rudolph-Spekkens '04]

If $H_S = (H_A \otimes H_B)$, then B is a private subsystem for

$$\mathcal{E}_*: \mathcal{T}(H_S) \to \mathcal{T}(H_S)$$

if \exists a CPTP map $\mathcal{F}_*: \mathcal{T}(H_A) \to \mathcal{T}(H_S)$ such that

$$\mathcal{E}_* = \mathcal{F}_* \otimes \operatorname{tr}_B$$
.

IDEA: Information stored in *B* completely decoheres.

ε -Private subsystems

If $H_S = (H_A \otimes H_B)$, then B is an ε -private subsystem for

$$\mathcal{E}_*: \mathcal{T}(H_S) \to \mathcal{T}(H_S)$$

if \exists a CPTP map $\mathcal{F}_*: \mathcal{T}(H_A) \to \mathcal{T}(H_S)$ such that

$$\|\mathcal{E}_* - \mathcal{F}_* \otimes \operatorname{tr}_B\|_{cb} < \varepsilon.$$

IDEA: Information stored in $B \in \text{-decoheres}$.

Complementarity theorem

Theorem (Kretschmann-Kribs-Spekkens '08)

Let $H_S = (H_A \otimes H_B)$ be **finite-dimensional** and

$$\mathcal{E}_*: \mathcal{T}(H_S) \to \mathcal{T}(H_S)$$

be CPTP. Then

Complementarity theorem

Theorem (Kretschmann-Kribs-Spekkens '08)

Let $H_S = (H_A \otimes H_B)$ be **finite-dimensional** and

$$\mathcal{E}_*: \mathcal{T}(H_S) \to \mathcal{T}(H_S)$$

be CPTP. Then

B is ε -correctable for $\mathcal{E}_* \Leftrightarrow B$ is $2\sqrt{\varepsilon}$ -private for any \mathcal{E}_*^c .

Complementarity theorem

Theorem (Kretschmann-Kribs-Spekkens '08)

Let $H_S = (H_A \otimes H_B)$ be **finite-dimensional** and

$$\mathcal{E}_*: \mathcal{T}(H_S) \to \mathcal{T}(H_S)$$

be CPTP. Then

B is ε -correctable for $\mathcal{E}_* \Leftrightarrow B$ is $2\sqrt{\varepsilon}$ -private for any \mathcal{E}_*^c .

B is ε -private for $\mathcal{E}_* \Leftrightarrow B$ is $2\sqrt{\varepsilon}$ -correctable for any \mathcal{E}_*^c .

Heisenberg Picture

Observables evolve under **normal unital completely positive** (NUCP) maps:

$$\mathcal{E}:\mathcal{B}(H_S)\to\mathcal{B}(H_S).$$

Heisenberg Picture

Observables evolve under **normal unital completely positive** (NUCP) maps:

$$\mathcal{E}:\mathcal{B}(H_S)\to\mathcal{B}(H_S).$$

If $H_S = (H_A \otimes H_B)$, then B is correctable for

$$\mathcal{E}_*:\mathcal{T}(H_S)\to\mathcal{T}(H_S)$$

iff \exists a NUCP map $\mathcal{R}: \mathcal{B}(H_B) \to \mathcal{B}(H_S)$ such that

$$\mathcal{E} \circ \mathcal{R}(b) = (1 \otimes b)$$

for all $b \in \mathcal{B}(H_B)$.

Correctable subalgebras [Bény–Kempf–Kribs '07]

A von Neumann subalgebra $N \subseteq \mathcal{B}(H_S)$ is ε -correctable for

$$\mathcal{E}:\mathcal{B}(H_S)\to\mathcal{B}(H_S)$$

if \exists a NUCP map $\mathcal{R}: \mathcal{N} \to \mathcal{B}(\mathcal{H}_S)$ such that

$$\|\mathcal{E} \circ \mathcal{R} - \mathrm{id}_{N}\|_{cb} < \varepsilon.$$

Correctable subalgebras [Bény–Kempf–Kribs '07]

A von Neumann subalgebra $N \subseteq \mathcal{B}(H_S)$ is ε -correctable for

$$\mathcal{E}:\mathcal{B}(H_S)\to\mathcal{B}(H_S)$$

if \exists a NUCP map $\mathcal{R}: \mathcal{N} \to \mathcal{B}(\mathcal{H}_S)$ such that

$$\|\mathcal{E}\circ\mathcal{R}-\mathsf{id}_N\|_{cb}<\varepsilon.$$

Note: If *N* is a type I factor, then $N = 1 \otimes \mathcal{B}(H)$.

Correctable subalgebras [Bény–Kempf–Kribs '07]

A von Neumann subalgebra $N \subseteq \mathcal{B}(H_S)$ is ε -correctable for

$$\mathcal{E}:\mathcal{B}(H_S)\to\mathcal{B}(H_S)$$

if \exists a NUCP map $\mathcal{R}: \mathcal{N} \to \mathcal{B}(\mathcal{H}_S)$ such that

$$\|\mathcal{E}\circ\mathcal{R}-\mathsf{id}_N\|_{cb}<\varepsilon.$$

Note: If *N* is a type I factor, then $N = 1 \otimes \mathcal{B}(H)$.

Correctable subsystems ≅ Correctable type I factors

Duality picture

Correctable subalgebras

1

Correctable subsystems

 \leftrightarrow

Private subsystems

????

Heisenberg: Observables on the output H_S evolve to observables on the input H_S .

$$\mathcal{E}:\mathcal{B}(H_S)\to\mathcal{B}(H_S)$$

Heisenberg: Observables on the output H_S evolve to observables on the input H_S .

$$\mathcal{E}:\mathcal{B}(H_S)\to\mathcal{B}(H_S)$$

Subset $S \subseteq \mathcal{B}(H_S)$ observables

Heisenberg: Observables on the output H_S evolve to observables on the input H_S .

$$\mathcal{E}:\mathcal{B}(H_S)\to\mathcal{B}(H_S)$$

Subset $S \subseteq \mathcal{B}(H_S)$ observables whose spectral projections lie in $M \subseteq \mathcal{B}(H_S)$.

Heisenberg: Observables on the output H_S evolve to observables on the input H_{ς} .

$$\mathcal{E}:\mathcal{B}(H_S)\to\mathcal{B}(H_S)$$

Subset $S \subseteq \mathcal{B}(H_S)$ observables whose spectral projections lie in $M \subseteq \mathcal{B}(H_S)$.

Definition

Let $M \subseteq \mathcal{B}(H_S)$ be a von Neumann algebra. A quantum channel is a NUCP map

$$\mathcal{E}: M \to \mathcal{B}(H_S).$$

Private subsystems

If
$$H_S = (H_A \otimes H_B)$$
, then B is private for

$$\mathcal{E}_*: \mathcal{T}(H_S) \to \mathcal{T}(H_S)$$

$$\text{iff } \mathcal{E}_* = \mathcal{F}_* \otimes \operatorname{tr}_B, \ \mathcal{F}_* : \mathcal{T}(H_A) \to \mathcal{T}(H_S).$$

Private subsystems

If
$$H_S = (H_A \otimes H_B)$$
, then B is private for
$$\mathcal{E}_* : \mathcal{T}(H_S) \to \mathcal{T}(H_S)$$
 iff $\mathcal{E}_* = \mathcal{F}_* \otimes \operatorname{tr}_B, \ \mathcal{F}_* : \mathcal{T}(H_A) \to \mathcal{T}(H_S).$
$$\langle \mathcal{E}(x), \rho_A \otimes \rho_B \rangle = \langle \mathcal{F}(x) \otimes 1, \rho_A \otimes \rho_B \rangle$$

Private subsystems

If $H_S = (H_A \otimes H_B)$, then B is private for

$$\mathcal{E}_*: \mathcal{T}(H_S) \to \mathcal{T}(H_S)$$

$$\text{iff } \mathcal{E}_* = \mathcal{F}_* \otimes \operatorname{tr}_B, \ \mathcal{F}_* : \mathcal{T}(H_A) \to \mathcal{T}(H_S).$$

$$\langle \mathcal{E}(\mathbf{x}), \rho_{\mathbf{A}} \otimes \rho_{\mathbf{B}} \rangle = \langle \mathcal{F}(\mathbf{x}) \otimes 1, \rho_{\mathbf{A}} \otimes \rho_{\mathbf{B}} \rangle$$

so that

$$\mathcal{E}(\mathcal{B}(\mathcal{H}_S)) \subseteq (\mathcal{B}(\mathcal{H}_A) \otimes 1) = (1 \otimes \mathcal{B}(\mathcal{H}_B))'.$$

Definition (C.-Kribs-Levene-Todorov '14)

A von Neumann subalgebra $N \subseteq \mathcal{B}(H_S)$ is private for $\mathcal{E}: M \to \mathcal{B}(H_S)$ if

$$\mathcal{E}(M) \subseteq N'$$
.

Definition (C.-Kribs-Levene-Todorov '14)

A von Neumann subalgebra $N \subseteq \mathcal{B}(H_S)$ is private for $\mathcal{E}: M \to \mathcal{B}(H_S)$ if

$$\mathcal{E}(M) \subseteq N'$$
.

Given $\varepsilon > 0$, we say that N is ε -private for \mathcal{E} if \exists a quantum channel $\mathcal{F} : M \to \mathcal{B}(H_S)$ such that

$$\|\mathcal{E} - \mathcal{F}\|_{cb} < \varepsilon$$

and N is private for \mathcal{F} .

Examples: Any normal conditional expectation $E: \mathcal{B}(H) \to N'$, e.g., if $\pi: G \to \mathcal{B}(H)$ is unitary rep. a compact group,

$$\mathcal{E}(x) = \int_{G} \pi(s) x \pi(s)^* ds$$

maps onto $\pi(G)'$.

Examples: Any normal conditional expectation $E: \mathcal{B}(H) \to N'$, e.g., if $\pi: G \to \mathcal{B}(H)$ is unitary rep. a compact group,

$$\mathcal{E}(x) = \int_{G} \pi(s) x \pi(s)^* ds$$

maps onto $\pi(G)'$. Since

$$\mathbb{E}(\mathcal{E}(x), \rho) = \langle \mathcal{E}(x), \rho \rangle = \langle \mathcal{E}(x), \rho |_{N'} \rangle$$

Examples: Any normal conditional expectation $E: \mathcal{B}(H) \to N'$, e.g., if $\pi: G \to \mathcal{B}(H)$ is unitary rep. a compact group,

$$\mathcal{E}(x) = \int_{G} \pi(s) x \pi(s)^* ds$$

maps onto $\pi(G)'$. Since

$$\mathbb{E}(\mathcal{E}(x), \rho) = \langle \mathcal{E}(x), \rho \rangle = \langle \mathcal{E}(x), \rho|_{\mathcal{N}'} \rangle$$

IDEA: The only information contained in N that survives is $\mathcal{Z}(N) = N \cap N'$.

Examples: Any normal conditional expectation $E: \mathcal{B}(H) \to \mathcal{N}'$, e.g., if $\pi: G \to \mathcal{B}(H)$ is unitary rep. a compact group,

$$\mathcal{E}(x) = \int_{G} \pi(s) x \pi(s)^* ds$$

maps onto $\pi(G)'$. Since

$$\mathbb{E}(\mathcal{E}(x), \rho) = \langle \mathcal{E}(x), \rho \rangle = \langle \mathcal{E}(x), \rho|_{\mathcal{N}'} \rangle$$

IDEA: The only information contained in N that survives is $\mathcal{Z}(N) = N \cap N'$.

If *N* is a **factor**, then all information is lost.

Examples: Any normal conditional expectation $E: \mathcal{B}(H) \to N'$, e.g., if $\pi: G \to \mathcal{B}(H)$ is unitary rep. a compact group,

$$\mathcal{E}(x) = \int_{G} \pi(s) x \pi(s)^* ds$$

maps onto $\pi(G)'$. Since

$$\mathbb{E}(\mathcal{E}(x), \rho) = \langle \mathcal{E}(x), \rho \rangle = \langle \mathcal{E}(x), \rho |_{N'} \rangle$$

IDEA: The only information contained in N that survives is $\mathcal{Z}(N) = N \cap N'$.

If N is a **factor**, then all information is lost.

Private subsystems ≅ Private factors of type I

Duality picture

Correctable subalgebras $\ref{eq:correctable}$ Private subalgebras $\ref{eq:correctable}$ Correctable subsystems \leftrightarrow Private subsystems

Definition (C.–Kribs–Levene–Todorov '14)

Let $\mathcal{E}: M \to \mathcal{B}(H_S)$ be a quantum channel.

Given a Stinespring representation (π, V, H) of \mathcal{E} , we define the complementary channel to be the NUCP map $\mathcal{E}^c : \pi(M)' \to \mathcal{B}(H_S)$ given by

$$\mathcal{E}^c(X) = V^*XV, \quad X \in \pi(M)'.$$

Definition (C.–Kribs–Levene–Todorov '14)

Let $\mathcal{E}: M \to \mathcal{B}(H_S)$ be a quantum channel.

Given a Stinespring representation (π, V, H) of \mathcal{E} , we define the complementary channel to be the NUCP map $\mathcal{E}^c : \pi(M)' \to \mathcal{B}(H_S)$ given by

$$\mathcal{E}^c(X) = V^*XV, \quad X \in \pi(M)'.$$

Again, defined up to partial isometries.

Definition (C.–Kribs–Levene–Todorov '14)

Let $\mathcal{E}: M \to \mathcal{B}(H_S)$ be a quantum channel.

Given a Stinespring representation (π, V, H) of \mathcal{E} , we define the complementary channel to be the NUCP map $\mathcal{E}^c : \pi(M)' \to \mathcal{B}(H_S)$ given by

$$\mathcal{E}^{c}(X) = V^{*}XV, \quad X \in \pi(M)'.$$

Again, defined up to partial isometries. In this case,

environment $\sim \pi(M)'$.

Definition (C.–Kribs–Levene–Todorov '14)

Let $\mathcal{E}: M \to \mathcal{B}(H_S)$ be a quantum channel.

Given a Stinespring representation (π, V, H) of \mathcal{E} , we define the complementary channel to be the NUCP map $\mathcal{E}^c : \pi(M)' \to \mathcal{B}(H_S)$ given by

$$\mathcal{E}^{c}(X) = V^{*}XV, \quad X \in \pi(M)'.$$

Again, defined up to partial isometries. In this case,

environment
$$\sim \pi(M)'$$
.

If
$$M = \mathcal{B}(H_S)$$
, then $\pi(x) = x \otimes 1_E$ and $\pi(M)' = 1 \otimes \mathcal{B}(H_E)$.

Theorem (C.–Kribs–Levene–Todorov '14)

Let $\mathcal{E}:M\to\mathcal{B}(H_S)$ be a quantum channel, and $N\subseteq\mathcal{B}(H_S)$ be a von Neumann subalgebra. Then

Theorem (C.–Kribs–Levene–Todorov '14)

Let $\mathcal{E}:M\to\mathcal{B}(H_S)$ be a quantum channel, and $N\subseteq\mathcal{B}(H_S)$ be a von Neumann subalgebra. Then

N is ε -private for $\mathcal{E} \Leftrightarrow N$ is $2\sqrt{\varepsilon}$ -correctable for any \mathcal{E}^c .

Theorem (C.–Kribs–Levene–Todorov '14)

Let $\mathcal{E}:M\to\mathcal{B}(H_S)$ be a quantum channel, and $N\subseteq\mathcal{B}(H_S)$ be a von Neumann subalgebra. Then

N is ε -private for $\mathcal{E} \Leftrightarrow N$ is $2\sqrt{\varepsilon}$ -correctable for any \mathcal{E}^c .

N is ε -correctable for $\mathcal{E} \Leftrightarrow N$ is $8\sqrt{\varepsilon}$ -private for any \mathcal{E}^c .

Theorem (C.–Kribs–Levene–Todorov '14)

Let $\mathcal{E}:M\to\mathcal{B}(H_S)$ be a quantum channel, and $N\subseteq\mathcal{B}(H_S)$ be a von Neumann subalgebra. Then

N is ε -private for $\mathcal{E} \Leftrightarrow N$ is $2\sqrt{\varepsilon}$ -correctable for any \mathcal{E}^c .

N is ε -correctable for $\mathcal{E} \Leftrightarrow N$ is $8\sqrt{\varepsilon}$ -private for any \mathcal{E}^{c} .

Main Tools: Arveson's commutant lifting and the continuity of Stinespring rep (*Kretschmann–Schlingemann–Werner '08*):

$$\frac{\|\Phi_1 - \Phi_2\|_{cb}}{\sqrt{\|\Phi_1\|_{cb}} + \sqrt{\|\Phi_2\|_{cb}}} \leqslant \inf_{V_1, V_2} \|V_1 - V_2\|_{\infty} \leqslant \sqrt{\|\Phi_1 - \Phi_2\|_{cb}}$$

for CP maps $\Phi_1, \Phi_2 : A \to \mathcal{B}(H)$.

Corollary (C.-Kribs-Levene-Todorov '14)

Let $\mathcal{E}: M \to \mathcal{B}(H_S)$ be a quantum channel. Then a von Neumann subalgebra $N \subseteq \mathcal{B}(H_S)$ is correctable for \mathcal{E} iff \exists a normal faithful *-homomorphism $\pi: N \to M$ such that

$$y\mathcal{E}(x) = \mathcal{E}(\pi(y)x)$$
, and $\mathcal{E}(x)y = \mathcal{E}(x\pi(y))$

for all $y \in N$ and $x \in M$

Corollary (C.-Kribs-Levene-Todorov '14)

Let $\mathcal{E}: M \to \mathcal{B}(H_S)$ be a quantum channel. Then a von Neumann subalgebra $N \subseteq \mathcal{B}(H_S)$ is correctable for \mathcal{E} iff \exists a normal faithful *-homomorphism $\pi: N \to M$ such that

$$y\mathcal{E}(x) = \mathcal{E}(\pi(y)x)$$
, and $\mathcal{E}(x)y = \mathcal{E}(x\pi(y))$

for all $y \in \mathbb{N}$ and $x \in M$ (Johnston–Kribs '11).

Corollary (C.–Kribs–Levene–Todorov '14)

Let $\mathcal{E}: M \to \mathcal{B}(H_S)$ be a quantum channel. Then a von Neumann subalgebra $N \subseteq \mathcal{B}(H_S)$ is correctable for \mathcal{E} iff \exists a normal faithful *-homomorphism $\pi: N \to M$ such that

$$y\mathcal{E}(x) = \mathcal{E}(\pi(y)x), \quad \text{and} \quad \mathcal{E}(x)y = \mathcal{E}(x\pi(y))$$

for all $y \in \mathbb{N}$ and $x \in M$ (Johnston–Kribs '11).

In particular, the recovery operation \mathcal{R} may always to taken to be a *-homomorphism (Bény–Kempf–Kribs '09).

Examples: Gaussian Channels

Let \mathbb{R}^{2n} represent the phase space of a system of *n*-bosonic modes.

Let \mathbb{R}^{2n} represent the phase space of a system of *n*-bosonic modes.

View vectors as $z=(x_1,y_1,x_2,y_2,\cdots,x_n,y_n)$, where $x=(x_1,...,x_n)$ and $y=(y_1,...,y_n)$ are the canonical coordinates of the n-modes.

Let \mathbb{R}^{2n} represent the phase space of a system of *n*-bosonic modes.

View vectors as $z=(x_1,y_1,x_2,y_2,\cdots,x_n,y_n)$, where $x=(x_1,...,x_n)$ and $y=(y_1,...,y_n)$ are the canonical coordinates of the n-modes.

Define $U, V : \mathbb{R}^n \to \mathcal{B}(L_2(\mathbb{R}^n))$ by

$$V_{\mathsf{x}}\psi(\mathsf{s}) = e^{i\langle \mathsf{x},\mathsf{s}\rangle}\psi(\mathsf{s})$$
 and $U_{\mathsf{y}}\psi(\mathsf{s}) = \psi(\mathsf{s}+\mathsf{y}).$

Let \mathbb{R}^{2n} represent the phase space of a system of *n*-bosonic modes.

View vectors as $z=(x_1,y_1,x_2,y_2,\cdots,x_n,y_n)$, where $x=(x_1,...,x_n)$ and $y=(y_1,...,y_n)$ are the canonical coordinates of the n-modes.

Define $U, V : \mathbb{R}^n \to \mathcal{B}(L_2(\mathbb{R}^n))$ by

$$V_x \psi(s) = e^{i\langle x,s \rangle} \psi(s)$$
 and $U_y \psi(s) = \psi(s+y)$.

These satisfy the Weyl (CCR):

$$U_y V_x = e^{i\langle x,y\rangle} V_x U_y.$$

Composing, we obtain $W:\mathbb{R}^{2n} o\mathcal{B}(L_2(\mathbb{R}^n))$ given by

$$W(z) = e^{\frac{i}{2}\langle x,y\rangle} V_x U_y.$$

Composing, we obtain $W: \mathbb{R}^{2n} \to \mathcal{B}(L_2(\mathbb{R}^n))$ given by

$$W(z) = e^{\frac{i}{2}\langle x,y\rangle} V_x U_y.$$

This satisfies Weyl–Segal form of the CCR:

$$W(z+z')=e^{\frac{i}{2}\Delta(z,z')}W(z)W(z'),$$

where $\Delta(z,z') = \sum_{i=1}^{n} (x_i y_i' - x_i' y_i)$ is the **symplectic form** on \mathbb{R}^{2n} , represented by the matrix

$$\Delta = \bigoplus_{i=1}^n \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

Let
$$Sp(2n, \mathbb{R}) = \{ T \in GL(2n, \mathbb{R}) \mid \Delta(Tz, Tz') = \Delta(z, z') \}.$$

Let
$$Sp(2n, \mathbb{R}) = \{ T \in GL(2n, \mathbb{R}) \mid \Delta(Tz, Tz') = \Delta(z, z') \}.$$

Phase space transformations that preserve the CCR

Let
$$Sp(2n, \mathbb{R}) = \{ T \in GL(2n, \mathbb{R}) \mid \Delta(Tz, Tz') = \Delta(z, z') \}.$$

Phase space transformations that preserve the CCR

Stone-von Neumann: $\forall T \in Sp(2n, \mathbb{R})$ there exists a unitary $U_T \in \mathcal{B}(L_2(\mathbb{R}^n))$ such that

$$W(Tz) = U_T^* W(z) U_T, \quad z \in \mathbb{R}^{2n}.$$

Let
$$Sp(2n,\mathbb{R}) = \{ T \in GL(2n,\mathbb{R}) \mid \Delta(Tz,Tz') = \Delta(z,z') \}.$$

Phase space transformations that preserve the CCR

Stone-von Neumann: $\forall T \in Sp(2n, \mathbb{R})$ there exists a unitary $U_T \in \mathcal{B}(L_2(\mathbb{R}^n))$ such that

$$W(Tz) = U_T^* W(z) U_T, \quad z \in \mathbb{R}^{2n}.$$

Metaplectic representation of $Sp(2n, \mathbb{R})$.

Characteristic Functions

For
$$\rho \in \mathcal{T}(L_2(\mathbb{R}^n))$$
, we let $\varphi_{\rho}(z) := \operatorname{tr}(\rho W(z))$, for $z \in \mathbb{R}^{2n}$.

Characteristic Functions

For $\rho \in \mathcal{T}(L_2(\mathbb{R}^n))$, we let $\varphi_{\rho}(z) := \operatorname{tr}(\rho W(z))$, for $z \in \mathbb{R}^{2n}$.

Characteristic function φ_{ρ} determines ρ via:

$$\rho = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^{2n}} \varphi_{\rho}(z) W(-z) d^{2n} z.$$

Characteristic Functions

For $\rho \in \mathcal{T}(L_2(\mathbb{R}^n))$, we let $\varphi_{\rho}(z) := \operatorname{tr}(\rho W(z))$, for $z \in \mathbb{R}^{2n}$.

Characteristic function φ_{ρ} determines ρ via:

$$\rho = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^{2n}} \varphi_{\rho}(z) W(-z) d^{2n} z.$$

A state $\rho \in \mathcal{T}(L_2(\mathbb{R}^n))$ is **Gaussian** if φ_ρ is of the form

$$\varphi_{\rho}(z) = \exp\left(i\langle m, z \rangle - \frac{1}{2}\alpha(z, z)\right)$$

where $m \in \mathbb{R}^{2n}$ and α is a symmetric bilinear form.

Linear bosonic channels

 $\mathcal{E}: \mathcal{B}(L_2(\mathbb{R}^n)) \to \mathcal{B}(L_2(\mathbb{R}^n))$ is linear bosonic if

$$\mathcal{E}_*(\rho) = (\mathsf{id} \otimes \mathrm{tr}_{\textit{E}})(\textit{U}_{\textit{T}}(\rho \otimes \rho_{\textit{E}}) \textit{U}_{\textit{T}}^*), \ \ \rho \in \mathcal{T}(\textit{L}_2(\mathbb{R}^n)),$$

where $\rho_E \in \mathcal{T}(L_2(\mathbb{R}^l))$ and $U_T \in \mathcal{B}(L_2(\mathbb{R}^{(n+l)}))$ representing a symplectic matrix $T \in Sp(2(m+l),\mathbb{R})$ of the form

$$T = \begin{pmatrix} K & L \\ K_E & L_E \end{pmatrix}$$

where $K: \mathbb{R}^n \to \mathbb{R}^n$, $L: \mathbb{R}^l \to \mathbb{R}^n$, $K_E: \mathbb{R}^n \to \mathbb{R}^l$ and $L_F: \mathbb{R}^l \to \mathbb{R}^l$.

$$\mathcal{E}_*(\rho) = (\mathsf{id} \otimes \mathsf{tr}_{\mathcal{E}})(U_{\mathcal{T}}(\rho \otimes \rho_{\mathcal{E}})U_{\mathcal{T}}^*)$$

Since $W_{n+1}(Tz) = U_T^* W_{n+1}(z) U_T$, and

$$T = \begin{pmatrix} K & L \\ K_E & L_E \end{pmatrix}$$

we get

$$\mathcal{E}(W_n(z)) = \hat{f}(z)W_n(Kz),$$

where

$$\hat{f}(z) = \varphi_{\rho_E}(K_E z), \quad z \in \mathbb{R}^{2n}.$$

$$\mathcal{E}_*(\rho) = (\mathsf{id} \otimes \mathrm{tr}_{\mathcal{E}})(U_{\mathcal{T}}(\rho \otimes \rho_{\mathcal{E}})U_{\mathcal{T}}^*)$$

Since $W_{n+1}(Tz) = U_T^* W_{n+1}(z) U_T$, and

$$T = \begin{pmatrix} K & L \\ K_E & L_E \end{pmatrix}$$

we get

$$\mathcal{E}(W_n(z)) = \hat{f}(z)W_n(Kz),$$

where

$$\hat{f}(z) = \varphi_{\rho_F}(K_E z), \quad z \in \mathbb{R}^{2n}.$$

If $\hat{f} = \varphi_{\rho'_r}$ for a Gaussian state, then $\mathcal E$ is a Gaussian channel.

Example: If $f(z) = \frac{1}{(2\pi\alpha)^{n/2}}e^{-\frac{\|z\|^2}{2\alpha}}$, then

$$\mathcal{E}(x) = \int_{\mathbb{R}^{2n}} W_n(z)^* x W_n(z) f(z) dz$$

is a Gaussian channel.

Example: If $f(z) = \frac{1}{(2\pi\alpha)^{n/2}} e^{-\frac{\|z\|^2}{2\alpha}}$, then

$$\mathcal{E}(x) = \int_{\mathbb{R}^{2n}} W_n(z)^* x W_n(z) f(z) dz$$

is a Gaussian channel. It follows that

$$\mathcal{E}(W_n(z)) = \hat{f}(z)W_n(z), \quad \hat{f}(z) = \int_{\mathbb{D}^{2n}} e^{i\Delta(w,z)} f(w) dw.$$

Example: If $f(z) = \frac{1}{(2\pi\alpha)^{n/2}}e^{-\frac{\|z\|^2}{2\alpha}}$, then

$$\mathcal{E}(x) = \int_{\mathbb{R}^{2n}} W_n(z)^* x W_n(z) f(z) dz$$

is a Gaussian channel. It follows that

$$\mathcal{E}(W_n(z)) = \hat{f}(z)W_n(z), \quad \hat{f}(z) = \int_{\mathbb{R}^{2n}} e^{i\Delta(w,z)} f(w) dw.$$

In the lab: model classical Gaussian noise in optical fibres.

Example: If $f(z) = \frac{1}{(2\pi\alpha)^{n/2}}e^{-\frac{\|z\|^2}{2\alpha}}$, then

$$\mathcal{E}(x) = \int_{\mathbb{R}^{2n}} W_n(z)^* x W_n(z) f(z) dz$$

is a Gaussian channel. It follows that

$$\mathcal{E}(W_n(z)) = \hat{f}(z)W_n(z), \quad \hat{f}(z) = \int_{\mathbb{R}^{2n}} e^{i\Delta(w,z)} f(w) dw.$$

In the lab: model classical Gaussian noise in optical fibres.

IDEA: Use complementarity to produce explicit private subalgebras for \mathcal{E} .

Example: If
$$n = 1$$
, $K = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $\hat{f}(z) = e^{-\frac{\alpha}{2}(x^2 + y^2)}$.

 $\mathcal{E}(W(z)) = \hat{f}(z)W(Kz) = \hat{f}(z)V_{\times} \in L_{\infty}(\mathbb{R})'.$

Example: If
$$n=1$$
, $K=\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $\hat{f}(z)=e^{-\frac{\alpha}{2}(x^2+y^2)}$.

$$\mathcal{E}(W(z)) = \hat{f}(z)W(Kz) = \hat{f}(z)V_x \in L_\infty(\mathbb{R})'.$$

Thus, $L_{\infty}(\mathbb{R})$ is private for \mathcal{E} .

Example: If
$$n=1$$
, $K=\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $\hat{f}(z)=e^{-\frac{\alpha}{2}(x^2+y^2)}$.

$$\mathcal{E}(W(z)) = \hat{f}(z)W(Kz) = \hat{f}(z)V_x \in L_\infty(\mathbb{R})'.$$

Thus, $L_{\infty}(\mathbb{R})$ is private for \mathcal{E} .

By complementarity, $L_\infty(\mathbb{R})$ is correctable for any \mathcal{E}^c .

Example: If n = 1, $K = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $\hat{f}(z) = e^{-\frac{\alpha}{2}(x^2 + y^2)}$.

$$\mathcal{E}(W(z)) = \hat{f}(z)W(Kz) = \hat{f}(z)V_x \in L_\infty(\mathbb{R})'.$$

Thus, $L_{\infty}(\mathbb{R})$ is private for \mathcal{E} .

By complementarity, $L_{\infty}(\mathbb{R})$ is correctable for any \mathcal{E}^c .

$$\mathcal{E}_*(\rho) = (\mathrm{id} \otimes \mathrm{tr}_E)(U_T(\rho \otimes \rho_E)U_T^*)$$

with

$$T = \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}.$$

Gaussian channels

Then
$$\mathcal{E}^c: \mathcal{B}(L_2(\mathbb{R})) \bar{\otimes} \mathcal{B}(L_2(\mathbb{R})) \to \mathcal{B}(L_2(\mathbb{R}))$$
 is
$$\mathcal{E}^c(W(z) \otimes W(z')) = \operatorname{tr}(|\psi\rangle \langle \psi|W((0,y)) \otimes W(z'))W(-z),$$
 where $(\operatorname{id} \otimes \operatorname{tr})(|\psi\rangle \langle \psi|) = \rho_E$.

Gaussian channels

Then
$$\mathcal{E}^c: \mathcal{B}(L_2(\mathbb{R})) \bar{\otimes} \mathcal{B}(L_2(\mathbb{R})) \to \mathcal{B}(L_2(\mathbb{R}))$$
 is
$$\mathcal{E}^c(W(z) \otimes W(z')) = \operatorname{tr}(|\psi\rangle \langle \psi|W((0,y)) \otimes W(z'))W(-z),$$
 where $(\operatorname{id} \otimes \operatorname{tr})(|\psi\rangle \langle \psi|) = \rho_E. \ \mathcal{R}: L_\infty(\mathbb{R}) \to \mathcal{B}(L_2(\mathbb{R}) \otimes L_2(\mathbb{R}))$
$$\mathcal{R}(W(x,0)) = W((-x,0)) \otimes 1$$
 satisfies $\mathcal{E}^c \circ \mathcal{R} = \operatorname{id}_{L_\infty(\mathbb{R})}.$

Gaussian channels

Then
$$\mathcal{E}^c:\mathcal{B}(L_2(\mathbb{R}))ar{\otimes}\mathcal{B}(L_2(\mathbb{R})) o\mathcal{B}(L_2(\mathbb{R}))$$
 is

$$\mathcal{E}^c(W(z)\otimes W(z'))=\operatorname{tr}(|\psi\rangle\!\langle\psi|W((0,y))\otimes W(z'))W(-z),$$

where
$$(id \otimes tr)(|\psi\rangle\langle\psi|) = \rho_E$$
. $\mathcal{R}: L_{\infty}(\mathbb{R}) \to \mathcal{B}(L_2(\mathbb{R}) \otimes L_2(\mathbb{R}))$

$$\mathcal{R}(W(x,0)) = W((-x,0)) \otimes 1$$

satisfies $\mathcal{E}^c \circ \mathcal{R} = \mathsf{id}_{L_\infty(\mathbb{R})}$.

$$T = \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}.$$

T is **not unique**. Any matrix

$$\begin{pmatrix} K & * \\ I_2 & * \end{pmatrix} \in Sp(4, \mathbb{R})$$

will do.

T is **not unique**. Any matrix

$$\begin{pmatrix} K & * \\ I_2 & * \end{pmatrix} \in Sp(4, \mathbb{R})$$

will do. In general, if $A, B : \mathbb{R}^n \to \mathbb{R}^n$ satisfy

$$\Delta = A^t \Delta A + B^t \Delta B$$

then

$$\begin{pmatrix} A & * \\ B & * \end{pmatrix}$$

can be completed to $Sp(2n, \mathbb{R})$.

When [A, B] = 0, canonical choice:

$$\begin{pmatrix} A & -B^{\Delta} \\ B & A^{\Delta} \end{pmatrix} \in Sp(2n, \mathbb{R}),$$

where

$$A^{\Delta} = \Delta^{-1}A^t\Delta$$
 and $B^{\Delta} = \Delta^{-1}B^t\Delta$

are the **symplectic adjoints** of A and B.

When [A, B] = 0, canonical choice:

$$\begin{pmatrix} A & -B^{\Delta} \\ B & A^{\Delta} \end{pmatrix} \in Sp(2n, \mathbb{R}),$$

where

$$A^{\Delta} = \Delta^{-1}A^t\Delta$$
 and $B^{\Delta} = \Delta^{-1}B^t\Delta$

are the **symplectic adjoints** of A and B.

Complementarity & symplectic duality?

Given linear bosonic $\mathcal{E}: \mathcal{B}(L_2(\mathbb{R}^n)) \to \mathcal{B}(L_2(\mathbb{R}^n))$

$$\mathcal{E}(W_n(z)) = \hat{f}(z)W_n(Kz)$$

with $K: \mathbb{R}^n \to \mathbb{R}^n$,

Given linear bosonic $\mathcal{E}:\mathcal{B}(L_2(\mathbb{R}^n))\to\mathcal{B}(L_2(\mathbb{R}^n))$

$$\mathcal{E}(W_n(z)) = \hat{f}(z)W_n(Kz)$$

with $K:\mathbb{R}^n \to \mathbb{R}^n$, if $S=K(\mathbb{R}^n)<\mathbb{R}^n$, then

$$\mathcal{E}(\mathcal{B}(L_2(\mathbb{R}^n))) \subseteq W_n(S)''.$$

Given linear bosonic $\mathcal{E}: \mathcal{B}(L_2(\mathbb{R}^n)) \to \mathcal{B}(L_2(\mathbb{R}^n))$

$$\mathcal{E}(W_n(z)) = \hat{f}(z)W_n(Kz)$$

with $K: \mathbb{R}^n \to \mathbb{R}^n$, if $S = K(\mathbb{R}^n) < \mathbb{R}^n$, then

$$\mathcal{E}(\mathcal{B}(L_2(\mathbb{R}^n))) \subseteq W_n(S)''.$$

Since $[W_n(z), W_n(z')] = 0 \Leftrightarrow \Delta_n(z, z') = 0$, we have

$$W_n(S^{\Delta}) \subseteq W_n(S)'$$

where

$$S^{\Delta} := \{ z \in \mathbb{R}^n \mid \Delta_n(z, w) = 0 \quad \forall w \in S \}$$

is the **symplectic complement** of S.

Thus,

$$\mathcal{E}(\mathcal{B}(L_2(\mathbb{R}^n))) \subseteq W_n(S^{\Delta})'$$

and $W_n(S^{\Delta})''$ is private for \mathcal{E} .

Thus,

$$\mathcal{E}(\mathcal{B}(L_2(\mathbb{R}^n))) \subseteq W_n(S^{\Delta})'$$

and $W_n(S^{\Delta})''$ is private for \mathcal{E} .

Question: is $W_n(S^{\Delta})'' = W_n(S)'$?

Thus,

$$\mathcal{E}(\mathcal{B}(L_2(\mathbb{R}^n))) \subseteq W_n(S^{\Delta})'$$

and $W_n(S^{\Delta})''$ is private for \mathcal{E} .

Question: is
$$W_n(S^{\Delta})'' = W_n(S)'$$
?

Thank You!