Impedance boundary conditions for general transient hemodynamics and other things

Will Cousins (MIT)

Rachael Brag and Pierre Gremaud (NCSU)

Vera Novak (BIDMC), Daniel Tartakovsky (UCSD)

July 14, 2014

#### Overview

Long term goal: non-invasive continuous measurement of cerebral blood flow (CBF)

- "cheap" measurements: Transcranial Doppler to measure blood flow velocity (BFV)
- patient database and analysis thereof
- computational hemodynamics

# Challenges

In increasing order of "stochasticity"

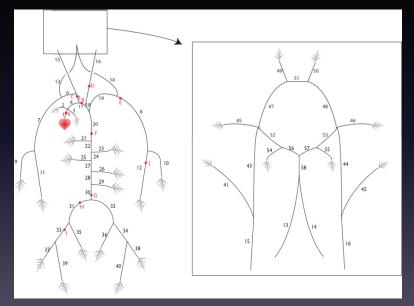
- closures for hemodynamics models: how to model what isn't in the computational domain (BCs)
- uncertainties in models, geometries and parameters
- uncertainties in data: lack of gold standard method, patient biases

We need error bars to our predictions

## This talk

- impedance boundary conditions (outflow)
- machine learning for CBF data (inflow)

# Example: systemic arterial tree



#### **Outflow BCs are fundamental**

- inflow vessels: few and "easy" to measure ⇐ DATA
- outflow vessels: many and hard to measure 

   MODEL
- vasculature is reactive (autoregulation)

#### approach

- not interested in flow details but in vascular networks "throughput"
- one-d is often (but not always!) good enough
  - computational justification (Grinberg et al., ABE, (2011))
  - derived BCs are general: can be adapted to multi-d

#### material assumptions

- incompressible Navier-Stokes
- flow is axisymmetric without swirls
- equations are averaged on cross-sections
- vessels are elastic

equations (Barnard et al., Biophys. J., 1966)

$$\partial_t A + \partial_x Q = 0$$
  
$$\partial_t Q + \frac{\gamma + 2}{\gamma + 1} \partial_x \left(\frac{Q^2}{A}\right) + \frac{A}{\rho} \partial_x P = -2\pi(\gamma + 2) \frac{\mu}{\rho} \frac{Q}{A}$$

where

- A = A(x, t) surface area
- Q = Q(x, t) flowrate

• 
$$P = P(A) = P_0 + rac{4Eh}{3r_0} \left(1 - \sqrt{rac{A_0}{A}}\right)$$
 pressure

- $\mu$ ,  $\rho$  viscosity and density
- $\gamma$  flow profile ( $\gamma = 2 \Leftrightarrow$  Poiseuille)

Above equations are a system of hyperbolic balance laws At operating regime

- solutions are smooth (no shock!)
- Jacobian has one positive and one negative eigenvalue
   We need
  - one inflow condition (measured velocity)
  - one outflow condition
- At junctions
  - conservation of mass
  - continuity of pressure

# **Outflow BCs must**

- mimic the part of the vasculature that is not modeled (downstream from computational domain)
- not create numerical artifacts
- be cheap to run
- be simple to implement
- require a minimum of calibration

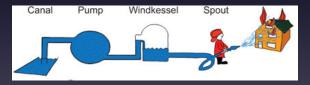
## Outflow BCs: the classics

- Dirichlet (or Neumann) BC
- impose a relationship between P and Q
  - resistance:

$$P = R G$$

• RCR Windkessel:

 $P + R_2 C \partial_t P = (R_1 + R_2)Q + R_1 R_2 C \partial_t Q$ 



R. Saouti et al., Euro. Respir. Rev., 2010

#### **Outflow BCs: the classics**

- Dirichlet (or Neumann) BC
- impose a relationship between P and Q
  - resistance:

P = RQ

• RCR Windkessel:

 $P + R_2 C \partial_t P = (R_1 + R_2)Q + R_1 R_2 C \partial_t Q$ 

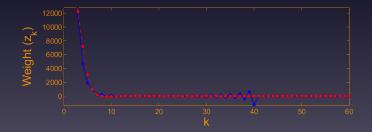
#### Issues

- limited physiological basis
- determination of parameter values

## Impedance bc

- takes the form of a convolution
- *z<sub>i</sub>*'s: impedance weights

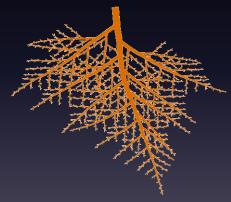
$$P_n = \sum_{j=0}^n z_j Q_{n-j} + P_{term}$$



## Structured tree BC

Proposed by M.G. Taylor (1966), developed by M. Olufsen (1999)

- assumes simplified fractal geometry of downstream vascular tree
- linearizes flow equations
- uses Fourier and junction conditions to define tree impedance



## New impedance BC

- Fourier → Laplace: allows general flows (instead of just periodic ones)
- fractal structure → effective tiered structure: greatly reduces need for calibration
- can be used in lieu of calibration for other BCs
- better termination criterion

## Tree geometry

Governed by four rules

rule 0: there are only bifurcations rule 1:  $r_{d_1} = \alpha r_p$ ,  $r_{d_2} = \beta r_p$ rule 2:  $\ell = \lambda r$ rule 3: terminate vessel if  $r < r_{min}$ where *r* is radius,  $\ell$  is length and *p* and *d<sub>i</sub>* are parent/daughters

Potential issue

scaling parameters are not constant (more later)

#### Linearization (in A about $A_0$ )

$$C \partial_t P + \partial_x Q = 0$$
  
$$\partial_t Q + \frac{A_0}{\rho} \partial_x P = -2\pi(\gamma + 2) \frac{\mu}{\rho} \frac{Q}{A_0}$$

where C = dA/dP is the vessel compliance.

We Laplace transform and solve exactly

$$\hat{Q}(0,s) = sd_sC\hat{P}(\ell,s)\sinh\left(\frac{\ell}{d_s}\right) + \hat{Q}(\ell,s)\cosh\left(\frac{\ell}{d_s}\right)$$
$$\hat{P}(0,s) = \hat{P}(\ell,s)\cosh\left(\frac{\ell}{d_s}\right) + \frac{1}{sd_sC}\hat{Q}(\ell,s)\sinh\left(\frac{\ell}{d_s}\right)$$

#### Vessel impedance

Defined through its Laplace transform

$$\hat{Z}(x,s) = rac{\hat{P}(x,s)}{\hat{Q}(x,s)}$$

and thus

$$\hat{Z}(0,s) = \frac{\hat{Z}(\ell,s) + \frac{1}{sd_sC} \tanh L/d_s}{sd_sC\hat{Z}(\ell,s) \tanh L/d_s + 1}$$

- links the impedance at beginning and end of the vessel
- for imaginary s, i.e.,  $s=i\omega,\,\omega\in\mathbb{R},\,\hat{Z}$  is the "old" impedance

#### Tree impedance

can be defined recursively using junction conditions

- conservation of mass:  $Q_{\rho}(\ell, t) = Q_{d_1}(0, t) + Q_{d_2}(0, t)$
- continuity of pressure:  $P_{\rho}(\ell, t) = P_{d_1}(0, t) = P_{d_2}(0, t)$

$$r \Rightarrow rac{1}{\hat{Z}_{
m 
hoa}(\ell,s)} = rac{1}{\hat{Z}_{
m 
hoa}(0,s)} + rac{1}{\hat{Z}_{
m 
hoa}(0,s)}$$

# First set $\hat{Z}(s) = \hat{Z}_{term}$ at terminals

## **Use Single Vessel Solution**



# **Use Junction Relation**



## Use Single Vessel Solution



# **Use Junction Relation**



## Use Single Vessel Solution



## Use Single Vessel Solution



# **Use Junction Relation**



## **Use Single Vessel Solution**



# **Use Junction Relation**



## Use Single Vessel Solution



## Algorithm to compute impedance

```
procedure IMPEDANCE
Input: r - radius of vessel
Output: ZPA_0
```

```
if r < r_{min} then

ZPA\_L = Z_{term}

else

ZD1 = IMPEDANCE(\alpha \cdot r)

ZD2 = IMPEDANCE(\beta \cdot r)

ZPA\_L = ZD1 \cdot ZD2/(ZD1 + ZD2)

end if

ZPA\_0 = singleVesselImp(ZPA\_L)

end procedure
```

## Implementation: intro

- we have just computed  $\hat{Z}(s)$
- convolution  $\Rightarrow P(t) = \int_0^t Z(\tau) Q(t-\tau) d\tau$

Problem: we need  $Z = \mathcal{L}^{-1}(\hat{Z})$  and

 $\mathcal{L}^{-1}$  is an ill-posed numerical nightmare

## Implementation: trick

#### convolution quadrature (Lubich, 1988) allows the calculation of (an approximation to) *P*

$$P(t) = \int_0^t Z(\tau) Q(t-\tau) d\tau \approx \sum_{j=0}^n z_{n-j} Q(j\Delta t)$$

without having to compute Z

## Implementation: CQ details

- Mellin's inversion formula  $Z(\tau) = \frac{1}{2\pi i} \int_{\nu-i\infty}^{\nu+i\infty} \hat{Z}(\lambda) e^{\lambda \tau} d\lambda$
- Theorem If  $\hat{Z}_{term}$  has nonnegative real part, then  $\hat{Z}(s)$  is analytic for all  $\Re s \ge 0$  except at s = 0, where it has a removable singularity
- $P(t) = \frac{1}{2\pi i} \int_{\nu i\infty}^{\nu + i\infty} \hat{Z}(\lambda) y(\lambda; t) d\lambda, \qquad y(\lambda; t) = \int_0^t e^{\lambda t} Q(t \tau) d\tau$
- y as solution to ODE
- discretize ODE through multistep method
- re-express integral and efficient quadratures for Cauchy integrals...

# Implementation

procedure IMPEDANCEWEIGHTS Input:

> $t_f$  = final simulation time  $\Delta t$  = time step size N = number of time steps ( $N = t_f / \Delta t$ )  $\epsilon$  = accuracy of computation of  $\hat{Z}$

Output:

impedance weights  $z_n$ , n = 0, ..., N

```
M = 2N

r = \epsilon^{1/2N}

for m = 0: M - 1 do

\zeta = re^{i2\pi m/M}

\Xi = \frac{1}{2}\zeta^2 - 2\zeta + \frac{3}{2}

Z^{(m)} = \hat{Z} (\Xi/\Delta t)

end for

for n = 0: N do

z_n = \frac{r^{-n}}{M} \sum_{m=0}^{M-1} Z^{(m)} e^{-i2\pi mn/M}

end for

end procedure
```

## Implementation: cost

- impedance weights computed for each outflow prior to simulation
- requires 2*N* evaluations of  $\hat{Z}$
- one eval. of  $\hat{Z} = O((\#\text{generations})^2)$  operations (a few thousand)
- in short: it is cheap

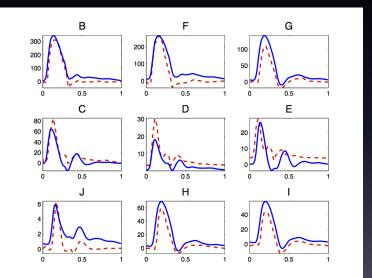
#### Computational example

- consider specific network (Circle of Willis, "full body")
- use 1D nonlinear model

$$\partial_t A + \partial_x Q = 0$$
  
$$\partial_t Q + \frac{\gamma + 2}{\gamma + 1} \partial_x \left(\frac{Q^2}{A}\right) + \frac{A}{\rho} \partial_x P = -2\pi(\gamma + 2) \frac{\mu}{\rho} \frac{Q}{A}$$

- pseudospectral Chebyshev collocation in space
- 2nd order Backward Difference Formula in time
- inflow bc velocity measurements from V. Novak, BIDMC, Harvard
- outflow bc impedance

# Look Ma' No calibration!



#### Some implementation details

- *r<sub>min</sub>* taken as 30μm
- *Z<sub>term</sub>* = 0 is a terrible idea Can be corrected through

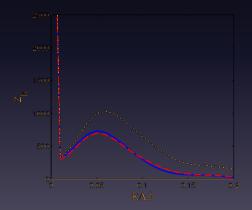
$$P_n = \sum_{j=0}^n z_j Q_{n-j} + P_{term}$$

with  $P_{term} \approx 45 \text{ mmHg}$ 

#### Towards autoregulation

What happens to the impedance under radii change?

- multiply tree vessel radii by CAR
- observe  $z_k(C_{AR}) \approx z_k(1) e^{M_{AR}k\Delta t}, k = 0, \dots, N$



#### Towards autoregulation (2)

- match has been checked over wide range of parameters
- "memory" of structured tree  $\approx$  .25 sec
- time scale of autoregulation responses  $\approx$  5-20 sec
- $\Rightarrow$  auto-regulation induced microvascular changes

$$\widetilde{z}_k(M_{AR}(t)) = z_k e^{M_{AR}(t)k\Delta t}, \qquad k = 0, \dots, N.$$

 scalar (!) M<sub>AR</sub> is obtained from specific autoregulation model

#### Towards autoregulation (3)

- variation of tree resistance away from baseline value  $R_{eq} = (P_{eq} P_{term})/Q_{eq}$
- auxiliary equation

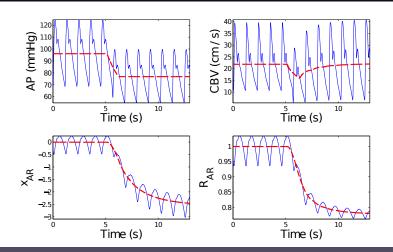
$$rac{dx_{AR}}{dt} = \mathcal{G}_{AR}\left(rac{\mathcal{Q}(t)-\mathcal{Q}_{eq}}{\mathcal{Q}_{eq}}
ight)$$

- *R<sub>AR</sub>* obtained from *x<sub>AR</sub>* by imposing limits (sigmoid)
- *M<sub>AR</sub>* obtained from

$$\sum_{k=0}^{N} \tilde{z}_k(M_{AR}) = R_{AR} \sum_{k=0}^{N} z_k$$

#### Towards autoregulation (4)

- impose  $P(t) = P_{baseline}(t)f(t)$  at aorta
- 20% drop in MAP
- · immediate flow decrease followed by return to baseline



## Database from BIDMC

|              | total  |      | male     |      | female  |      |
|--------------|--------|------|----------|------|---------|------|
| participants | 167    |      | 86       |      | 81      |      |
| age          | 66.5±8 |      | 65.6±9   |      | 67.3±8. |      |
| group        | hyper  | %    | no hyper | %    | total   | %    |
| control      | 14     | 8.4  | 48       | 28.7 | 62      | 37.1 |
| stroke       | 26     | 15.6 | 16       | 9.6  | 42      | 25.1 |
| DM           | 36     | 21.6 | 27       | 16.2 | 63      | 37.7 |

# Database from BIDMC (2)

For each patient: MCA data

BFV post-processed from Trans Cranial Doppler (TCD) CBF from CASL MRI

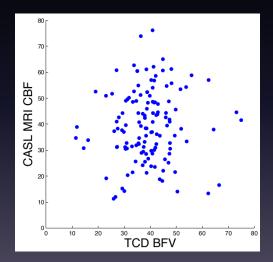
HCT, CO2from labage, height, weightfrom labhead size (front to back and side to side)from labgender, diabetes (y/n), hypertension (y/n)from lab

radius Rfrom imagesinsonation angle  $\theta$ from images

M territory mass from "maps" and post processing

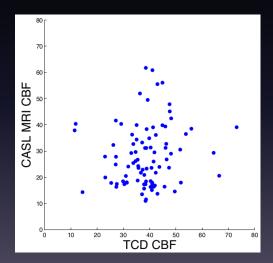
# TCD vs MRI

#### Direct comparison between TCD-BFV and MRI-CBF



# TCD vs MRI (2)

Direct estimate:  $CBF_{TCD} = \frac{\pi R^2}{M} \frac{v}{2\cos\theta}$ 

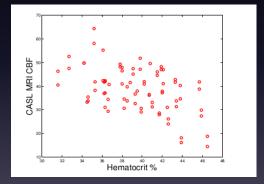


#### Sources of uncertainties, TCD

- insonation angle
- velocity profile
- vessel radius
- territory mass

#### Sources of uncertainties, CASL MRI

CASL MRI CBF is correlated with HCT% (r = -.49,  $p = 7.5 \times 10^{-6}$ )



# Predicting CBF?

- y : response variable CASL MRI CBF
- x: predictor variables, TCD BFV, age, height,...

#### Prediction: $y = f(\mathbf{x})$ based on

- partitioning the data and applying local models
  - regression trees
  - random forests

#### Trees and forests

- **y**<sub>*i*</sub>, *i* = 1,..., *N* (*N* observations)
- $\mathbf{x}_i = (x_{i,1}, \dots, x_{i,p}), i = 1, \dots, N, p = 14$
- parameter space: partitioned in K regions  $\Omega_k$ , k = 1, ..., K
- response function approximated by

$$\mathbf{y} \approx f(\mathbf{x}) = \sum_{k=1}^{K} c_k \chi_k(\mathbf{x})$$

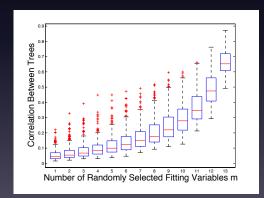
 $\chi_k$  = indicator function of  $\Omega_k$ ;  $c_k$  = simple local model

- for instance  $c_k = 1/|I_k|\sum_{j=1}^{|I_k|} y_j, \, I_k = \{j; x_j \in \Omega_k\}$
- ideally, MSE  $\frac{1}{N} \sum_{i=1}^{N} (y_i f(x_i))^2$  is minimized over all partitions  $\Omega_k$ , k = 1, ..., K
- computational feasibility  $\Rightarrow \Omega_k$ 's taken as "rectangular" and minimization replaced by recursive partitioning

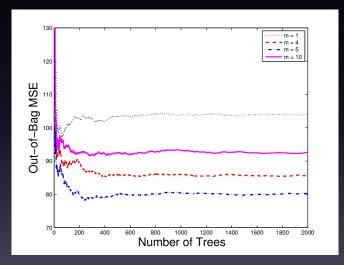
#### Trees and forests (2)

Trees as above can be unstable. Improvements:

- consider an ensemble of trees (bootstrapping)
- consider fixed number of predictive variables for splitting
- $\Rightarrow$  decreases tree correlation and estimate variance

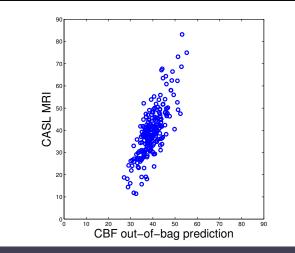


## Trees and forests (3)

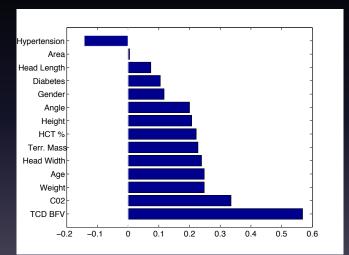


m = 5 wins

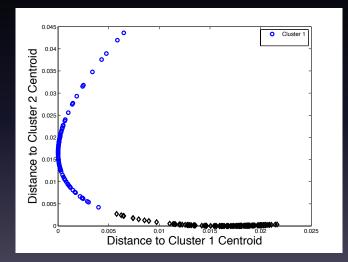
#### Some results: correlation



#### Some results: variable importance



## Some results: clustering



#### Future work

- organ specific BCs
- analysis of role played by calibration
- efficient uncertainty representation in comp. hemodynamics
- local regression methods for patient clustering

#### references

- W. Cousins, P. Gremaud, *Boundary conditions for* hemodynamics: The structured tree revisited, J. Comput. Phys., 231 (2012), pp. 6068–6096.
- W. Cousins, P. Gremaud, D. Tartakovsky, A new physiological boundary condition for hemodynamics, SIAM J. Appl. Math., 73 (2013), pp. 1203–1223.
- W. Cousins, P. Gremaud, *Impedance boundary conditions for general transient hemodynamics*, Int. J. Numer. Meth. Biomed. Eng., in press.
- R. Bragg, P. Gremaud, V. Novak, *Cerebral blood flow measurements: intersubject variability using MRI and Transcranial Doppler*, in preparation