IPCO 2014

17th Conference on Integer Programming and Combinatorial Optimization

Location: Bonn, Germany
Date: June 23–25, 2014
www.or.uni-bonn.de/ipco

Submission deadline: November 15, 2013
Program committee chair: Jon Lee
Local organization: Stephan Held, Jens Vygen

Extras:
▶ summer school (before IPCO)
▶ welcome reception, Arithmeum
▶ poster session
▶ Rhine river cruise with dinner
Smallest two-edge-connected spanning subgraphs and the TSP

Jens Vygen
University of Bonn

(joint work with András Sebő)

August 1, 2013
Metric TSP

Given a complete graph G and metric weights $c : E(G) \to \mathbb{R}_{\geq 0}$, find a Hamiltonian circuit in G with minimum total weight.

- NP-hard
- Best known approximation ratio $\frac{3}{2}$ (Christofides [1976])
- No $\frac{123}{122}$-approximation algorithm exists unless $P = NP$ (Karpinski, Lampis, Schmied [2013])
- Integrality ratio of subtour relaxation between $\frac{4}{3}$ and $\frac{3}{2}$ (Wolsey [1980]), worst example is instance of Graph-TSP
Metric TSP

Given a complete graph G and metric weights $c : E(G) \to \mathbb{R}_{\geq 0}$, find a Hamiltonian circuit in G with minimum total weight.

- NP-hard
- best known approximation ratio $\frac{3}{2}$ (Christofides [1976])
- no $\frac{123}{122}$-approximation algorithm exists unless $P = NP$ (Karpinski, Lampis, Schmied [2013])
- integrality ratio of subtour relaxation between $\frac{4}{3}$ and $\frac{3}{2}$ (Wolsey [1980]), worst example is instance of Graph-TSP

Graph-TSP (= Eulerian 2ECSS):

- approximation ratio $1.5 - \epsilon$ (Oveis Gharan, Saberi, Singh [2011])
- approximation ratio 1.461 (Mömke, Svensson [2011])
- approximation ratio 1.445 (Mucha [2012])
- approximation ratio 1.4 (Sebő, Vygen [2012])
The unfortunate history of 2ECSS approximation

<table>
<thead>
<tr>
<th>3/2</th>
<th>17/12</th>
<th>4/3</th>
<th>597/448</th>
<th>4/3</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/4</td>
<td>4/4</td>
<td>5/4</td>
<td></td>
<td>5/4</td>
</tr>
</tbody>
</table>

- Khuller, Vishkin [1992]
- Garg, Santosh, Singla [1993]
- Cheriyan, Sebő, Szigeti [1999, 2001]
- Vempala, Vetta [2000]
- Krysta, Kumar [2001]
- Jothi, Raghavachari, Varadarajan [2004]
- Sebő, Vygen [2012]
The unfortunate history of 2ECSS approximation

Khuller, Vishkin [1992]
Garg, Santosh, Singla [1993]
Cheriyan, Sebő, Szigeti [1999/2001]
Vempala, Vetta [2000]
Krysta, Kumar [2001]
Jothi, Raghavachari, Varadarajan [2004]
Sebő, Vygen [2012]

Correct proof
Wrong proof
Incomplete proof
No proof
The unfortunate history of 2ECSS approximation

<table>
<thead>
<tr>
<th>3</th>
<th>17/12</th>
<th>4/3</th>
<th>597/448</th>
<th>4/3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Khuller, Vishkin [1992]
- Garg, Santosh, Singla [1993]
- Cheriyan, Sebő, Szegedi [1999/2001]
- Vempala, Vetta [2000]
- Krysta, Kumar [2001]
- Jothi, Raghavachari, Varadarajan [2004]
- Sebő, Vygen [2012]

→ now

correct proof
wrong proof
incomplete proof
no proof
Ear-decompositions

Write $G = P_0 + P_1 + \cdots + P_k$, where P_0 is a single vertex, and each P_i ($i = 1, \ldots, k$) is either

- a circuit sharing exactly one vertex with $P_0 + \cdots + P_{i-1}$, or
- a path sharing exactly its endpoints with $P_0 + \cdots + P_{i-1}$.
Ear-decompositions

Write \(G = P_0 + P_1 + \cdots + P_k \), where \(P_0 \) is a single vertex, and each \(P_i \) \((i = 1, \ldots, k) \) is either

- a circuit sharing exactly one vertex with \(P_0 + \cdots + P_{i-1} \), or
- a path sharing exactly its endpoints with \(P_0 + \cdots + P_{i-1} \).

Ear-decompositions

Write $G = P_0 + P_1 + \cdots + P_k$, where P_0 is a single vertex, and each P_i ($i = 1, \ldots, k$) is either

- a circuit sharing exactly one vertex with $P_0 + \cdots + P_{i-1}$, or
- a path sharing exactly its endpoints with $P_0 + \cdots + P_{i-1}$.

A graph is 2-edge-connected iff it has an ear-decomposition.

A graph is 2-vertex-connected iff it has an open ear-decomposition.

A nontrivial ear is called pendant if none of its internal vertices is endpoint of another nontrivial ear.

W.l.o.g., pendant ears come last, followed only by trivial ears.
Ear-decompositions

Write $G = P_0 + P_1 + \cdots + P_k$, where P_0 is a single vertex, and each P_i ($i = 1, \ldots, k$) is either

- a circuit sharing exactly one vertex with $P_0 + \cdots + P_{i-1}$, or
- a path sharing exactly its endpoints with $P_0 + \cdots + P_{i-1}$.

A graph is 2-edge-connected iff it has an ear-decomposition.

A graph is 2-vertex-connected iff it has an open ear-decomposition.

A nontrivial ear is called pendant if none of its internal vertices is endpoint of another nontrivial ear.

W.l.o.g., pendant ears come last, followed only by trivial ears.
Ear-decompositions

Write $G = P_0 + P_1 + \cdots + P_k$, where P_0 is a single vertex, and each P_i ($i = 1, \ldots, k$) is either

- a circuit sharing exactly one vertex with $P_0 + \cdots + P_{i-1}$, or
- a path sharing exactly its endpoints with $P_0 + \cdots + P_{i-1}$.

A graph is 2-edge-connected iff it has an ear-decomposition.

A graph is 2-vertex-connected iff it has an open ear-decomposition.

A nontrivial ear is called pendant if none of its internal vertices is endpoint of another nontrivial ear.

W.l.o.g., pendant ears come last, followed only by trivial ears.
Ear-decompositions

Write $G = P_0 + P_1 + \cdots + P_k$, where P_0 is a single vertex, and each P_i ($i = 1, \ldots, k$) is either

- a circuit sharing exactly one vertex with $P_0 + \cdots + P_{i-1}$, or
- a path sharing exactly its endpoints with $P_0 + \cdots + P_{i-1}$.
Ear-decompositions

Write $G = P_0 + P_1 + \cdots + P_k$, where P_0 is a single vertex, and each P_i ($i = 1, \ldots, k$) is either

- a circuit sharing exactly one vertex with $P_0 + \cdots + P_{i-1}$, or
- a path sharing exactly its endpoints with $P_0 + \cdots + P_{i-1}$.

- trivial ears (length 1)
- closed ear
- open ear
- pendant ears

A graph is 2-edge-connected iff it has an ear-decomposition.

A graph is 2-vertex-connected iff it has an open ear-decomposition.

A nontrivial ear is called pendant if none of its internal vertices is endpoint of another nontrivial ear.

W.l.o.g., pendant ears come last, followed only by trivial ears.
Ear-decompositions

Write $G = P_0 + P_1 + \cdots + P_k$, where P_0 is a single vertex, and each P_i ($i = 1, \ldots, k$) is either

- a circuit sharing exactly one vertex with $P_0 + \cdots + P_{i-1}$, or
- a path sharing exactly its endpoints with $P_0 + \cdots + P_{i-1}$.

A graph is 2-edge-connected iff it has an ear-decomposition.

A graph is 2-vertex-connected iff it has an open ear-decomposition.

A nontrivial ear is called pendant if none of its internal vertices is endpoint of another nontrivial ear.

W.l.o.g., pendant ears come last, followed only by trivial ears.
Ear-decompositions

Write $G = P_0 + P_1 + \cdots + P_k$, where P_0 is a single vertex, and each $P_i \ (i = 1, \ldots, k)$ is either

- a circuit sharing exactly one vertex with $P_0 + \cdots + P_{i-1}$, or
- a path sharing exactly its endpoints with $P_0 + \cdots + P_{i-1}$.

A graph is 2-edge-connected iff it has an ear-decomposition.

A graph is 2-vertex-connected iff it has an open ear-decomposition.

A nontrivial ear is called pendant if none of its internal vertices is endpoint of another nontrivial ear.

W.l.o.g., pendant ears come last, followed only by trivial ears.
Ear-decompositions

Write $G = P_0 + P_1 + \cdots + P_k$, where P_0 is a single vertex, and each P_i ($i = 1, \ldots , k$) is either

- a circuit sharing exactly one vertex with $P_0 + \cdots + P_{i-1}$, or
- a path sharing exactly its endpoints with $P_0 + \cdots + P_{i-1}$.

- A graph is 2-edge-connected iff it has an ear-decomposition.

- A graph is 2-vertex-connected iff it has an open ear-decomposition.

- A nontrivial ear is called pendant if none of its internal vertices is endpoint of another nontrivial ear.

- W.l.o.g., pendant ears come last, followed only by trivial ears.
Ear-decompositions

Write $G = P_0 + P_1 + \cdots + P_k$, where P_0 is a single vertex, and each $P_i \ (i = 1, \ldots, k)$ is either

- a circuit sharing exactly one vertex with $P_0 + \cdots + P_{i-1}$, or
- a path sharing exactly its endpoints with $P_0 + \cdots + P_{i-1}$.

- A graph is 2-edge-connected iff it has an ear-decomposition.
- A graph is 2-vertex-connected iff it has an open ear-decomposition.

A nontrivial ear is called pendant if none of its internal vertices is endpoint of another nontrivial ear. W.l.o.g., pendant ears come last, followed only by trivial ears.
Ear-decompositions

Write $G = P_0 + P_1 + \cdots + P_k$, where P_0 is a single vertex, and each P_i ($i = 1, \ldots, k$) is either

- a circuit sharing exactly one vertex with $P_0 + \cdots + P_{i-1}$, or
- a path sharing exactly its endpoints with $P_0 + \cdots + P_{i-1}$.

- A graph is 2-edge-connected iff it has an ear-decomposition.
- A graph is 2-vertex-connected iff it has an open ear-decomposition. (P_2, \ldots, P_k are all open ears = paths.)
Ear-decompositions

Write $G = P_0 + P_1 + \cdots + P_k$, where P_0 is a single vertex, and each P_i ($i = 1, \ldots, k$) is either

- a circuit sharing exactly one vertex with $P_0 + \cdots + P_{i-1}$, or
- a path sharing exactly its endpoints with $P_0 + \cdots + P_{i-1}$.

W.l.o.g., pendant ears come last, followed only by trivial ears.

- A graph is 2-edge-connected iff it has an ear-decomposition.
- A graph is 2-vertex-connected iff it has an open ear-decomposition.
- A nontrivial ear is called pendant if none of its internal vertices is endpoint of another nontrivial ear.
Ear-decompositions

Write $G = P_0 + P_1 + \cdots + P_k$, where P_0 is a single vertex, and each P_i ($i = 1, \ldots, k$) is either

- a circuit sharing exactly one vertex with $P_0 + \cdots + P_{i-1}$, or
- a path sharing exactly its endpoints with $P_0 + \cdots + P_{i-1}$.

- A graph is 2-edge-connected iff it has an ear-decomposition.
- A graph is 2-vertex-connected iff it has an open ear-decomposition.
- A nontrivial ear is called pendant if none of its internal vertices is endpoint of another nontrivial ear.
- W.l.o.g., pendant ears come last, followed only by trivial ears.
Ear-decompositions

Write $G = P_0 + P_1 + \cdots + P_k$, where P_0 is a single vertex, and each $P_i \ (i = 1, \ldots, k)$ is either

- a circuit sharing exactly one vertex with $P_0 + \cdots + P_{i-1}$, or
- a path sharing exactly its endpoints with $P_0 + \cdots + P_{i-1}$.

- A graph is 2-edge-connected iff it has an ear-decomposition.
- A graph is 2-vertex-connected iff it has an open ear-decomposition.
- A nontrivial ear is called pendant if none of its internal vertices is endpoint of another nontrivial ear.
- W.l.o.g., pendant ears come last, followed only by trivial ears.
Ear-decompositions for T-joins

Ear induction:
- Split pendant ear at the vertices that have wrong parity so far
- Take smaller part

This yields a T-join with at most $\frac{1}{2}(n-1+k)$ edges, where $n=|V(G)|$ and k is the number of even ears.
Ear-decompositions for T-joins

- Ear induction:
 - Split pendant ear at the vertices that have wrong parity so far

This yields a T-join with at most \(\frac{1}{2}(n-1+k) \) edges, where \(n = |V(G)| \) and \(k \) is even is the number of even ears.
Ear-decompositions for T-joins

- Ear induction:
 - Split pendant ear at the vertices that have wrong parity so far
 - Take smaller part

This yields a T-join with at most $\frac{1}{2}(n - 1 + k)$ edges, where $n = |V(G)|$ and k even is the number of even ears.
Ear-decompositions for T-joins

- Ear induction:
 - Split pendant ear at the vertices that have wrong parity so far
 - Take smaller part

This yields a T-join with at most $\frac{1}{2}(n - 1 + k_{\text{even}})$ edges, where $n = |V(G)|$ and k_{even} is the number of even ears.
Ear-decompositions for 2ECSS

Simple algorithm for 2ECSS:

- compute an ear-decomposition
- delete all trivial ears.

The remaining number of edges is at most

$\frac{5}{4}(n - 1) + \frac{3}{4}k_2 + \frac{1}{2}k_3 + \frac{1}{4}k_4$,

where $n = |V(G)|$ and k_i is the number of ears of length i. So:

- even ears are bad,
- 3-ears are bad.
Ear-decompositions for 2ECSS

Simple algorithm for 2ECSS:

- compute an ear-decomposition
- delete all trivial ears.

The remaining number of edges is at most

\[\frac{5}{4}(n - 1) + \frac{3}{4}k_2 + \frac{1}{2}k_3 + \frac{1}{4}k_4 , \]

where \(n = |V(G)| \) and \(k_i \) is the number of ears of length \(i \).
Ear-decompositions for 2ECSS

Simple algorithm for 2ECSS:
- compute an ear-decomposition
- delete all trivial ears.

The remaining number of edges is at most

$$\frac{5}{4}(n - 1) + \frac{3}{4}k_2 + \frac{1}{2}k_3 + \frac{1}{4}k_4,$$

where $n = |V(G)|$ and k_i is the number of ears of length i.

So:
- even ears are bad, and
- 3-ears are bad.
Ear-decompositions with fewest even ears

For a 2-edge-connected graph G, let $\varphi(G)$ denote the minimum number of even ears in an ear-decomposition of G.

Theorem (Frank [1993])

Let G be a 2-edge-connected graph. Then an ear-decomposition with $\varphi(G)$ even ears can be computed in polynomial time,
Ear-decompositions with fewest even ears

For a 2-edge-connected graph G, let $\varphi(G)$ denote the minimum number of even ears in an ear-decomposition of G.

Theorem (Frank [1993])
Let G be a 2-edge-connected graph. Then an ear-decomposition with $\varphi(G)$ even ears can be computed in polynomial time, and

$$\frac{|V(G)| - 1 + \varphi(G)}{2} = \max \left\{ \min \{|J| : J \text{ is a } T\text{-join}\} : T \subseteq V(G), |T| \text{ even} \right\}.$$

Note:
- Every 2ECSS contains at least $\varphi(G)$ even (thus: nontrivial) ears.
- So every 2ECSS contains at least $n - 1 + \varphi(G)$ edges.
Ear-decompositions for 2ECSS

Simple algorithm for 2ECSS:

- compute an ear-decomposition
- delete all trivial ears.

The remaining number of edges is at most

\[
\frac{5}{4}(n - 1) + \frac{3}{4} k_2 + \frac{1}{2} k_3 + \frac{1}{4} k_4
\]
Ear-decompositions for 2ECSS

Simple algorithm for 2ECSS:

▶ compute an ear-decomposition
▶ delete all trivial ears.

The remaining number of edges is at most

\[\frac{5}{4}(n - 1) + \frac{3}{4}k_2 + \frac{1}{2}k_3 + \frac{1}{4}k_4 \]

\[\leq \frac{5}{4}(n - 1 + k_{\text{even}}) + \frac{1}{2}k_3 \]

\[= \frac{5}{4}(n - 1 + \varphi(G)) + \frac{1}{2}k_3 \]
Ear-decompositions for 2ECSS

Simple algorithm for 2ECSS:
- compute an ear-decomposition
- delete all trivial ears.

The remaining number of edges is at most
\[
\frac{5}{4}(n - 1) + \frac{3}{4}k_2 + \frac{1}{2}k_3 + \frac{1}{4}k_4
\]
\[
\leq \frac{5}{4}(n - 1 + k_{\text{even}}) + \frac{1}{2}k_3
\]
\[
= \frac{5}{4}(n - 1 + \varphi(G)) + \frac{1}{2}k_3
\]

Henceforth (for this talk only) assume \(\varphi(G) = 0\).
In other words, \(G\) is factor-critical (Lovász [1972]).

Note: 3-ears are still bad.
An ear-decomposition is called **nice** if

(i) the number of even ears is minimum,

(ii) all short ears (length 2 or 3) are pendant,

(iii) and there are no edges connecting internal vertices of different short ears.

Lemma (Cheriyan, Seb˝o, Szigeti [2001])

A nice ear-decomposition can be computed in polynomial time.

Sketch of Proof (for $\phi(G) = 0$):

▶ Compute an open odd ear-decomp. (Lov´asz, Plummer [1986])

▶ Replace non-pendant short ears

▶ Replace adjacent short ears

□
Nice ear-decompositions

An ear-decomposition is called nice if
(i) the number of even ears is minimum,
(ii) all short ears (length 2 or 3) are pendant,
(iii) and there are no edges connecting internal vertices of different short ears.

Lemma (Cheriyan, Sebő, Szigeti [2001])
A nice ear-decomposition can be computed in polynomial time.
Nice ear-decompositions

An ear-decomposition is called nice if

(i) the number of even ears is minimum,
(ii) all short ears (length 2 or 3) are pendant,
(iii) and there are no edges connecting internal vertices of different short ears.

Lemma (Cheriyan, Sebő, Szigeti [2001])
A nice ear-decomposition can be computed in polynomial time.

Sketch of Proof (for \(\varphi(G) = 0 \)):

▶ Compute an open odd ear-decomp. (Lovász, Plummer [1986])
▶ Replace non-pendant short ears
▶ Replace adjacent short ears
Sketch of proof (some details)

- Replace non-pendant short ears
Sketch of proof (some details)

- Replace non-pendant short ears

- Replace adjacent short ears
Optimizing short ears

- Adding all short ears leaves some number of connected components.

Internal vertices of short ears may be incident to trivial ears. These can be used to replace some short ears by other short ears. Goal: minimize the resulting number of connected components.

Note: Replacing some short ears by other ears (with the same internal vertices) will maintain a nice ear-decomposition.

Recall: An ear-decomposition is called nice if

(i) the number of even ears is minimum,
(ii) all short ears (length 2 or 3) are pendant,
(iii) and there are no edges connecting internal vertices of different short ears.
Optimizing short ears

- Adding all short ears leaves some number of connected components.

Internal vertices of short ears may be incident to trivial ears. These can be used to replace some short ears by other short ears. Goal: minimize the resulting number of connected components.

Note: Replacing some short ears by other ears (with the same internal vertices) will maintain a nice ear-decomposition.

Recall: An ear-decomposition is called nice if

(i) the number of even ears is minimum,
(ii) all short ears (length 2 or 3) are pendant, and
(iii) there are no edges connecting internal vertices of different short ears.
Optimizing short ears

- Adding all short ears leaves some number of connected components
- Internal vertices of short ears may be incident to trivial ears

Recall: An ear-decomposition is called nice if

(i) the number of even ears is minimum,
(ii) all short ears (length 2 or 3) are pendant,
(iii) and there are no edges connecting internal vertices of different short ears.
Optimizing short ears

- Adding all short ears leaves some number of connected components.
- Internal vertices of short ears may be incident to trivial ears.
- These can be used to replace some short ears by other short ears.

Recall: An ear-decomposition is called nice if

(i) the number of even ears is minimum,
(ii) all short ears (length 2 or 3) are pendant,
(iii) and there are no edges connecting internal vertices of different short ears.
Optimizing short ears

- Adding all short ears leaves some number of connected components.
- Internal vertices of short ears may be incident to trivial ears.
- These can be used to replace some short ears by other short ears.
- Goal: minimize the resulting number of connected components.

Recall: An ear-decomposition is called nice if

(i) the number of even ears is minimum,
(ii) all short ears (length 2 or 3) are pendant,
(iii) and there are no edges connecting internal vertices of different short ears.
Optimizing short ears

- Adding all short ears leaves some number of connected components
- Internal vertices of short ears may be incident to trivial ears
- These can be used to replace some short ears by other short ears
- Goal: minimize the resulting number of connected components

Note: Replacing some short ears by other ears (with the same internal vertices) will maintain a nice ear-decomposition.

Recall: An ear-decomposition is called nice if

(i) the number of even ears is minimum,
(ii) all short ears (length 2 or 3) are pendant,
(iii) and there are no edges connecting internal vertices of different short ears.
First solution: matroid intersection

- For each pendant ear (= color), represent each possible variant by an edge connecting its two endpoints
- Pick an edge for each color, so that the edges form a forest
- Intersection of partition matroid and graphic matroid (Rado [1942], Edmonds [1970])
Second solution: forest representative systems

- For each pendant ear (= color), consider the set of endpoints of the variants. In this hypergraph:
- Find a forest representative system (Lovász [1970])
- This leads to useful ears
- We have an algorithm with runtime $O(|V(G)||E(G)|)$
New algorithm for 2ECSS

- Compute a nice ear-decomposition.
- Optimize short ears so that they serve best for connectivity.

Note: number of even ears is minimum, all short ears are pendant

- Take all edges of pendant ears.
- Add edges to obtain connectivity.
- Add edges to correct parity.

Theorem
The new algorithm yields a tour with at most $3 + \frac{1}{2} \pi$ edges, where L is a lower bound on the number of edges in any 2ECSS, and π is the number of pendant ears (after optimization).

Alternative yields an 2ECSS with at most $\frac{5}{4} L + \frac{1}{2} \pi$ edges.

\rightarrow The better of the two 2ECSSs has at most $\frac{4}{3} L$ edges.
New algorithm for 2ECSS

- Compute a nice ear-decomposition.
- Optimize short ears so that they serve best for connectivity.

Note: number of even ears is minimum, all short ears are pendant

- Take all edges of pendant ears.
- Add edges to obtain connectivity.
- Add edges to correct parity.

Theorem

The new algorithm yields a tour with at most \(\frac{3}{2} L - \pi \) edges, where \(L \) is a lower bound on the number of edges in any 2ECSS, and \(\pi \) is the number of pendant ears (after optimization).
New algorithm for 2ECSS

- Compute a nice ear-decomposition.
- Optimize short ears so that they serve best for connectivity.

Note: number of even ears is minimum, all short ears are pendant

- Take all edges of pendant ears.
- Add edges to obtain connectivity.
- Add edges to correct parity.

\[
L + \pi_{\text{long}}
\]

Theorem

The new algorithm yields a tour with at most \(\frac{3}{2}L - \pi \) edges, where \(L \) is a lower bound on the number of edges in any 2ECSS, and \(\pi \) is the number of pendant ears (after optimization).
New algorithm for 2ECSS

- Compute a nice ear-decomposition.
- Optimize short ears so that they serve best for connectivity.

Note: number of even ears is minimum, all short ears are pendant

- Take all edges of pendant ears.
- Add edges to obtain connectivity.
- Add edges to correct parity.

\[
\begin{align*}
& L + \pi_{\text{long}} \\
& \frac{1}{2} (n - 1 - 2\pi_{\text{short}} - 4\pi_{\text{long}})
\end{align*}
\]

Theorem

The new algorithm yields a tour with at most \(\frac{3}{2} L - \pi \) edges, where \(L \) is a lower bound on the number of edges in any 2ECSS, and \(\pi \) is the number of pendant ears (after optimization).
New algorithm for 2ECSS

- Compute a nice ear-decomposition.
- Optimize short ears so that they serve best for connectivity.

Note: number of even ears is minimum, all short ears are pendant

- Take all edges of pendant ears.
- Add edges to obtain connectivity.
- Add edges to correct parity.

Alternatively:

- Take all edges of nontrivial ears.

Theorem

The new algorithm yields a tour with at most $\frac{3}{2}L - \pi$ edges, where L is a lower bound on the number of edges in any 2ECSS, and π is the number of pendant ears (after optimization).

Alternative yields an 2ECSS with at most $\frac{5}{4}L + \frac{1}{2}\pi$ edges.

→ The better of the two 2ECSSs has at most $\frac{4}{3}L$ edges.
New algorithm for TSP

- Compute a nice ear-decomposition.
- Optimize short ears so that they serve best for connectivity.

- Take all edges of pendant ears.
- Add edges to obtain connectivity.
- Add edges to correct parity.

Theorem
In each block, this algorithm yields a tour with at most \(\frac{3}{2}L - \pi \) edges, where \(L \) is a lower bound on the number of edges in any 2ECSS, and \(\pi \) is the number of pendant ears (after optimization).

Theorem
Mömke-Svensson yields a tour with at most \(\frac{4}{3}L + \frac{2}{3}\pi \) edges.

→ The better of the two tours has at most \(\frac{7}{5}L \) edges.
New algorithm for TSP

- Compute a nice ear-decomposition.
- Optimize short ears so that they serve best for connectivity.
- Delete all 1-ears. In each of the resulting blocks:
 - Take all edges of pendant ears.
 - Add edges to obtain connectivity.
 - Add edges to correct parity.

Alternatively:

- Apply lemma of M"omke-Svensson.

Theorem
In each block, this algorithm yields a tour with at most $3 \frac{2}{L} - \pi$ edges, where L is a lower bound on the number of edges in any 2ECSS, and π is the number of pendant ears (after optimization).

Theorem
M"omke-Svensson yields a tour with at most $4 \frac{3}{L} + 2 \frac{3}{\pi}$ edges.

\rightarrow The better of the two tours has at most $7 \frac{5}{L}$ edges.
New algorithm for TSP

- Compute a nice ear-decomposition.
- Optimize short ears so that they serve best for connectivity.
- Delete all 1-ears. In each of the resulting blocks:
 - Take all edges of pendant ears.
 - Add edges to obtain connectivity.
 - Add edges to correct parity.

Theorem

In each block, this algorithm yields a tour with at most $\frac{3}{2}L - \pi$ edges, where L is a lower bound on the number of edges in any 2ECSS, and π is the number of pendant ears (after optimization).
New algorithm for TSP

- Compute a nice ear-decomposition.
- Optimize short ears so that they serve best for connectivity.
- Delete all 1-ears. In each of the resulting blocks:
 - Take all edges of pendant ears.
 - Add edges to obtain connectivity.
 - Add edges to correct parity.

Alternatively:
- Apply lemma of Mömke-Svensson.

Theorem

In each block, this algorithm yields a tour with at most \(\frac{3}{2}L - \pi \) edges, where \(L \) is a lower bound on the number of edges in any 2ECSS, and \(\pi \) is the number of pendant ears (after optimization).
New algorithm for TSP

- Compute a nice ear-decomposition.
- Optimize short ears so that they serve best for connectivity.
- Delete all 1-ears. In each of the resulting blocks:
 - Take all edges of pendant ears.
 - Add edges to obtain connectivity.
 - Add edges to correct parity.

Alternatively:

- Apply lemma of Mömke-Svensson.

Theorem

In each block, this algorithm yields a tour with at most \(\frac{3}{2} L - \pi \) edges, where \(L \) is a lower bound on the number of edges in any 2ECSS, and \(\pi \) is the number of pendant ears (after optimization).

Theorem

Mömke-Svensson yields a tour with at most \(\frac{4}{3} L + \frac{2}{3} \pi \) edges.

\(\rightarrow \) The better of the two tours has at most \(\frac{7}{5} L \) edges.
Open problems

2ECSS
- improve approximation ratio (combining with ideas from Vempala, Vetta [2000]?)
- improve on 2-approximation for weighted 2ECSS (due to Khuller, Vishkin [1994])
- determine integrality ratio of the natural LP relaxation

TSP
- improve approximation ratio, determine integrality ratio
- extend to general metric TSP (beat Christofides [1976])
- extend to directed graphs (constant factor?)

T-tours $\supseteq s$-t-path-TSP
- find $\frac{3}{2}$-approximation algorithm for the weighted case
Open problems

2ECSS
- improve approximation ratio (combining with ideas from Vempala, Vetta [2000]?)
- improve on 2-approximation for weighted 2ECSS (due to Khuller, Vishkin [1994])
- determine integrality ratio of the natural LP relaxation

TSP
- improve approximation ratio, determine integrality ratio
- extend to general metric TSP (beat Christofides [1976])
- extend to directed graphs (constant factor?)

T-tours $\supseteq s$-t-path-TSP
- find $\frac{3}{2}$-approximation algorithm for the weighted case

Thank you!
Open problems

2ECSS

- improve approximation ratio (combining with ideas from Vempala, Vetta [2000]?)
- improve on 2-approximation for weighted 2ECSS (due to Khuller, Vishkin [1994])
- determine integrality ratio of the natural LP relaxation

TSP

- improve approximation ratio, determine integrality ratio
- extend to general metric TSP (beat Christofides [1976])
- extend to directed graphs (constant factor?)

T-tours $\supseteq s$-t-path-TSP

- find $\frac{3}{2}$-approximation algorithm for the weighted case

Thank you!
Tight example for 2ECSS

\[L = n = OPT = 24k \]
\[\varphi(G) = 1 \]
\[\pi = 4k = \frac{1}{6} L. \]

(Here \(k = 2 \).)

Algorithm computes solution with \(32k - 1 \) edges.