The Stokes groupoids

Marco Gualtieri

University of Toronto

Fields Institute workshop on EDS and Lie theory, December 11, 2013

Based on arXiv:1305.7288 with Songhao Li and Brent Pym

Differential equations as connections

Any linear ODE, e.g.

$$
\frac{d^{2} u}{d z^{2}}+\alpha \frac{d u}{d z}+\beta u=0
$$

can be viewed as a first order system: set $v=u^{\prime}$ and then

$$
\frac{d}{d z}\binom{u}{v}=\left(\begin{array}{cc}
0 & 1 \\
-\beta & -\alpha
\end{array}\right)\binom{u}{v}
$$

This defines a flat connection

$$
\nabla=d+\left(\begin{array}{cc}
0 & -1 \\
\beta & \alpha
\end{array}\right) d z
$$

so that the system is

$$
\nabla f=0
$$

Flat connections as representations

Flat connection on vector bundle E : for each vector field $\mathcal{V} \in \mathcal{T}_{\mathrm{X}}$,

$$
\nabla_{\mathcal{V}}: \mathcal{E} \rightarrow \mathcal{E}
$$

Curvature zero:

$$
\nabla_{\left[\mathcal{V}_{1}, \mathcal{V}_{2}\right]}=\left[\nabla \mathcal{V}_{1}, \nabla \mathcal{V}_{2}\right] .
$$

(E, ∇) is a representation of the Lie algebroid \mathcal{T}_{X}.

Solving ODE

Fix an initial point z_{0}. Solving the equation along a path γ from z_{0} to z gives an invertible matrix

$$
\psi(z)
$$

mapping an initial condition at z_{0} to the value of the solution at z.

This is called a fundamental solution and its columns form a basis of solutions.

Also called Parallel transport operator, and depends only on the homotopy class of γ.

The fundamental groupoid

Define the fundamental groupoid of X :

$$
\Pi_{1}(X)=\{\text { paths in } X\} /(\text { homotopies fixing endpoints) }
$$

- Product: concatenation of paths
- Identities: constant paths
- Inverses: reverse directions
- Manifold of dimension 2(dim X)

Parallel transport as a representation

The parallel transport gives a map

$$
\Psi: \Pi_{1}(X) \rightarrow \mathrm{GL}(n, \mathbb{C})
$$

which is a representation of $\Pi_{1}(X)$:

$$
\begin{aligned}
\Psi\left(\gamma_{1} \gamma_{2}\right) & =\Psi\left(\gamma_{1}\right) \Psi\left(\gamma_{2}\right) \\
\Psi\left(\gamma^{-1}\right) & =\Psi(\gamma)^{-1} \\
\Psi\left(1_{x}\right) & =1
\end{aligned}
$$

We call Ψ the universal solution of the system.

Riemann-Hilbert correspondence

Correspondence between differential equations, i.e. flat connections

$$
\nabla: \Omega_{\mathrm{X}}^{0}(\mathcal{E}) \rightarrow \Omega_{\mathrm{X}}^{1}(\mathcal{E})
$$

and their solutions, i.e. parallel transport operators

$$
\Psi(\gamma): \mathcal{E}_{\gamma(0)} \rightarrow \mathcal{E}_{\gamma(1)}
$$

Main problem: singular ODE

A singular ODE leads to a singular (meromorphic) connection

$$
\nabla=d+A(z) z^{-k} d z
$$

For example, the Airy equation $f^{\prime \prime}=x f$ has connection

$$
\nabla=d+\left(\begin{array}{cc}
0 & -1 \\
-x & 0
\end{array}\right) d x
$$

and in the coordinate $z=x^{-1}$ near infinity,

$$
\nabla=d+\left(\begin{array}{cc}
0 & -1 \\
-z & -z^{2}
\end{array}\right) z^{-3} d z
$$

Singular ODE

Singular ODE have singular solutions:

$$
f^{\prime}=z^{-2} f \quad f=C e^{-1 / z}
$$

Formal power series solutions often have zero radius of convergence:

$$
\nabla=d+\left(\begin{array}{cc}
-1 & z \\
0 & 0
\end{array}\right) z^{-2} d z
$$

has solutions given by columns in the matrix

$$
\psi=\left(\begin{array}{cc}
e^{-1 / z} & \hat{f} \\
0 & 1
\end{array}\right)
$$

where formally $\hat{f}=\sum_{n=0}^{\infty} n!z^{n+1}$.

Resummation

Borel summation/multi-summation: recover actual solutions from divergent series:

$$
\begin{aligned}
\sum_{n=0}^{\infty} a_{n} z^{n} & =\sum_{n=0}^{\infty} a_{n}\left(\frac{1}{n!z} \int_{0}^{\infty} t^{n} e^{-t / z} d t\right) \\
& =\frac{1}{z} \int_{0}^{\infty}\left(\sum_{n=0}^{\infty} \frac{a_{n} t^{n}}{n!}\right) e^{-t / z} d t
\end{aligned}
$$

The auxiliary series may now converge.

Our point of view

The Stokes groupoids

Traditional solutions $\psi(z)$:

- multivalued
- not necessarily invertible
- essential singularities
- zero radius of convergence

Why? They are written on the wrong space. The correct space must be 2-dimensional analog of the fundamental groupoid.

The main idea

$\mathcal{T}_{\mathrm{x}}(-\mathrm{D})$ as a Lie algebroid

View a meromorphic connection not as a representation of \mathcal{T}_{X} with singularities on the divisor $\mathrm{D}=k_{1} \cdot p_{1}+\cdots+k_{n} \cdot p_{n}$, but as a representation of the Lie algebroid

$$
\begin{aligned}
\mathcal{A} & =\mathcal{T}_{\mathrm{X}}(-\mathrm{D})=\text { sheaf of vector fields vanishing at } \mathrm{D} \\
& =\left\langle z^{k} \frac{\partial}{\partial z}\right\rangle
\end{aligned}
$$

\mathcal{A} defines a vector bundle over X which serves as a replacement for the tangent bundle \mathcal{T}_{X}.

Lie algebroids

Introduction

Definition: A Lie algebroid $(\mathcal{A},[], a$,$) is a vector bundle \mathcal{A}$ with a Lie bracket on its sections and a bracket-preserving bundle map

$$
a: \mathcal{A} \rightarrow \mathcal{T}_{\mathrm{X}}
$$

such that $[u, f v]=f[u, v]+\left(L_{a(u)} f\right) v$.

Lie algebroids

Representations

Definition: A representation of the Lie algebroid \mathcal{A} is a vector bundle \mathcal{E} with a flat \mathcal{A}-connection

$$
\nabla: \mathcal{E} \rightarrow \mathcal{A}^{*} \otimes \mathcal{E}, \quad \nabla(f s)=f \nabla s+\left(d_{\mathcal{A}} f\right) s
$$

For $\mathcal{A}=\mathcal{T}_{\mathrm{X}}(-\mathrm{D})=\left\langle z^{k} \partial_{z}\right\rangle$, we have $\mathcal{A}^{*}=\left\langle z^{-k} d z\right\rangle$, and so

$$
\begin{aligned}
\nabla & =d+A(z)\left(z^{-k} d z\right) \\
& =\left(z^{k} \partial_{z}+A(z)\right) z^{-k} d z
\end{aligned}
$$

i.e. a meromorphic connection.

Lie Groupoids

Introduction

Definition: A Lie groupoid G over X is a manifold of arrows g between points of X.

- Each arrow g has source $s(g) \in X$ and target $t(g) \in X$. The maps $s, t: G \rightarrow X$ are surjective submersions.
- There is an associative composition of arrows

$$
m: \mathrm{G}_{s} \times{ }_{t} \mathrm{G} \rightarrow \mathrm{G}
$$

- Each $x \in X$ has an identity $\operatorname{id}(x) \in \mathrm{G}$; this gives an embedding $X \subset G$.
- Each arrow has an inverse.

Examples:

- The fundamental groupoid $\Pi_{1}(X)$.
- The pair groupoid $X \times X$, in which

$$
(x, y) \cdot(y, z)=(x, z)
$$

Lie Groupoids

Another example: action groupoids

Given a Lie group K and a K-space X, the action groupoid $\mathrm{G}=K \times \mathrm{X}$ has structure maps

$$
s(k, x)=x, \quad t(k, x)=k \cdot x
$$

and obvious composition law.

For example, the action of \mathbb{C} on \mathbb{C} via

$$
u \cdot z=e^{u} z
$$

gives rise to a groupoid $G=\mathbb{C} \times \mathbb{C}$ with the following structure:

Action groupoid for \mathbb{C} action on \mathbb{C} given by $u \cdot z=e^{u} z$.
Vertical lines are s-fibres and blue curves are t-fibres.

Lie Groupoids

Relation to Lie algebroids

The Lie algebroid \mathcal{A} of a Lie groupoid G over X is defined by:

$$
\mathcal{A}=\left.N(\operatorname{id}(\mathrm{X})) \cong \operatorname{ker} s_{*}\right|_{\mathrm{id}(\mathrm{X})} .
$$

- Sections of \mathcal{A} have unique extensions to right-invariant vector fields tangent to s-foliation \mathcal{F}. Thus \mathcal{A} inherits a Lie bracket.
- t-projection defines the anchor a :

$$
t_{*}: \mathcal{A} \rightarrow \mathcal{T}_{X} .
$$

Lie Groupoids

Representation

Definition: A representation of a Lie groupoid G over X is a vector bundle $\mathcal{E} \rightarrow \mathrm{X}$ and an isomorphism

$$
\Psi: s^{*} \mathcal{E} \rightarrow t^{*} \mathcal{E}, \quad \Psi_{g h}=\Psi_{g} \circ \Psi_{h}
$$

Integration: If \mathcal{E} has a flat \mathcal{A}-connection, then $t^{*} \mathcal{E}$ has a usual flat connection along s-foliation \mathcal{F}.
$s^{*} \mathcal{E}$ is trivially flat along \mathcal{F}, and so the identification

$$
\left.s^{*} \mathcal{E}\right|_{\mathrm{id}(\mathrm{X})}=\left.t^{*} \mathcal{E}\right|_{\mathrm{id}(\mathrm{X})}
$$

may be extended uniquely to

$$
\Psi: s^{*} \mathcal{E} \rightarrow t^{*} \mathcal{E}
$$

as long as the s-fibres are simply connected.

Lie Groupoids

In this way, we obtain an equivalence

$$
\operatorname{Rep}(\mathcal{A}) \leftrightarrow \operatorname{Rep}(\mathrm{G}),
$$

using nothing more than the usual existence and uniqueness theorem for nonsingular ODEs.

Concrete Examples

Stokes groupoids

Example: Sto $_{k}=\Pi_{1}(\mathbb{C}, k \cdot 0)=\mathbb{C} \times \mathbb{C}$ with

$$
\begin{aligned}
s(z, u) & =z \\
t(z, u) & =\exp \left(u z^{k-1}\right) z \\
\left(z_{2}, u_{2}\right) \cdot\left(z_{1}, u_{1}\right) & =\left(z_{1}, u_{2} \exp \left((k-1) u_{1} z_{1}^{k-1}\right)+u_{1}\right)
\end{aligned}
$$

For $k=1$, coincides with action groupoid, but for $k>1$ not an action groupoid.

Sto $_{1}$ groupoid for 1 st order poles on \mathbb{C}

Sto_{2} groupoid for 2 nd order poles on \mathbb{C}

Sto_{3} groupoid for 3 rd order poles on \mathbb{C}

Sto_{4} groupoid for 4 th order poles on \mathbb{C}

Concrete Examples

Stokes groupoids

We can write Sto $_{k}$ more symmetrically:

$$
\begin{aligned}
s(z, u) & =\exp \left(-\frac{1}{2} u z^{k-1}\right) z \\
t(z, u) & =\exp \left(\frac{1}{2} u z^{k-1}\right) z
\end{aligned}
$$

Sto $_{1}$ groupoid for 1 st order poles on \mathbb{C}

Sto_{2} groupoid for 2 nd order poles on \mathbb{C}

Applications

Universal domain of definition for solutions to ODE

Theorem: If ψ is a fundamental solution of $\nabla \psi=0$, i.e. a flat basis of solutions, and if ∇ is meromorphic with poles bounded by D, then ψ may be

- multivalued
- non-invertible
- singular,
however

$$
\Psi=t^{*} \psi \circ s^{*} \psi^{-1}
$$

is single-valued, smooth and invertible on the Stokes groupoid.

Applications

Summation of divergent series

Recall that the connection

$$
\nabla=d+\left(\begin{array}{cc}
-1 & z \\
0 & 0
\end{array}\right) z^{-2} d z
$$

has fundamental solution

$$
\psi=\left(\begin{array}{cc}
e^{-1 / z} & \widehat{f} \\
0 & 1
\end{array}\right)
$$

where formally $\widehat{f}=\sum_{n=0}^{\infty} n!z^{n+1}$.
∇ is a representation of $\mathcal{T}_{\mathbb{C}}(-2 \cdot 0)$, and so the corresponding groupoid representation Ψ is defined on Sto_{2}. For convenience we use coordinates (z, μ) on the groupoid such that

$$
s(z, \mu)=z, \quad t(z, \mu)=z(1-z \mu)^{-1}
$$

Applications

Summation of divergent series

$$
\begin{aligned}
\Psi & =t^{*} \psi \circ s^{*} \psi^{-1}=t^{*}\left(\begin{array}{cc}
e^{-1 / z} & \widehat{f} \\
& 1
\end{array}\right) s^{*}\left(\begin{array}{ll}
e^{-1 / z} & \widehat{f} \\
1
\end{array}\right)^{-1} \\
& =\left(\begin{array}{cc}
e^{-(1-z \mu) / z} & t^{*} \widehat{f} \\
1
\end{array}\right)\left(\begin{array}{cc}
e^{1 / z} & -s^{*} \widehat{f} \\
1
\end{array}\right) \\
& =\left(\begin{array}{cc}
e^{\mu} & t^{*} \widehat{f}-e^{\mu} s^{*} \hat{f} \\
1
\end{array}\right)
\end{aligned}
$$

But we know a priori this converges on the groupoid:

Applications

Summation of divergent series

Indeed, using $\widehat{f}=\sum_{n=0}^{\infty} n!z^{n+1}$,

$$
t^{*} \widehat{f}-e^{\mu} s^{*} \widehat{f}=-\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{z^{i+1} \mu^{i+j+1}}{(i+1)(i+2) \cdots(i+j+1)}
$$

which is a convergent power series in two variables for the representation Ψ.

