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Differential equations as connections

Any linear ODE, e.g.

d2u

dz2
+ α

du

dz
+ βu = 0,

can be viewed as a first order system: set v = u′ and then

d

dz

(
u
v

)
=

(
0 1
−β −α

)(
u
v

)
.

This defines a flat connection

∇ = d +

(
0 −1
β α

)
dz ,

so that the system is
∇f = 0.



Flat connections as representations

Flat connection on vector bundle E : for each vector field V ∈ TX,

∇V : E → E

Curvature zero:
∇[V1,V2] = [∇V1 ,∇V2 ].

(E ,∇) is a representation of the Lie algebroid TX.



Solving ODE

Fix an initial point z0. Solving the equation along a path γ from z0
to z gives an invertible matrix

ψ(z)

mapping an initial condition at z0 to the value of the solution at z .

z0

z

γ
γ′

This is called a fundamental solution and its columns form a basis
of solutions.

Also called Parallel transport operator, and depends only on the
homotopy class of γ.



The fundamental groupoid

Define the fundamental groupoid of X:

Π1(X) = {paths in X}/(homotopies fixing endpoints)

– Product: concatenation of paths

– Identities: constant paths

– Inverses: reverse directions

– Manifold of dimension 2(dim X)



Parallel transport as a representation

The parallel transport gives a map

Ψ : Π1(X)→ GL(n,C)

which is a representation of Π1(X):

Ψ(γ1γ2) = Ψ(γ1)Ψ(γ2)

Ψ(γ−1) = Ψ(γ)−1

Ψ(1x) = 1

We call Ψ the universal solution of the system.



Riemann–Hilbert correspondence

Correspondence between differential equations, i.e. flat connections

∇ : Ω0
X(E)→ Ω1

X(E),

and their solutions, i.e. parallel transport operators

Ψ(γ) : Eγ(0) → Eγ(1).

{representations of TX} {representations of Π1(X)}

Integration

Differentiation



Main problem: singular ODE

A singular ODE leads to a singular (meromorphic) connection

∇ = d + A(z)z−kdz .

For example, the Airy equation f ′′ = xf has connection

∇ = d +

(
0 −1
−x 0

)
dx ,

and in the coordinate z = x−1 near infinity,

∇ = d +

(
0 −1
−z −z2

)
z−3dz .



Singular ODE

Singular ODE have singular solutions:

f ′ = z−2f f = Ce−1/z

Formal power series solutions often have zero radius of
convergence:

∇ = d +

(
−1 z
0 0

)
z−2dz

has solutions given by columns in the matrix

ψ =

(
e−1/z f̂

0 1

)
,

where formally f̂ =
∞∑
n=0

n!zn+1.



Resummation

Borel summation/multi-summation: recover actual solutions from
divergent series:

∞∑
n=0

anz
n =

∞∑
n=0

an

(
1
n!z

∫ ∞
0

tne−t/z dt

)

=
1

z

∫ ∞
0

( ∞∑
n=0

ant
n

n!

)
e−t/z dt

The auxiliary series may now converge.



Our point of view
The Stokes groupoids

Traditional solutions ψ(z):

– multivalued

– not necessarily invertible

– essential singularities

– zero radius of convergence

Why? They are written on the wrong space. The correct space
must be 2-dimensional analog of the fundamental groupoid.



The main idea
TX(−D) as a Lie algebroid

View a meromorphic connection not as a representation of TX with
singularities on the divisor D = k1 · p1 + · · ·+ kn · pn, but as a
representation of the Lie algebroid

A = TX(−D) = sheaf of vector fields vanishing at D

=

〈
zk

∂

∂z

〉
A defines a vector bundle over X which serves as a replacement for
the tangent bundle TX.



Lie algebroids
Introduction

Definition: A Lie algebroid (A, [, ], a) is a vector bundle A with a
Lie bracket on its sections and a bracket-preserving bundle map

a : A → TX,

such that [u, fv ] = f [u, v ] + (La(u)f )v .



Lie algebroids
Representations

Definition: A representation of the Lie algebroid A is a vector
bundle E with a flat A-connection

∇ : E → A∗ ⊗ E , ∇(fs) = f∇s + (dAf )s.

For A = TX(−D) =
〈
zk∂z

〉
, we have A∗ =

〈
z−kdz

〉
, and so

∇ = d + A(z)(z−kdz)

= (zk∂z + A(z)) z−kdz ,

i.e. a meromorphic connection.



Lie Groupoids
Introduction

Definition: A Lie groupoid G over X is a manifold of arrows g
between points of X.

- Each arrow g has source s(g) ∈ X and target t(g) ∈ X. The
maps s, t : G→ X are surjective submersions.

- There is an associative composition of arrows

m : Gs×tG→ G.

- Each x ∈ X has an identity id(x) ∈ G; this gives an
embedding X ⊂ G.

- Each arrow has an inverse.

Examples:

– The fundamental groupoid Π1(X).

– The pair groupoid X× X, in which

(x , y) · (y , z) = (x , z).



Lie Groupoids
Another example: action groupoids

Given a Lie group K and a K -space X, the action groupoid
G = K × X has structure maps

s(k , x) = x , t(k , x) = k · x ,

and obvious composition law.

For example, the action of C on C via

u · z = euz

gives rise to a groupoid G = C× C with the following structure:



Action groupoid for C action on C given by u · z = euz .
Vertical lines are s-fibres and blue curves are t-fibres.



Lie Groupoids
Relation to Lie algebroids

The Lie algebroid A of a Lie groupoid G over X is defined by:

A = N(id(X)) ∼= ker s∗|id(X).

- Sections of A have unique extensions to right-invariant vector
fields tangent to s-foliation F . Thus A inherits a Lie bracket.

- t-projection defines the anchor a:

t∗ : A → TX.



Lie Groupoids
Representation

Definition: A representation of a Lie groupoid G over X is a
vector bundle E → X and an isomorphism

Ψ : s∗E → t∗E , Ψgh = Ψg ◦Ψh.

Integration: If E has a flat A-connection, then t∗E has a usual
flat connection along s-foliation F .
s∗E is trivially flat along F , and so the identification

s∗E|id(X) = t∗E|id(X)

may be extended uniquely to

Ψ : s∗E → t∗E ,

as long as the s-fibres are simply connected.



Lie Groupoids
Lie III Theorem

In this way, we obtain an equivalence

Rep(A)↔ Rep(G),

using nothing more than the usual existence and uniqueness
theorem for nonsingular ODEs.



Concrete Examples
Stokes groupoids

Example: Stok = Π1(C, k · 0) = C× C with

s(z , u) = z

t(z , u) = exp(uzk−1)z

(z2, u2) · (z1, u1) = (z1, u2 exp((k − 1)u1z
k−1
1 ) + u1).

For k = 1, coincides with action groupoid, but for k > 1 not an
action groupoid.



Sto1 groupoid for 1st order poles on C



Sto2 groupoid for 2nd order poles on C



Sto3 groupoid for 3rd order poles on C



Sto4 groupoid for 4th order poles on C



Concrete Examples
Stokes groupoids

We can write Stok more symmetrically:

s(z , u) = exp(−1
2uz

k−1)z

t(z , u) = exp( 1
2uz

k−1)z



Sto1 groupoid for 1st order poles on C



Sto2 groupoid for 2nd order poles on C



Applications
Universal domain of definition for solutions to ODE

Theorem: If ψ is a fundamental solution of ∇ψ = 0, i.e. a flat
basis of solutions, and if ∇ is meromorphic with poles bounded by
D, then ψ may be

- multivalued

- non-invertible

- singular,

however
Ψ = t∗ψ ◦ s∗ψ−1

is single-valued, smooth and invertible on the Stokes groupoid.



Applications
Summation of divergent series

Recall that the connection

∇ = d +

(
−1 z
0 0

)
z−2dz

has fundamental solution

ψ =

(
e−1/z f̂

0 1

)
,

where formally f̂ =
∞∑
n=0

n!zn+1.

∇ is a representation of TC(−2 · 0), and so the corresponding
groupoid representation Ψ is defined on Sto2. For convenience we
use coordinates (z , µ) on the groupoid such that

s(z , µ) = z , t(z , µ) = z(1− zµ)−1.



Applications
Summation of divergent series

Ψ = t∗ψ ◦ s∗ψ−1 = t∗
(
e−1/z f̂

1

)
s∗
(
e−1/z f̂

1

)−1
=

(
e−(1−zµ)/z t∗f̂

1

)(
e1/z −s∗f̂

1

)
=

(
eµ t∗f̂ − eµs∗f̂

1

)
But we know a priori this converges on the groupoid:



Applications
Summation of divergent series

Indeed, using f̂ =
∑∞

n=0 n! zn+1,

t∗f̂ − eµs∗f̂ = −
∞∑
i=0

∞∑
j=0

z i+1µi+j+1

(i + 1)(i + 2) · · · (i + j + 1)
,

which is a convergent power series in two variables for the
representation Ψ.


