The Stokes groupoids

Marco Gualtieri

University of Toronto

Fields Institute workshop on EDS and Lie theory, December 11, 2013

Based on arXiv:1305.7288 with Songhao Li and Brent Pym

Differential equations as connections

Any linear ODE, e.g.

$$\frac{d^2u}{dz^2} + \alpha \frac{du}{dz} + \beta u = 0,$$

can be viewed as a first order system: set v = u' and then

$$\frac{d}{dz}\begin{pmatrix} u\\ v \end{pmatrix} = \begin{pmatrix} 0 & 1\\ -\beta & -\alpha \end{pmatrix} \begin{pmatrix} u\\ v \end{pmatrix}.$$

This defines a flat connection

$$abla = d + \begin{pmatrix} \mathsf{0} & -1 \\ eta & lpha \end{pmatrix} dz,$$

so that the system is

 $\nabla f = 0.$

Flat connection on vector bundle *E*: for each vector field $\mathcal{V} \in \mathcal{T}_X$,

$$\nabla_{\mathcal{V}}: \mathcal{E} \to \mathcal{E}$$

Curvature zero:

$$\nabla_{[\mathcal{V}_1,\mathcal{V}_2]} = [\nabla_{\mathcal{V}_1},\nabla_{\mathcal{V}_2}].$$

 (E, ∇) is a *representation* of the Lie algebroid \mathcal{T}_X .

Solving ODE

Fix an initial point z_0 . Solving the equation along a path γ from z_0 to z gives an invertible matrix

 $\psi(z)$

mapping an initial condition at z_0 to the value of the solution at z.

This is called a *fundamental solution* and its columns form a basis of solutions.

Also called *Parallel transport operator*, and depends only on the homotopy class of γ .

The fundamental groupoid

Define the **fundamental groupoid of** X:

 $\Pi_1(X) = \{ \text{paths in } X \} / (\text{homotopies fixing endpoints})$

- Product: concatenation of paths
- Identities: constant paths
- Inverses: reverse directions
- Manifold of dimension 2(dim X)

The parallel transport gives a map

 $\Psi:\Pi_1(\mathsf{X})\to \mathsf{GL}(\mathit{n},\mathbb{C})$

which is a **representation of** $\Pi_1(X)$:

$$egin{aligned} \Psi(\gamma_1\gamma_2) &= \Psi(\gamma_1)\Psi(\gamma_2) \ \Psi(\gamma^{-1}) &= \Psi(\gamma)^{-1} \ \Psi(1_x) &= 1 \end{aligned}$$

We call Ψ the **universal solution** of the system.

Riemann-Hilbert correspondence

Correspondence between differential equations, i.e. flat connections

$$abla : \Omega^0_X(\mathcal{E}) o \Omega^1_X(\mathcal{E}),$$

and their solutions, i.e. parallel transport operators

$$\Psi(\gamma): \mathcal{E}_{\gamma(0)} \to \mathcal{E}_{\gamma(1)}.$$

Main problem: singular ODE

A singular ODE leads to a singular (meromorphic) connection

$$\nabla = d + A(z)z^{-k}dz.$$

For example, the Airy equation f'' = xf has connection

$$\nabla = d + \begin{pmatrix} 0 & -1 \\ -x & 0 \end{pmatrix} dx,$$

and in the coordinate $z = x^{-1}$ near infinity,

$$\nabla = d + \begin{pmatrix} 0 & -1 \\ -z & -z^2 \end{pmatrix} z^{-3} dz.$$

Singular ODE

Singular ODE have singular solutions:

$$f' = z^{-2}f$$
 $f = Ce^{-1/z}$

Formal power series solutions often have zero radius of convergence:

$$\nabla = d + \begin{pmatrix} -1 & z \\ 0 & 0 \end{pmatrix} z^{-2} dz$$

has solutions given by columns in the matrix

$$\psi = \begin{pmatrix} e^{-1/z} & \hat{f} \\ 0 & 1 \end{pmatrix},$$

where formally
$$\hat{f} = \sum_{n=0}^{\infty} n! z^{n+1}.$$

Borel summation/multi-summation: recover actual solutions from divergent series:

$$\sum_{n=0}^{\infty} a_n z^n = \sum_{n=0}^{\infty} a_n \left(\frac{1}{n!z} \int_0^\infty t^n e^{-t/z} dt \right)$$
$$= \frac{1}{z} \int_0^\infty \left(\sum_{n=0}^\infty \frac{a_n t^n}{n!} \right) e^{-t/z} dt$$

The auxiliary series may now converge.

Traditional solutions $\psi(z)$:

- multivalued
- not necessarily invertible
- essential singularities
- zero radius of convergence

Why? They are written on the *wrong space*. The correct space must be 2-dimensional analog of the fundamental groupoid.

View a meromorphic connection not as a representation of \mathcal{T}_X with singularities on the divisor $D = k_1 \cdot p_1 + \cdots + k_n \cdot p_n$, but as a representation of the Lie algebroid

$$\begin{split} \mathcal{A} &= \mathcal{T}_{\mathsf{X}}(-\mathsf{D}) = \mathsf{sheaf} \mathsf{ of vector fields vanishing at } \mathsf{D} \\ &= \left\langle z^k \frac{\partial}{\partial z} \right\rangle \end{split}$$

 ${\cal A}$ defines a vector bundle over X which serves as a replacement for the tangent bundle ${\cal T}_X.$

Definition: A Lie algebroid $(\mathcal{A}, [,], a)$ is a vector bundle \mathcal{A} with a Lie bracket on its sections and a bracket-preserving bundle map

$$a: \mathcal{A}
ightarrow \mathcal{T}_{\mathsf{X}},$$

such that $[u, fv] = f[u, v] + (L_{a(u)}f)v$.

Definition: A representation of the Lie algebroid \mathcal{A} is a vector bundle \mathcal{E} with a flat \mathcal{A} -connection

$$abla : \mathcal{E} \to \mathcal{A}^* \otimes \mathcal{E}, \qquad
abla (fs) = f \nabla s + (d_{\mathcal{A}} f) s.$$

For
$$\mathcal{A} = \mathcal{T}_X(-D) = \langle z^k \partial_z \rangle$$
, we have $\mathcal{A}^* = \langle z^{-k} dz \rangle$, and so
 $\nabla = d + A(z)(z^{-k} dz)$
 $= (z^k \partial_z + A(z)) z^{-k} dz$,

i.e. a meromorphic connection.

Lie Groupoids

Introduction

Definition: A Lie groupoid G over X is a manifold of arrows g between points of X.

- Each arrow g has source $s(g) \in X$ and target $t(g) \in X$. The maps $s, t : G \to X$ are surjective submersions.
- There is an associative composition of arrows

$$m: \mathsf{G}_s \times_t \mathsf{G} \to \mathsf{G}.$$

- Each x ∈ X has an identity id(x) ∈ G; this gives an embedding X ⊂ G.
- Each arrow has an inverse.

Examples:

- The fundamental groupoid $\Pi_1(X)$.
- The pair groupoid $\mathsf{X}\times\mathsf{X},$ in which

$$(x,y)\cdot(y,z)=(x,z).$$

Lie Groupoids

Another example: action groupoids

Given a Lie group K and a K-space X, the *action groupoid* $G = K \times X$ has structure maps

$$s(k,x) = x, \quad t(k,x) = k \cdot x,$$

and obvious composition law.

For example, the action of $\mathbb C$ on $\mathbb C$ via

$$u \cdot z = e^u z$$

gives rise to a groupoid $G = \mathbb{C} \times \mathbb{C}$ with the following structure:

Action groupoid for \mathbb{C} action on \mathbb{C} given by $u \cdot z = e^u z$. Vertical lines are *s*-fibres and blue curves are *t*-fibres. The Lie algebroid \mathcal{A} of a Lie groupoid G over X is defined by:

$$\mathcal{A} = \mathit{N}(\mathsf{id}(\mathsf{X})) \cong \ker s_*|_{\mathsf{id}(\mathsf{X})}.$$

- Sections of A have unique extensions to right-invariant vector fields tangent to *s*-foliation F. Thus A inherits a Lie bracket.
- *t*-projection defines the anchor *a*:

$$t_*: \mathcal{A} \to \mathcal{T}_X.$$

Lie Groupoids Representation

Definition: A representation of a Lie groupoid G over X is a vector bundle $\mathcal{E} \to X$ and an isomorphism

$$\Psi: s^*\mathcal{E} \to t^*\mathcal{E}, \quad \Psi_{gh} = \Psi_g \circ \Psi_h.$$

Integration: If \mathcal{E} has a flat \mathcal{A} -connection, then $t^*\mathcal{E}$ has a *usual* flat connection along *s*-foliation \mathcal{F} .

 $s^*\mathcal{E}$ is trivially flat along \mathcal{F} , and so the identification

$$s^*\mathcal{E}|_{\mathsf{id}(\mathsf{X})} = t^*\mathcal{E}|_{\mathsf{id}(\mathsf{X})}$$

may be extended uniquely to

$$\Psi: s^*\mathcal{E} \to t^*\mathcal{E},$$

as long as the *s*-fibres are simply connected.

In this way, we obtain an equivalence

 $\operatorname{Rep}(\mathcal{A}) \leftrightarrow \operatorname{Rep}(G),$

using nothing more than the usual existence and uniqueness theorem for nonsingular ODEs.

Concrete Examples

Stokes groupoids

Example: $\operatorname{Sto}_k = \Pi_1(\mathbb{C}, k \cdot 0) = \mathbb{C} \times \mathbb{C}$ with

$$s(z, u) = z$$

$$t(z, u) = \exp(uz^{k-1})z$$

$$(z_2, u_2) \cdot (z_1, u_1) = (z_1, u_2 \exp((k-1)u_1z_1^{k-1}) + u_1).$$

For k = 1, coincides with action groupoid, but for k > 1 not an action groupoid.

 Sto_1 groupoid for 1st order poles on $\mathbb C$

 Sto_2 groupoid for 2nd order poles on $\mathbb C$

Concrete Examples

Stokes groupoids

We can write Sto_k more symmetrically:

$$s(z, u) = \exp(-\frac{1}{2}uz^{k-1})z$$
$$t(z, u) = \exp(-\frac{1}{2}uz^{k-1})z$$

 Sto_1 groupoid for 1st order poles on $\mathbb C$

 Sto_2 groupoid for 2nd order poles on $\mathbb C$

Theorem: If ψ is a fundamental solution of $\nabla \psi = 0$, i.e. a flat basis of solutions, and if ∇ is meromorphic with poles bounded by D, then ψ may be

- multivalued
- non-invertible
- singular,

however

$$\Psi = t^* \psi \circ s^* \psi^{-1}$$

is single-valued, smooth and invertible on the Stokes groupoid.

Applications

Summation of divergent series

Recall that the connection

$$\nabla = d + \begin{pmatrix} -1 & z \\ 0 & 0 \end{pmatrix} z^{-2} dz$$

has fundamental solution

$$\psi = \begin{pmatrix} e^{-1/z} & \widehat{f} \\ 0 & 1 \end{pmatrix},$$

where formally
$$\widehat{f} = \sum_{n=0}^{\infty} n! z^{n+1}$$
.

 ∇ is a representation of $\mathcal{T}_{\mathbb{C}}(-2 \cdot 0)$, and so the corresponding groupoid representation Ψ is defined on Sto₂. For convenience we use coordinates (z, μ) on the groupoid such that

$$s(z,\mu) = z, \quad t(z,\mu) = z(1-z\mu)^{-1}.$$

Applications Summation of divergent series

$$\begin{split} \Psi &= t^*\psi \circ s^*\psi^{-1} = t^* \begin{pmatrix} e^{-1/z} & \widehat{f} \\ 1 \end{pmatrix} s^* \begin{pmatrix} e^{-1/z} & \widehat{f} \\ 1 \end{pmatrix}^{-1} \\ &= \begin{pmatrix} e^{-(1-z\mu)/z} & t^*\widehat{f} \\ 1 \end{pmatrix} \begin{pmatrix} e^{1/z} & -s^*\widehat{f} \\ 1 \end{pmatrix} \\ &= \begin{pmatrix} e^{\mu} & t^*\widehat{f} - e^{\mu}s^*\widehat{f} \\ 1 \end{pmatrix} \end{split}$$

But we know a priori this converges on the groupoid:

Applications Summation of divergent series

ndeed, using
$$\widehat{f} = \sum_{n=0}^{\infty} n! z^{n+1}$$
,
 $t^* \widehat{f} - e^{\mu} s^* \widehat{f} = -\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{z^{i+1} \mu^{i+j+1}}{(i+1)(i+2)\cdots(i+j+1)}$,

which is a convergent power series in two variables for the representation $\boldsymbol{\Psi}.$