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Short talk – Get to the point!

Lie Pseudogroup = “sub-pseudogroup of the diffeomorphisms of a manifold that can be
written as solutions of an involutive PDE/EDS, by Cartan–Kähler.”

The traditional representation theory of Lie groups begins with the question “how hard is
it to integrate the infinitesimal structure of the Lie algebra into the local structure of the
Lie group?”
Answering gives useful classes like abelian, solvable, and semi-simple and Levi’s thm.
Cartan–Kähler (Cauchy–Kowalevski) is the weakest (requiring strongest regularity) in a
family of Cauchy integration theorems.
Therefore, examination of regularity and micro-local analysis (“how difficult is
integration?”) of involutive PDE/EDS should help build our knowledge Lie pseudogroups.
Where to find invariant notions of “difficult to integrate?”
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Dans certains cas, le nombre de ces familles de car-
actéristiques peut être réduit, certaines familles de-
venant double, triples, etc. Ces cas de réduction sont
analogues à ceux qui se présentent dans la réduction
d’une substitution linéaire à sa forme normale et
la rerecherche des caractéristiques dépend d’ailleurs
d’une telle réduction. —Cartan, 102 years ago.

Moreover, those multiplicities in the charac-
teristic variety can be accessed via the incidence
correspondence given by the rank-one variety
of the tableau.

For involutive systems with higher Cartan int,
submanifolds secant to the rank-one cone give
hydrodynamic reductions, and the secant system
indicates hydrodynamic integrability in local
coordinates.
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Characteristic and Rank-One Variety

Two interwoven stories: rank-one variety & hydrodynamic integrability.

M , I

M (1), I(1)

M (2), I(2)

Tp M

Te M (1)

TE M (2)

W

V

Z

Z (1)

ω

θ

η

κ Tableau and Symbol:

dθa ≡
(
τ(η)

)a

i
∧ ωi + 1

2Ta
ij ω

i ∧ ωj mod θ

0→ Z τ→W ⊗V ∗ σ→ U ∗ → 0

0→ Z (1) → Z ⊗V ∗ δ→W ⊗ ∧2V ∗ → H 0,2(Z )→ 0

Characteristic Variety and Rank-One Variety:

Ξ = {ξ ∈ V ∗ : ∃w, σξ(w) = σ(w ⊗ ξ) = 0}
C = {z ∈ Z : τ(z) = w ⊗ ξ, has rank 1}

(slides sloppy about P’s)
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Characteristic and Rank-One Variety

C

Gr•(W ) Ξ

Wξ ⊗ ξ

Wξ = kerσξ ξ

Some properties if I is involutive:

1 The eikonal system E(ΞC) is involutive on any ordinary integral N . (Typically, difficult.)
2 Ξ is essentially preserved under prolongation.
3 The last Cartan character is sdim Ξ̂C

= deg Ξ̂C.
4 If I has no Cauchy characteristics, then Ξ̂C spans e∗C.
5 If ΞC = ∅, then I is Frobenius (totally integrable).
6 If ΞR = ∅, then I is elliptic.
7 If ΞR has appropriate space-like hyperplanes, then I is hyperbolic.
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Characteristic and Rank-One Variety

Some examples with dim Z = s = s1 = dim Z (1) = 4

involutive tableau ⇐⇒ commuting symbol relations  compatible primary decompositions.
distinct

η1 λ1η
1 µ1η

1

η2 λ2η
2 µ2η

2

η3 λ3η
3 µ3η

3

η4 λ4η
4 µ4η

4


Ξ

[1 : λ1 : µ1], [1 : λ2 : µ2],
[1 : λ3 : µ3], [1 : λ4 : µ4].

C
1
0
0
0

,


0
1
0
0

,


0
0
1
0

,


0
0
0
1

.

Sec3(C) = 4P0.

duplicates
η1 λ1η

1 µ1η
1

η2 λ1η
2 µ1η

2

η3 λ3η
3 µ3η

3

η4 λ4η
4 µ4η

4


Ξ

[1 : λ1 : µ1], [1 : λ1 : µ1],
[1 : λ3 : µ3], [1 : λ4 : µ4].

C
∗
∗
0
0

,


0
0
1
0

,


0
0
0
1

.

Sec3(C) = 1P1 t 2P0.

nilpotents
η1 λ1η

1 + η2 µ1η
1 + η2

η2 λ1η
2 µ1η

2

η3 λ3η
3 µ3η

3

η4 λ4η
4 µ4η

4


Ξ

[1 : λ1 : µ1], [1 : λ1 : µ1],
[1 : λ3 : µ3], [1 : λ4 : µ4].

C
1
0
0
0

,


0
0
1
0

,


0
0
0
1

.

Sec3(C) = 1P0.
These systems are easier to distinguish with C than with Ξ.
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Characteristic and Rank-One Variety

The Secants of the Rank-One Cone
Fix e ∈ M (1).

Ξe ⊂ e∗ ∼= V ∗, defined by characteristic ideal
Ce ⊂ Ze, defined by 2× 2 minors on τ(Ze) ⊂W ⊗V ∗.

1 Note that Secn(Ce) ⊂ Grn(Ze) = Grn(Te M (1)), defined by some ideal. . .
2 Also, as usual, M (2) ⊂ Grn(T M (1)) defined by I(1).
3 So, there is an ideal on M (1) whose variety is Secn(C) ∩M (2).

(how to compute it?)
Prolong once and use Terracini’s Lemma: If E = l1 + l2 + · · ·+ ln ∈ Secn(C), then

TE Secn(C) =
∑

i
Tli C

Ann(TE Secn(C)) =
⋂
i

Ann Tli C ⊂ T∗E M (2)

Call it A(I).
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Characteristic and Rank-One Variety

I → I(1) → A(I). What does this give?

I

I(1) A(I)
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(Where) Does this end?
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Hydrodynamic Integrability

Wanted: A general notion of integrability.

To me, this means:
1 for PDEs already seen in the literature, the notion must reproduce the observed geometry;
2 the notion must be applicable to all PDEs of all orders & dimensions (perhaps trivially so);
3 the notion must extend naturally to generic EDS or D-modules (or provide obvious

obstructions to such an extension);
4 the notion must be contact invariant;
5 the notion must be preserved under prolongation; and
6 the notion should be equally applicable in the real or complex cases, with the usual

algebraic caveats.
Additionally, the following properties would be convenient:

1 the notion should be testable in real-world examples;
2 the notion should provide a means of constructing actual solutions; and
3 the notion should provide a means for constructing Lax pairs, τ functions, or loop group

formulations when those theories also apply.
That is, integrable systems should be viewed as a subvariety of involutive/regular systems.
What is their defining ideal?
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Hydrodynamic Integrability Semi-Hamiltonian Systems as PDEs

Consider this 1st-order system of PDE on functions (Xn , x i)→ (Y r , ya):

∂ya

∂x i = Fa
i (y)∂ya

∂x1 (no sum!)

with a compatibility condition on Fa
i,b = ∂Fa

i
∂yb :

Fa
i,b

Fa
i − Fb

i
=

Fa
j,b

Fa
j − Fb

j

This system is called a semi-Hamiltonian or rich system of conservation laws (Tsarëv and
D.Serre). They:

are uninteresting in r ≤ 2.
describe systems of commuting wavefronts
admit C∞ solutions using the generalized hodograph method
are characterized as orthogonal coordinate webs (Darboux, Tsarëv) (more on this later)
appear in the linearizations of many “integrable” PDEs (more on this later)
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appear in the linearizations of many “integrable” PDEs (more on this later)

A.Smith (Fordham) EDS 2013-12-09 10 / 13



Hydrodynamic Integrability Semi-Hamiltonian Systems as PDEs

Consider this 1st-order system of PDE on functions (Xn , x i)→ (Y r , ya):

∂ya

∂x i = Fa
i (y)∂ya

∂x1 (no sum!)

with a compatibility condition on Fa
i,b = ∂Fa

i
∂yb :

Fa
i,b

Fa
i − Fb

i
=

Fa
j,b

Fa
j − Fb

j

This system is called a semi-Hamiltonian or rich system of conservation laws (Tsarëv and
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Hydrodynamic Integrability Semi-Hamiltonian Systems as EDS

Let ha = ∂ya

∂x1 6= 0, with (ha) valued in some space H . Consider the EDS on
M = X × (Y ×H ) generated by

{θa} =
{

dya − haFa
i (y) dx i

}
and

d


θ1

θ2

...
θr

 ≡ −


dh1 F1
2 dh1 F1

3 dh1 · · · F1
ndh1

dh2 F2
2 dh2 F2

3 dh2 · · · F2
ndh2

...
...

... . . . ...
dhr F r

2 dh2 F r
3 dhr · · · F r

ndhr

 ∧


dx1

dx2

...
dxn

+ (hF ′hFdx) ∧ dx

1 The torsion-free condition δ(hF ′hF) = 0 and the involutivity conditions of F imply the
semi-Hamiltonian compatibility condition.

2 The tableau is involutive with s1 = n. Cartan–Kähler–Yang Hyperbolic EDS theorem
promises C∞ solutions over R. Ξ is r real, distinct points. C is r real, distinct points.

3 Best of all possible s1 involutive systems. Every localization of A(I) is Frobenius,
maximal.
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Hydrodynamic Integrability Hydrodynamic Integrability

Can we embed semi-Hamiltonian systems within a more general PDE?

“yes, in many ways” =⇒ “PDE is hydrodynamically integrable.”
(see Ferapontov, et al for examples. good collection in 1208.2728 by F and Kruglikov)

X = Rn

Y = Rr
M ⊂ Jp(Rn ,Rq)

π

semi-Ham

µ

with µ(Y ) integral to M and n ≥ 3. Key property involves rank-one fibers:

µ∗

(
∂

∂ya

)
=
(
∂x i

∂ya ,
∂u
∂ya ,

∂p1
∂ya Fa

i ,
∂p11
∂ya Fa

i Fa
j ,
∂p111
∂ya Fa

i Fa
j Fa

k , . . .

)
Depending on the type of PDE M ⊂ Jp(Rn ,Rq), these yield many interesting geometries on
M : SL(n), GL(2), CO(n), CSpin(n−1, 1), Einstein–Weyl, etc.
But can we characterize as EDS with no other restrictions?
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Hydrodynamic Integrability A new (I think) definition

Proposition
Suppose that I is a PDE-type involutive EDS with no Cauchy characteristics or unabsorbable
torsion. Then

1 I is Frobenius (over C) if and only if A(I) is always empty. [trivial to prove.]

2 I is semi-Hamiltonian if and only if A(I) is Frobenius [see Cartan’s abstract.]
3 I is hydro int if and only if A(I) is semi-Hamiltonian [** in known subcases].

Therefore, the condition “Ak(I) =Frobenius for some k” appears to be a generalization of
hydrodynamic integrability that is manifestly invariant.
Dear experts: Has this condition been used or named before?

Reminder of the motivation from Lie algebras:
Lie algebras: trivial abelian solvable semi-simple

0 D(g) = 0 Dk(g) = 0 D∞(g) 6= 0
(But, nothing known about truthfulness of this analogy.)
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