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EXAMPLE: INTEGRABLE SYSTEMS

Potential Kadomtsev-Petviashvili (PKP) equation

utx +
3
2

uxuxx +
1
4

uxxxx +
3
4

s2uyy = 0, s2 = ±1.

Admits an infinite dimensional algebra of distinguished
symmetries gPKP involving 5 arbitrary functions of time t .
(David, Kamran, Levi, Winternitz, Symmetry reduction for the
Kadomtsev-Petviashvili equation using a loop algebra, J. Math.
Phys. 27 (1986), 1225–1237.)



EXAMPLE: INTEGRABLE SYSTEMS

Potential Kadomtsev-Petviashvili (PKP) equation

utx +
3
2

uxuxx +
1
4

uxxxx +
3
4

s2uyy = 0, s2 = ±1.

Admits an infinite dimensional algebra of distinguished
symmetries gPKP involving 5 arbitrary functions of time t .
(David, Kamran, Levi, Winternitz, Symmetry reduction for the
Kadomtsev-Petviashvili equation using a loop algebra, J. Math.
Phys. 27 (1986), 1225–1237.)



PKP EQUATION

The symmetry algebra gPKP is spanned by the vector fields
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∂
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∂
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∂x
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9
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y3g′′′)
∂

∂u
,

Zh = h
∂

∂x
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s2y2h′′)
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∂u
,

Wk = yk
∂

∂u
, and Ul = l

∂

∂u
,

where f = f (t), g = g(t), h = h(t), k = k(t) and l = l(t) are
arbitrary smooth functions of t .



PKP EQUATION

Locally variational with the Lagrangian

L = −1
2

utux −
1
4

u3
x +

1
8

u2
xx −

3
8

s2u2
y .

But the PKP equation admits no Lagrangian that is invariant
under gPKP!

To what extent do these properties characterize the
PKP-equation?
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EXAMPLE: VECTOR FIELD THEORIES

One-form A = Ab(x i) dxb on Rm satisfying

T a = T a(x i ,Ab,Ab,i1 ,Ab,i1i2 , . . . ,Ab,i1i2···ik ) = 0, a = 1,2, . . . ,m.

SYMMETRIES

S1: spatial translations

x i → x i + ai , (ai) ∈ Rm.

S2: Gauge transformations

Aa(x i)→ Aa(x i) +
∂φ

∂xa (x i), φ ∈ C∞(Rm).

CONSERVATION LAWS

C1: There are functions t i
j = t i

j (x i ,Aa,Aa,i1 ,Aa,i1i2 , . . . ,Aa,i1i2···il )
such that, for each j = 1,2, . . . ,m,

Aa,jT a = Di(t i
j ).

C2: The divergence of T a vanishes identically,

DaT a = 0.



VECTOR FIELD THEORIES

THEOREM (ANDERSON, P.)
Suppose that the differential operator T a admits symmetries
S1, S2 and conservation laws C1, C2. Then T a arises from a
variational principle, T a = Ea(L) for some Lagrangian L, if

(i) m = 2, and T a is of third order;
(ii) m ≥ 3, and T a is of second order;
(iii) the functions T a are polynomials of degree at most m in

the field variables Aa and their derivatives.

NATURAL QUESTION: Can the Lagrangian L be chosen to be
invariant under [S1], [S2]?



The goal is to reduce these type of questions
into algebraic problems.



VARIATIONAL BICOMPLEX

Smooth fiber bundle
F −−−−→ Eyπ

M

Adapted coordinates

{(x1, x2, . . . , xm,u1,u2, . . . ,up)} = {(x i ,uα)}

such that
π(x i ,uα) = (x i).



A local section is a smooth mapping

σ : Uop ⊂ M → E

such that
π ◦ σ = id.

In adapted coordinates

σ(x1, x2, . . . , xm)

= (x1, x2, . . . , xm, f 1(x1, x2, . . . , xm), . . . , f p(x1, x2, . . . , xm)).



INFINITE JET BUNDLE OF SECTIONS

J∞(E)

E

M

π∞

π∞o

π



INFINITE JET BUNDLE

Adapted coordinates =⇒ locally

J∞(E) ≈ {(x i ,uα,uαx j1 ,u
α
x j1 x j2 , . . . ,u

α
x j1 x j2 ···x jk

, . . . )}.

Often write
uαx j1 x j2 ···x jk

= uαj1j2···jk = uαJ ,

where J = (j1, j2, . . . , jk ), 1 ≤ jl ≤ m, is a multi-index.



COTANGENT BUNDLE OF J∞(E)

Horizontal forms: dx1,dx2, . . . ,dxm.
Contact forms: θαJ = duαJ − uαJkdxk .

The space of differential forms Λ∗(J∞(E)) on J∞(E) splits into
a direct sum of spaces of horizontal degree r and vertical (or
contact) degree s:

Λ∗(J∞(E)) =
∑

r ,s≥0

Λr ,s(J∞(E)).

Here ω ∈ Λr ,s(J∞(E)) is a finite sum of terms of the form

f (x i ,uα,uαj , . . . ,u
α
J ) dxk1 ∧ · · · ∧ dxkr ∧ θα1

L1
∧ · · · ∧ θαs

Ls
.
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HORIZONTAL AND VERTICAL DIFFERENTIALS

The horizontal connection generated by the total derivative
operators

Di =
∂

∂x i + uαi
∂

∂uα
+ uαij1

∂

∂uαj1
+ uαi j1j2

∂

∂uαj1j2

+ · · ·

is flat =⇒

The exterior derivative splits as

d = dH + dV ,

where

dH : Ωr ,s → Ωr+1,s, dV : Ωr ,s → Ωr ,s+1.
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HORIZONTAL AND VERTICAL DIFFERENTIALS

dH f (x i ,uα, . . . ,uαJ ) =
m∑

j=1

Dj f (x i ,uα, . . . ,uαJ )dx j ,

dV f (x i ,uα, . . . ,uαJ ) =

p∑
β=1

∑
|K |≥0

∂f

∂uβK
(x i ,uα, . . . ,uαJ )θβK .

d2 = 0 =⇒

d2
H = 0, d2

V = 0, dHdV + dV dH = 0.
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R Λ0
M Λ1

M Λm−1
M

Λm
M

d d d

π∗ π∗ π∗ π∗

R Λ0,0 Λ1,0 Λm−1,0 Λm,0
dH dH dH

dV dV dV dV

0 Λ0,1 Λ1,1 Λm−1,1 Λm,1
dH dH dH

dV dV dV dV



FUNCTIONAL FORMS

Define

∂I
αuβJ =

{
δβαδ

(i1
j1
· · · δik )

jk
, if |I| = |J|,

0, otherwise.

Interior Euler operator F I
α : Λr ,s → Λr ,s−1, s ≥ 1,

F I
α(ω) =

∑
|J|≥0

(
|I|+ |J|
|I|

)
(−D)J(∂IJ

α ω).

Integration-by-parts operator I : Λm,s → Λm,s, s ≥ 1,

I(ω) =
1
s
θα ∧ Fα(ω).

Spaces of functional s-forms Fs = I(Λm,s), s ≥ 1.

Differentials δV = I ◦ dV : Fs → Fs+1. Then δ2
V = 0.
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FREE VARIATIONAL BICOMPLEX

R Λ0
M Λ1

M Λm−1
M

Λm
M

d d d

π∗ π∗ π∗ π∗

R Λ0,0 Λ1,0 Λm−1,0 Λm,0
dH dH dH

dV dV dV dV
E

0 Λ0,1 Λ1,1 Λm−1,1 Λm,1 F1
dH dH dH I

dV dV dV dV δV

0 Λ0,2 Λ1,2 Λm−1,2 Λm,2 F2
dH dH dH I

dV dV dV dV δV



EULER-LAGRANGE COMPLEX

I Columns are locally exact
I Interior rows are globally exact!

Horizontal homotopy operator

hr ,s
H (ω) =

1
s

∑
|I|≥0

cIDI
[
θα ∧ F Ij

α(Dj ω)], s ≥ 1,

where cI = |I|+1
n−r+|I|+1 .



EULER-LAGRANGE COMPLEX

The edge complex

R −−−−→ Λ0,0 dH−−−−→ Λ1,0 dH−−−−→ · · ·
dH−−−−→ Λm−1,0 dH−−−−→

Div
Λm,0 δV−−−−→

E
F1 δV−−−−→

H
F2 δV−−−−→ · · ·

is called the Euler-Lagrange complex E∗(J∞(E)).



CANONICAL REPRESENTATIONS

ω = V i(x i ,u[k ])(∂x i ν) ∈ Λm−1,0,

λ = L(x i ,u[k ])ν ∈ Λm,

∆ = ∆α(x i ,u[k ])θα ∧ ν ∈ F1,

H =
1
2
HI
αβ(x i ,u[k ])θα ∧ θβI .

Then

λ = dHω ⇐⇒ L = DiV i ,

∆ = δVλ ⇐⇒ ∆α = Eα(L),

H = δV ∆ ⇐⇒ HI
αβ = −∂I

β∆α + (−1)|I|EI
α(∆β),

where EI
α(F ) =

∑
|J|≥0

(|I|+|J|
|I|
)
(−D)J(∂IJ

α F ).



COHOMOLOGY

Associated cohomology spaces:

H r (E∗(J∞(E))) =
ker δV : E r → E r+1

im δV : E r−1 → E r .

This complex is locally exact and its cohomology H∗(E∗(J∞(E))
is isomorphic with the de Rham cohomology of E ≈ singular
cohomology of E .



GROUP ACTIONS

A Lie pseudo-group G consists a collection of local
diffeomorphisms on E satisfying

1. id ∈ G;
2. If ψ1, ψ2 ∈ G, then ψ1 ◦ (ψ2)−1 ∈ G where defined;
3. There is ko such that the pseudo-group jets

Gk = {jkz ψ |ψ ∈ G, z ∈ dom ψ}, k ≥ ko,

form a smooth bundle.
4. A local diffeomorphism ψ ∈ G ⇐⇒ jkz ψ ∈ Gk , k ≥ ko, for

all z ∈ dom ψ.

EXAMPLE: Symmetry groups of differential equations, gauge
groups, . . . .



The graph Γσ ⊂ E of a local section σ of E → M is the set

Γσ = {σ(x i) | (x i) ∈ domσ}.

Let ψ ∈ G. Define the transform ψ ·σ of σ under ψ by

Γψ·σ = ψ(Γσ).

The prolonged action of G on J∞(E) is then defined by

j∞xo
σ

σ ψ ·σ

j∞ψ(xo)(ψ ·σ)

ψ

prψ



A function F defined on a G-invariant open U ⊂ J∞(E) is called
a differential invariant of G if F ◦prψ = F for all ψ ∈ G.

A k-form ω ∈ Λk (U) is G invariant if (prψ)∗ω = ω for all ψ ∈ G.



The prolongation pr V of a local vector field V on E is defined
by

ΦV
t

V pr V

pr ΦV
t

d
dt

A local vector field V on E is a G vector field, V ∈ g, if the flow
ΦV

t ∈ G for all fixed t on some interval about 0.



The prolongation pr V of a local vector field V on E is defined
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pr ΦV
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A local vector field V on E is a G vector field, V ∈ g, if the flow
ΦV
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Suppose that G consists of projectable transformations. Then
the actions of G and g both preserve the spaces Λr ,s(J∞(E))
and commute with the horizontal and vertical differentials dH ,
dV , and the integration-by-parts operator I.

=⇒

The differentials dH , dV , δV map G- and g-invariant forms to G-
and g-invariant forms, respectively.



g-INVARIANT VARIATIONAL BICOMPLEX:

R Λ0
M,g Λ1

M,g Λm−1
M,g

Λm
M,g

d d d

π∗ π∗ π∗ π∗

R Λ0,0
g Λ1,0

g Λm−1,0
g Λm,0

g

dH dH dH

dV dV dV dV
E

0 Λ0,1
g Λ1,1

g Λm−1,1
g Λm,1

g F1
g

dH dH dH I

dV dV dV dV δV

0 Λ0,2
g Λ1,2

g Λm−1,2
g Λm,2

g F2
g

dH dH dH I

dV dV dV dV δV



g-INVARIANT EULER-LAGRANGE COMPLEX E∗g (J∞(E)):

R −−−−→ Λ0,0
g

dH−−−−→ Λ1,0
g

dH−−−−→ · · ·

dH−−−−→ Λm−1,0
g

dH−−−−→
Div

Λm,0
g

δV−−−−→
E

F1
g

δV−−−−→
H

F2
g

δV−−−−→ · · ·

Associated cohomology spaces:

H r (E∗g (J∞(E))) =
ker δV : E r

g → E r+1
g

im δV : E r−1
g → E r

g

.



EXACTNESS OF THE INTERIOR HORIZONTAL ROWS

THEOREM

Let g be a pseudo-group of projectable transformations acting
on E → M, and let ωi and θα be g invariant horizontal frame and
zeroth order contact frame defined on some G-invariant open
set U ⊂ J∞(E) contained in an adapted coordinate system.
Then the interior rows of the g-invariant augmented variational
bicomplex restricted to U are exact,

H∗(Λ∗,sg (U),dH) = {0}, s ≥ 1.

COROLLARY: Under the above hypothesis

H∗(E∗g (U), δV ) ∼= H∗(Λ∗g(U),d).
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COMPUTATIONAL TECHNIQUES

EXPLICIT DESCRIPTION OF THE INVARIANT VARIATIONAL

BICOMPLEX.

Given a local cross section K(k) ⊂ Jk (E) to the action of Gk on
Jk (E), let

Hk
|K(k) = {(gk , zk ) | zk ∈ K(k), gk , zk based at the same point},

and let

µk : Hk
|K(k) → Jk (E), µk (gk , zk ) = gk · zk .

Then, if the action is locally free, µk will be a G-equivariant local
diffeomorphism with the action of G on Hk

|K(k) given by

ϕ ·(gk , zk ) = (ϕ ·gk , zk ).



COMPUTATIONAL TECHNIQUES

Upshot: Locally one can find a complete set of differential
invariants {Iα} and a coframe on U ⊂ Jk (E) consisting of {dIα}
and g-invariant 1-forms {ϑβ} such that the algebra A generated
by {ϑβ} is closed under d =⇒

H∗g (U ,d) ∼= H∗(A,d).

(Apply the g-equivariant homotopy Iα → t Iα, dIα → t dIα,
ϑβ → ϑβ, 0 ≤ t ≤ 1.)



GELFAND-FUKS COHOMOLOGY

Formal power series vector fields on Rm:

Wm =

{
m∑

l=1

al ∂

∂x l | a
l ∈ R[[x1, . . . , xm]]

}
.

Lie bracket [ , ] : Wm ×Wm →Wm.

Give Wm a topology relative to the ideal m =< x1, x2, . . . , xm >.

Λ∗c(Wm): continuous alternating functionals on Wm.

Λ∗c(Wm) is generated by δi
j1j2···jk , where

δi
j1j2···jk (al ∂

∂x l ) =
∂kai

∂x j1∂x j2 · · · ∂x jk
(0).
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GELFAND-FUKS COHOMOLOGY

The differential dGF : Λr
c(Wm)→ Λr+1

c (Wm) is induced by Lie
bracket of vector fields so that

dGFω(X ,Y ) = −ω([X ,Y ]), ω ∈ Λ1
c(Wm).

d2
GF = 0!

Let go ⊂ g ⊂Wm be subalgebras. Define

Λ∗c(g) = Λ∗c(Wm)|g,

Λ∗c(g, go) = {ω ∈ Λ∗c(g) |X ω = 0,
X dGFω = 0, for all X ∈ go}.

The Gelfand-Fuks cohomology H∗GF (g, go) of g relative to go is
the cohomology of the complex (Λ∗c(g, go),dGF).
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EVALUATION MAPPING

Pick σ∞ ∈ J∞(E).

For a given infinitesimal transformation group g acting on E , let

go = {X ∈ g |pr X (σ∞) = 0}.

Define ρ : Λ∗g(J∞(E))→ Λ∗c(g, go) by

ρ(ω)(X1, . . . ,Xr ) = (−1)rω(pr X1, . . . ,pr Xr )(σ∞).

Then ρ is a cochain mapping, that is, it commutes with the
application of d and dGF, and thus induces a mapping

ρ : H∗(Λ∗g(J∞(E)),d)→ H∗GF (g, go).

Goal is to show that ρ is an isomorphism (moving frames!).
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EQUIVARIANT DEFORMATIONS

Construct a submanifold P∞ ⊂ U ⊂ J∞(E) such that

1. pr g acts transitively on P∞, and

2. P∞ is pr g-equivariant strong deformation retract of U , that
is, there is a smooth map H : U × [0,1]→ U such that

H(σ∞,0) = σ∞, for all σ∞ ∈ U ,

H(σ∞,1) ∈ P∞, for all σ∞ ∈ U ,

H(σ∞, t) = σ∞, for all (σ∞, t) ∈ P∞ × [0,1],

(Ht )∗(pr V|σ∞) = pr V|H(σ∞,t), for all V ∈ g,

(σ∞, t) ∈ U × [0,1].



EQUIVARIANT DEFORMATIONS

Under these circumstances the inclusion map

ι : P∞ → U

and the evaluation map

ρ : Λ∗g(P∞)→ Λ∗c(g, go)

induce isomorphisms in cohomology.



PKP EQUATION AGAIN

The symmetry algebra gPKP of the PKP equation

utx +
3
2

uxuxx +
1
4

uxxxx +
3
4

s2uyy = 0.

is spanned by the vector fields

Xf = f
∂

∂t
+

2
3

yf ′
∂

∂y
+ (

1
3

xf ′ − 2
9

s2y2f ′′)
∂

∂x

+ (−1
3

uf ′ +
1
9

x2f ′′ − 4
27

s2xy2f ′′′ +
4

243
y4f ′′′′)

∂

∂u
,

Yg = g
∂

∂y
− 2

3
s2yg′

∂

∂x
+ (−4

9
s2xyg′′ +

8
81

y3g′′′)
∂

∂u
,

Zh = h
∂

∂x
+ (

2
3

xh′ − 4
9

s2y2h′′)
∂

∂u
,

Wk = yk
∂

∂u
, and Ul = l

∂

∂u
,

where f = f (t), g = g(t), h = h(t), k = k(t) and l = l(t) are
arbitrary smooth functions of t .



PKP equation

Now E = {(t , x , y ,u)} → {(t , x , y)}. The PKP source form

∆PKP =

(
utx +

3
2

uxuxx + uxxxx +
3
4

s2uyy

)
θ ∧ dt ∧ dx ∧ dy

generates non-trivial cohomology in H4(EgPKP (J∞(E)))!

The characterization problem of the PKP-equation by its
symmetry algebra amounts to the computation of H4(E∗gPKP

(U)).

For a suitable U ⊂ J∞(U), H∗(E∗gPKP
(U)) can be computed by an

explicit description of differential invariants and an invariant
coframe arising from the moving frames construction.
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The Gelfand-Fuks complex for gPKP admits a basis αn, βn, γn,
υn, ϑn, n = 0,1,2, . . . , of invariant forms so that

dαn =
n∑

k=0

(
n
k

)
αk ∧ αn−k+1,

dβn =
n∑

k=0

(
n
k

){
αk ∧ βn−k+1 − 2

3
αk+1 ∧ βn−k},

dγn =
n∑

k=0

(
n
k

){
αk ∧ γn−k+1 − 1

3
αk+1 ∧ γn−k − 2

3
s2βk ∧ βn−k+1},

dυn =
n+1∑
k=0

(
n + 1

k

){
αk ∧ υn−k+1 +

4
9

s2(βk+1 ∧ γn−k+1

− 2βk ∧ γn−k+2)
}
,

dϑn =
n∑

k=0

(
n
k

){
αk ∧ ϑn−k+1 +

1
3
αk+1 ∧ ϑn−k

+ βk ∧ υn−k +
2
3
γk ∧ γn−k+1}.

The complex splits into a direct sum of simultaneous
eigenspaces of 2 Lie derivative operators.
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PKP EQUATION

Let A be a non-vanishing differential function on some open set
U ⊂ J∞(E) satisfying

pr Xf (A) +
1
3

Af ′(t) = 0,
∂A
∂y

= 0, for every smooth f (t),

and let B be a differential function on U satisfying

pr Xf (B)+
2
3

yA−1f ′′(t) = 0,
∂B
∂y

= 0, for every smooth f (t).

For example, one can choose

A = (uxn )
1

n+1 and B = −3
2

s2uxn−1y (uxn )−
n+2
n+1 , n ≥ 3,

on U = {uxn > 0}.
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PKP EQUATION

THEOREM

Suppose that differential functions A and B, defined on an open
U ⊂ J∞(E), are chosen as above. Then the dimensions of the
cohomology spaces H r (E∗gPKP

(U), δV ) are

r 1 2 3 4 5 6 7 ≥ 8
dim 0 1 1 3 3 2 3 0



REPRESENTATIVES OF THE COHOMOLOGY CLASSES

Let {α0, β0, γ0} be the gPKP invariant horizontal frame defined
by

α0 = A3dt , β0 = A2dy + A3Bdt ,

γ0 = Adx − 2
3

s2A2Bdy + A3Cdt ,

where
C = −3

2
uxA−2 − 1

3
s2B2,

and let K be the gPKP differential invariant

K = (utx +
3
4

s2uyy +
3
2

uxuxx )A−5.



REPRESENTATIVES OF THE COHOMOLOGY CLASSES

Let ∆1, ∆2 ∈ E4
gPKP

(U) be the source forms

∆1 = (utx +
3
2

uxuxx +
3
4

s2uyy ) dt ∧ dx ∧ dy ∧ du,

∆2 = uxxxx dt ∧ dx ∧ dy ∧ du,

and let ∆3 ∈ E4
gPKP

(U) be the source form which is the
Euler-Lagrange expression

∆3 = E(BKα0 ∧ β0 ∧ γ0).

Then H4(E∗(U), δV ) =< ∆1,∆2,∆3 >.

Note that the PKP source form is the sum ∆PKP = ∆1 + ∆2.
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COROLLARY:
Let ∆ ∈ E4

gPKP
(U) be a gPKP invariant source form that is the

Euler-Lagrange expression of some Lagrangian 3-form
λ ∈ E3(U). Then there are constants c1, c2, c3 and a
gPKP-invariant Lagrangian 3-form λ0 ∈ E3

gPKP
(U) such that

∆ = c1∆1 + c2∆2 + c3∆3 + E(λ0).



VECTOR FIELD THEORIES

Here E = T ∗Rm = {(x i ,Aj)} → {(x i)}.

Now the infinitesimal transformation group g is spanned by

Ti =
∂

∂x i , Vφ = φ,i
∂

∂Ai
,

where φ is an arbitrary smooth function on Rm.

Need to compute Hm+1(E∗g (J∞(T ∗Rm)))!

The standard horizontal homotopy operator for the free
variational bicomplex commutes with the action of g =⇒

H∗,s(Λ∗,∗g (J∞(E)),dH , I) = {0}, s ≥ 1.

So it suffices to compute H∗(Λ∗g(J∞(E)),d).
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VECTOR FIELD THEORIES

Parametrize J∞(T ∗Rm) by

(x i , Aa, A(a,b1), Fab1 , A(a,b1b2), Fa(b1,b2), A(a,b1b2b3), Fa(b1,b2b3), . . .),

where Fab = Aa,b − Ab,a.

Now the variables Fa(b1,b2···br ) are invariant under the action of g
=⇒

P∞ = {σ∞ ∈ J∞(T ∗Rm) |Fij(σ
∞) = 0,Fi(j,h)(σ∞) = 0, . . . }

is a g-equivariant strong deformation retract of J∞(T ∗M) on
which g acts transitively.



VECTOR FIELD THEORIES

In conclusion,

H∗(E∗g (J∞(T ∗M))) ∼= H∗GF (g̃),

where the Lie algebra of formal vector fields g̃ is spanned by
the vector fields Ti and

V j1j2...jk = x (j1x j2 · · · x jk−1∂
jk )
A , ∂ j

A =
∂

∂Aj
.



VECTOR FIELD THEORIES

A basis for H∗(E∗g (J∞(T ∗M))) is given by

dx i1 ∧ · · · ∧ dx ik ∧ F l ∈ Λr ,0
g (J∞(T ∗M)), k + 2l = r ,

dx i1 ∧ · · · ∧ dx ik ∧ F l ∧ (dV A)s ∈ Fs
g (J∞(T ∗M)), k + 2l + s = m.

(A = Aidx i , F = Fijdx i ∧ dx j .)

Generators for Hm+1(E∗g (J∞(T ∗M)))

∆i1i2···ik = dx i1 ∧ dx i2 ∧ · · · ∧ dx ik ∧ F l ∧ dV A, k + 2l = m − 1,

dim Hm+1(E∗g (J∞(T ∗M))) = 2m − 1.

Note that when m = 2r + 1, ∆ = F r ∧ dV A is the Chern-Simons
mass term with components

∆i = εij1k1j2k2···jr kr Fj1k1Fj2k2 · · ·Fjr kr .


	Examples

