Group Actions and Cohomology in the Calculus of Variations

Juha Pohjanpelto
Oregon State and Aalto Universities

Focused Research Workshop on
Exterior Differential Systems and Lie Theory
Fields Institute, Toronto, Canada, December 2013

Example: Integrable systems

Potential Kadomtsev-Petviashvili (PKP) equation

$$
u_{t x}+\frac{3}{2} u_{x} u_{x x}+\frac{1}{4} u_{x x x x}+\frac{3}{4} s^{2} u_{y y}=0, \quad s^{2}= \pm 1
$$

Admits an infinite dimensional algebra of distinguished

 symmetries $\mathfrak{g}_{P K P}$ involving 5 arbitrary functions of time t. (David, Kamran, Levi, Winternitz, Symmetry reduction for the Kadomtsev-Petviashvili equation using a loop algebra, J. Math. Phys. 27 (1986), 1225-1237.)
EXAMPLE: IntEGRABLE SYSTEMS

Potential Kadomtsev-Petviashvili (PKP) equation

$$
u_{t x}+\frac{3}{2} u_{x} u_{x x}+\frac{1}{4} u_{x x x x}+\frac{3}{4} s^{2} u_{y y}=0, \quad s^{2}= \pm 1
$$

Admits an infinite dimensional algebra of distinguished symmetries $\mathfrak{g}_{P K P}$ involving 5 arbitrary functions of time t.
(David, Kamran, Levi, Winternitz, Symmetry reduction for the Kadomtsev-Petviashvili equation using a loop algebra, J. Math. Phys. 27 (1986), 1225-1237.)

PKP equation

The symmetry algebra $\mathfrak{g}_{P K P}$ is spanned by the vector fields

$$
\begin{aligned}
X_{f}=f & \frac{\partial}{\partial t}+\frac{2}{3} y f^{\prime} \frac{\partial}{\partial y}+\left(\frac{1}{3} x f^{\prime}-\frac{2}{9} s^{2} y^{2} f^{\prime \prime}\right) \frac{\partial}{\partial x}+\left(-\frac{1}{3} u f^{\prime}+\frac{1}{9} x^{2} f^{\prime \prime}\right. \\
& \left.-\frac{4}{27} s^{2} x y^{2} f^{\prime \prime \prime}+\frac{4}{243} y^{4} f^{\prime \prime \prime \prime}\right) \frac{\partial}{\partial u}, \\
Y_{g}= & g \frac{\partial}{\partial y}-\frac{2}{3} s^{2} y g^{\prime} \frac{\partial}{\partial x}+\left(-\frac{4}{9} s^{2} x y g^{\prime \prime}+\frac{8}{81} y^{3} g^{\prime \prime \prime}\right) \frac{\partial}{\partial u} \\
Z_{h}= & h \frac{\partial}{\partial x}+\left(\frac{2}{3} x h^{\prime}-\frac{4}{9} s^{2} y^{2} h^{\prime \prime}\right) \frac{\partial}{\partial u} \\
W_{k}= & y k \frac{\partial}{\partial u}, \quad \text { and } \quad U_{l}=I \frac{\partial}{\partial u},
\end{aligned}
$$

where $f=f(t), g=g(t), h=h(t), k=k(t)$ and $I=I(t)$ are arbitrary smooth functions of t.

PKP equation

Locally variational with the Lagrangian

$$
L=-\frac{1}{2} u_{t} u_{x}-\frac{1}{4} u_{x}^{3}+\frac{1}{8} u_{x x}^{2}-\frac{3}{8} s^{2} u_{y}^{2} .
$$

But the PKP equation admits no Lagrangian that is invariant under $\mathfrak{g}_{\text {PKP }}$!

To what extent do these properties characterize the PKP-equation?

PKP equation

Locally variational with the Lagrangian

$$
L=-\frac{1}{2} u_{t} u_{x}-\frac{1}{4} u_{x}^{3}+\frac{1}{8} u_{x x}^{2}-\frac{3}{8} s^{2} u_{y}^{2}
$$

But the PKP equation admits no Lagrangian that is invariant under $\mathfrak{g}_{P K P}$!

To what extent do these properties characterize the PKP-equation?

Example: Vector Field Theories

One-form $A=A_{b}\left(x^{i}\right) d x^{b}$ on \mathbb{R}^{m} satisfying

$$
T^{a}=T^{a}\left(x^{i}, A_{b}, A_{b, i_{1}}, A_{b, i_{1} i_{2}}, \ldots, A_{b, i_{1} i_{2} \ldots i_{k}}\right)=0, \quad a=1,2, \ldots, m .
$$

Symmetries
S_{1} : spatial translations

$$
x^{i} \rightarrow x^{i}+a^{i}, \quad\left(a^{i}\right) \in \mathbb{R}^{m}
$$

S_{2} : Gauge transformations

$$
A_{a}\left(x^{i}\right) \rightarrow A_{a}\left(x^{i}\right)+\frac{\partial \phi}{\partial x^{a}}\left(x^{i}\right), \quad \phi \in C^{\infty}\left(\mathbb{R}^{m}\right) .
$$

Conservation laws
C_{1} : There are functions $t_{j}^{j}=t_{j}^{j}\left(x^{i}, A_{a}, A_{a, i_{1}}, A_{a, i_{i} i_{2}}, \ldots, A_{a, i_{i}, \ldots i_{i}}\right)$ such that, for each $j=1,2, \ldots, m$,

$$
A_{a, j} T^{a}=D_{i}\left(t_{j}^{i}\right) .
$$

C_{2} : The divergence of T^{a} vanishes identically,

$$
D_{a} T^{a}=0 .
$$

Vector Field Theories

Theorem (Anderson, P.)

Suppose that the differential operator T^{a} admits symmetries S_{1}, S_{2} and conservation laws C_{1}, C_{2}. Then T^{a} arises from a variational principle, $T^{a}=E^{a}(L)$ for some Lagrangian L, if
(i) $m=2$, and T^{a} is of third order;
(ii) $m \geq 3$, and T^{a} is of second order;
(iii) the functions T^{a} are polynomials of degree at most m in the field variables A_{a} and their derivatives.

Natural question: Can the Lagrangian L be chosen to be invariant under [S1], [S2]?

The goal is to reduce these type of questions into algebraic problems.

Variational Bicomplex

Smooth fiber bundle

$$
\begin{aligned}
F \longrightarrow & E \\
& \downarrow \pi \\
& \\
& \\
&
\end{aligned}
$$

Adapted coordinates

$$
\left\{\left(x^{1}, x^{2}, \ldots, x^{m}, u^{1}, u^{2}, \ldots, u^{p}\right)\right\}=\left\{\left(x^{i}, u^{\alpha}\right)\right\}
$$

such that

$$
\pi\left(x^{i}, u^{\alpha}\right)=\left(x^{i}\right)
$$

A local section is a smooth mapping

$$
\sigma: \mathcal{U}^{\mathrm{Op}} \subset M \rightarrow E
$$

such that

$$
\pi \circ \sigma=\mathrm{id}
$$

In adapted coordinates

$$
\begin{aligned}
& \sigma\left(x^{1}, x^{2}, \ldots, x^{m}\right) \\
& =\left(x^{1}, x^{2}, \ldots, x^{m}, f^{1}\left(x^{1}, x^{2}, \ldots, x^{m}\right), \ldots, f^{p}\left(x^{1}, x^{2}, \ldots, x^{m}\right)\right)
\end{aligned}
$$

Infinite jet bundle of sections

Infinite Jet bundle

Adapted coordinates $\quad \Longrightarrow \quad$ locally

$$
J^{\infty}(E) \approx\left\{\left(x^{i}, u^{\alpha}, u_{x^{j_{1}}}^{\alpha}, u_{x^{j_{1}} x^{j_{2}}}^{\alpha}, \ldots, u_{\left.\left.x^{1_{1} x^{j} \ldots x^{j_{k}}}, \ldots\right)\right\} .}^{\alpha},\right.\right.
$$

Often write

$$
u_{x_{1}^{1} x^{j_{2} \ldots x^{j k}}}^{\alpha}=u_{j_{1} j_{2} \cdots j_{k}}^{\alpha}=u_{J}^{\alpha}
$$

where $J=\left(j_{1}, j_{2}, \ldots, j_{k}\right), 1 \leq j_{1} \leq m$, is a multi-index.

Cotangent bundle of $J^{\infty}(E)$

Horizontal forms: $\quad d x^{1}, d x^{2}, \ldots, d x^{m}$.
Contact forms: $\quad \theta_{J}^{\alpha}=d u_{J}^{\alpha}-u_{J k}^{\alpha} d x^{k}$.
The space of differential forms $\wedge^{*}\left(J^{\infty}(E)\right)$ on $J^{\infty}(E)$ splits into a direct sum of spaces of horizontal degree r and vertical (or contact) degree s :

Here $\omega \in \Lambda^{r, s}\left(J^{\infty}(E)\right)$ is a finite sum of terms of the form

Cotangent bundle of $J^{\infty}(E)$

Horizontal forms: $\quad d x^{1}, d x^{2}, \ldots, d x^{m}$.
Contact forms: $\quad \theta_{J}^{\alpha}=d u_{J}^{\alpha}-u_{J k}^{\alpha} d x^{k}$.
The space of differential forms $\wedge^{*}\left(J^{\infty}(E)\right)$ on $J^{\infty}(E)$ splits into a direct sum of spaces of horizontal degree r and vertical (or contact) degree s :

$$
\Lambda^{*}\left(J^{\infty}(E)\right)=\sum_{r, s \geq 0} \Lambda^{r, s}\left(J^{\infty}(E)\right)
$$

Here $\omega \in \Lambda^{r, s}\left(J^{\infty}(E)\right)$ is a finite sum of terms of the form

$$
f\left(x^{i}, u^{\alpha}, u_{j}^{\alpha}, \ldots, u_{J}^{\alpha}\right) d x^{k_{1}} \wedge \cdots \wedge d x^{k_{r}} \wedge \theta_{L_{1}}^{\alpha_{1}} \wedge \cdots \wedge \theta_{L_{s}}^{\alpha_{s}}
$$

Horizontal and Vertical Differentials

The horizontal connection generated by the total derivative operators

$$
D_{i}=\frac{\partial}{\partial x^{i}}+u_{i}^{\alpha} \frac{\partial}{\partial u^{\alpha}}+u_{i j_{1}}^{\alpha} \frac{\partial}{\partial u_{j_{1}}^{\alpha}}+u_{i j_{1} j_{2}}^{\alpha} \frac{\partial}{\partial u_{j_{1} j_{2}}^{\alpha}}+\cdots
$$

is flat

The exterior derivative splits as
where

Horizontal and Vertical Differentials

The horizontal connection generated by the total derivative operators

$$
D_{i}=\frac{\partial}{\partial x^{i}}+u_{i}^{\alpha} \frac{\partial}{\partial u^{\alpha}}+u_{i j_{1}}^{\alpha} \frac{\partial}{\partial u_{j_{1}}^{\alpha}}+u_{i j_{1} j_{2}}^{\alpha} \frac{\partial}{\partial u_{j_{1} j_{2}}^{\alpha}}+\cdots
$$

is flat

$$
\Longrightarrow
$$

The exterior derivative splits as

$$
d=d_{H}+d_{V}
$$

where

$$
d_{H}: \Omega^{r, s} \rightarrow \Omega^{r+1, s}, \quad d_{V}: \Omega^{r, s} \rightarrow \Omega^{r, s+1}
$$

Horizontal and Vertical Differentials

$$
\begin{aligned}
& d_{H} f\left(x^{i}, u^{\alpha}, \ldots, u_{J}^{\alpha}\right)=\sum_{j=1}^{m} D_{j} f\left(x^{i}, u^{\alpha}, \ldots, u_{J}^{\alpha}\right) d x^{j}, \\
& d_{V} f\left(x^{i}, u^{\alpha}, \ldots, u_{J}^{\alpha}\right)=\sum_{\beta=1}^{p} \sum_{|K| \geq 0} \frac{\partial f}{\partial u_{K}^{\beta}}\left(x^{i}, u^{\alpha}, \ldots, u_{J}^{\alpha}\right) \theta_{K}^{\beta} .
\end{aligned}
$$

Horizontal and Vertical Differentials

$$
\begin{aligned}
& d_{H} f\left(x^{i}, u^{\alpha}, \ldots, u_{J}^{\alpha}\right)=\sum_{j=1}^{m} D_{j} f\left(x^{i}, u^{\alpha}, \ldots, u_{J}^{\alpha}\right) d x^{j}, \\
& d_{V} f\left(x^{i}, u^{\alpha}, \ldots, u_{J}^{\alpha}\right)=\sum_{\beta=1}^{p} \sum_{|K| \geq 0} \frac{\partial f}{\partial u_{K}^{\beta}}\left(x^{i}, u^{\alpha}, \ldots, u_{J}^{\alpha}\right) \theta_{K}^{\beta} .
\end{aligned}
$$

$$
d^{2}=0
$$

$$
d_{H}^{2}=0, \quad d_{V}^{2}=0, \quad d_{H} d_{V}+d_{V} d_{H}=0
$$

Functional Forms

Define

$$
\partial_{\alpha}^{\prime} u_{J}^{\beta}= \begin{cases}\delta_{\alpha}^{\beta} \delta_{j_{1}}^{\left(i_{1}\right.} \cdots \delta_{j_{k},}^{\left.i_{k}\right)}, & \text { if }|I|=|J|, \\ 0, & \text { otherwise } .\end{cases}
$$

Interior Euler operator $F_{\alpha}^{\prime}: \Lambda^{r, s} \rightarrow \Lambda^{r, s-1}, s \geq 1$,

$$
\left.F_{\alpha}^{\prime}(\omega)=\sum_{|J| \geq 0}\binom{|I|+|J|}{|I|}(-D)_{J}\left(\partial_{\alpha}^{I J}\right\lrcorner \omega\right) .
$$

Spaces of functional s-forms $\mathcal{F}^{s}=I\left(\Lambda^{m, s}\right), \quad s \geq 1$.
Differentials $\quad \delta_{v}=l \circ d_{v}: \mathcal{F}^{s} \rightarrow \mathcal{F}^{s+1}$. Then

Functional Forms

Define

$$
\partial_{\alpha}^{\prime} u_{J}^{\beta}= \begin{cases}\delta_{\alpha}^{\beta} \delta_{j_{1}}^{\left(i_{1}\right.} \cdots \delta_{j_{k}}^{\left.i_{k}\right)}, & \text { if }| ||=|J|, \\ 0, & \text { otherwise } .\end{cases}
$$

Interior Euler operator $F_{\alpha}^{\prime}: \Lambda^{r, s} \rightarrow \Lambda^{r, s-1}, s \geq 1$,

$$
F_{\alpha}^{\prime}(\omega)=\sum_{|J| \geq 0}\binom{|I|+|J|}{|I|}(-D)_{J}\left(\partial_{\alpha}^{I J}-\omega\right) .
$$

Integration-by-parts operator I: $\Lambda^{m, s} \rightarrow \Lambda^{m, s}, \quad s \geq 1$,

$$
I(\omega)=\frac{1}{s} \theta^{\alpha} \wedge F_{\alpha}(\omega) .
$$

Spaces of functional s-forms $\mathcal{F}^{s}=I\left(\Lambda^{m, s}\right), \quad s \geq 1$. Differentials $\delta_{V}=1 \circ d_{V}: \mathcal{F}^{s} \rightarrow \mathcal{F}^{s+1}$. Then $\delta_{V}^{2}=0$.

Free Variational Bicomplex

Euler-Lagrange Complex

- Columns are locally exact
- Interior rows are globally exact!

Horizontal homotopy operator

$$
\left.h_{H}^{r, s}(\omega)=\frac{1}{s} \sum_{|| | \geq 0} c_{l} D_{l}\left[\theta^{\alpha} \wedge F_{\alpha}^{l j}\left(D_{j}\right\lrcorner \omega\right)\right], \quad s \geq 1
$$

where $c_{l}=\frac{|| |+1}{n-r+|| |+1}$.

Euler-Lagrange Complex

The edge complex

$$
\begin{aligned}
\mathbb{R} \longrightarrow \Lambda^{0,0} \xrightarrow{d_{H}} \Lambda^{1,0} \xrightarrow{d_{H}} \cdots \\
\xrightarrow[\text { Div }]{d_{H}} \Lambda^{m-1,0} \xrightarrow[\mathrm{E}]{d_{H}} \Lambda^{m, 0} \xrightarrow[\mathcal{H}^{\prime}]{\delta_{V}} \mathcal{F}^{1} \xrightarrow[\mathcal{H}]{\delta_{V}} \mathcal{F}^{2} \xrightarrow{\delta_{V}} \cdots
\end{aligned}
$$

is called the Euler-Lagrange complex $\mathcal{E}^{*}\left(J^{\infty}(E)\right)$.

Canonical representations

$$
\begin{aligned}
\omega & =V^{i}\left(x^{i}, u^{[k]}\right)\left(\partial_{x^{i}}-\nu\right) \in \Lambda^{m-1,0} \\
\lambda & =L\left(x^{i}, u^{[k]}\right) \nu \in \Lambda^{m} \\
\Delta & =\Delta_{\alpha}\left(x^{i}, u^{[k]}\right) \theta^{\alpha} \wedge \nu \in \mathcal{F}^{1} \\
\mathcal{H} & =\frac{1}{2} \mathcal{H}_{\alpha \beta}^{\prime}\left(x^{i}, u^{[k]}\right) \theta^{\alpha} \wedge \theta_{l}^{\beta}
\end{aligned}
$$

Then

$$
\begin{aligned}
\lambda=d_{H} \omega & \Longleftrightarrow L=D_{i} V^{i} \\
\Delta=\delta_{V} \lambda & \Longleftrightarrow \Delta_{\alpha}=\mathrm{E}_{\alpha}(L) \\
\mathcal{H}=\delta_{V} \Delta & \Longleftrightarrow \mathcal{H}_{\alpha \beta}^{\prime}=-\partial_{\beta}^{\prime} \Delta_{\alpha}+(-1)^{|/|} \mathrm{E}_{\alpha}^{\prime}\left(\Delta_{\beta}\right)
\end{aligned}
$$

where $E_{\alpha}^{\prime}(F)=\sum_{|J| \geq 0}\binom{| ||+|J|}{| | \mid}(-D)_{J}\left(\partial_{\alpha}^{/ J} F\right)$.

Сонomology

Associated cohomology spaces:

$$
H^{r}\left(\mathcal{E}^{*}\left(J^{\infty}(E)\right)\right)=\frac{\operatorname{ker} \delta_{V}: \mathcal{E}^{r} \rightarrow \mathcal{E}^{r+1}}{\operatorname{im} \delta_{V}: \mathcal{E}^{r-1} \rightarrow \mathcal{E}^{r}} .
$$

This complex is locally exact and its cohomology $H^{*}\left(\mathcal{E}^{*}\left(J^{\infty}(E)\right)\right.$ is isomorphic with the de Rham cohomology of $E \approx$ singular cohomology of E.

Group Actions

A Lie pseudo-group \mathcal{G} consists a collection of local diffeomorphisms on E satisfying

1. $\mathrm{id} \in \mathcal{G}$;
2. If $\psi_{1}, \psi_{2} \in \mathcal{G}$, then $\psi_{1} \circ\left(\psi_{2}\right)^{-1} \in \mathcal{G}$ where defined;
3. There is k_{o} such that the pseudo-group jets

$$
\mathcal{G}^{k}=\left\{j_{z}^{k} \psi \mid \psi \in \mathcal{G}, z \in \operatorname{dom} \psi\right\}, \quad k \geq k_{o}
$$

form a smooth bundle.
4. A local diffeomorphism $\psi \in \mathcal{G} \Longleftrightarrow j_{z}^{k} \psi \in \mathcal{G}^{k}, k \geq k_{o}$, for all $z \in \operatorname{dom} \psi$.

EXAMPLE: Symmetry groups of differential equations, gauge groups,

The graph $\Gamma_{\sigma} \subset E$ of a local section σ of $E \rightarrow M$ is the set

$$
\Gamma_{\sigma}=\left\{\sigma\left(x^{i}\right) \mid\left(x^{i}\right) \in \operatorname{dom} \sigma\right\}
$$

Let $\psi \in \mathcal{G}$. Define the transform $\psi \cdot \sigma$ of σ under ψ by

$$
\Gamma_{\psi \cdot \sigma}=\psi\left(\Gamma_{\sigma}\right)
$$

The prolonged action of \mathcal{G} on $J^{\infty}(E)$ is then defined by

$$
\begin{aligned}
& j_{x_{o}}^{\infty} \sigma \xrightarrow{\operatorname{pr} \psi} j_{\psi\left(x_{0}\right)}^{\infty}(\psi \cdot \sigma) \\
& \uparrow_{\sigma \xrightarrow{\uparrow} \psi \psi \cdot \sigma}^{\psi}
\end{aligned}
$$

A function F defined on a \mathcal{G}-invariant open $\mathcal{U} \subset J^{\infty}(E)$ is called a differential invariant of \mathcal{G} if $F \circ \mathrm{pr} \psi=F$ for all $\psi \in \mathcal{G}$.

A k-form $\omega \in \Lambda^{k}(\mathcal{U})$ is \mathcal{G} invariant if $(\operatorname{pr} \psi)^{*} \omega=\omega$ for all $\psi \in \mathcal{G}$.

The prolongation pr V of a local vector field V on E is defined by

A local vector field V on E is a \mathcal{G} vector field, $V \in \mathfrak{g}$, if the flow $\Phi_{t}^{V} \in \mathcal{G}$ for all fixed t on some interval about 0 .

The prolongation pr V of a local vector field V on E is defined by

A local vector field V on E is a \mathcal{G} vector field, $V \in \mathfrak{g}$, if the flow $\Phi_{t}^{V} \in \mathcal{G}$ for all fixed t on some interval about 0 .

Suppose that \mathcal{G} consists of projectable transformations. Then the actions of \mathcal{G} and \mathfrak{g} both preserve the spaces $\Lambda^{r, s}\left(J^{\infty}(E)\right)$ and commute with the horizontal and vertical differentials d_{H}, d_{V}, and the integration-by-parts operator I.

The differentials $d_{H}, d_{V}, \delta_{V} \operatorname{map} \mathcal{G}$ - and \mathfrak{g}-invariant forms to \mathcal{G} and \mathfrak{g}-invariant forms, respectively.

$\mathfrak{g}-$ INVARIANT VARIATIONAL BICOMPLEX:

\mathfrak{g}-INVARIANT EULER-LAGRANGE COMPLEX $\mathcal{E}_{\mathfrak{g}}^{*}\left(J^{\infty}(E)\right)$:

$$
\begin{aligned}
\mathbb{R} \longrightarrow \Lambda_{\mathfrak{g}}^{0,0} \xrightarrow{d_{H}} \Lambda_{\mathfrak{g}}^{1,0} \xrightarrow{d_{H}} \cdots \\
\xrightarrow{d_{H}} \Lambda_{\mathfrak{g}}^{m-1,0} \xrightarrow[\text { Div }]{d_{H}} \Lambda_{\mathfrak{g}}^{m, 0} \xrightarrow[\mathrm{E}]{\delta_{V}} \mathcal{F}_{\mathfrak{g}}^{1} \xrightarrow[\mathcal{H}]{\delta_{V}} \mathcal{F}_{\mathfrak{g}}^{2} \xrightarrow{\delta_{V}} \cdots
\end{aligned}
$$

Associated cohomology spaces:

$$
H^{r}\left(\mathcal{E}_{\mathfrak{g}}^{*}\left(J^{\infty}(E)\right)\right)=\frac{\operatorname{ker} \delta_{V}: \mathcal{E}_{\mathfrak{g}}^{r} \rightarrow \mathcal{E}_{\mathfrak{g}}^{r+1}}{\operatorname{im} \delta_{V}: \mathcal{E}_{\mathfrak{g}}^{r-1} \rightarrow \mathcal{E}_{\mathfrak{g}}^{r}}
$$

Exactness of the Interior Horizontal Rows

THEOREM

Let \mathfrak{g} be a pseudo-group of projectable transformations acting on $E \rightarrow M$, and let ω^{i} and θ^{α} be \mathfrak{g} invariant horizontal frame and zeroth order contact frame defined on some \mathcal{G}-invariant open set $\mathcal{U} \subset J^{\infty}(E)$ contained in an adapted coordinate system. Then the interior rows of the \mathfrak{g}-invariant augmented variational bicomplex restricted to \mathcal{U} are exact,

$$
H^{*}\left(\Lambda_{\mathfrak{g}}^{*, s}(\mathcal{U}), d_{H}\right)=\{0\}, \quad s \geq 1 .
$$

Exactness of the Interior Horizontal Rows

Theorem

Let \mathfrak{g} be a pseudo-group of projectable transformations acting on $E \rightarrow M$, and let ω^{i} and θ^{α} be \mathfrak{g} invariant horizontal frame and zeroth order contact frame defined on some \mathcal{G}-invariant open set $\mathcal{U} \subset J^{\infty}(E)$ contained in an adapted coordinate system. Then the interior rows of the \mathfrak{g}-invariant augmented variational bicomplex restricted to \mathcal{U} are exact,

$$
H^{*}\left(\Lambda_{\mathfrak{g}}^{*, s}(\mathcal{U}), d_{H}\right)=\{0\}, \quad s \geq 1 .
$$

Corollary: Under the above hypothesis

$$
H^{*}\left(\mathcal{E}_{\mathfrak{g}}^{*}(\mathcal{U}), \delta_{V}\right) \cong H^{*}\left(\Lambda_{\mathfrak{g}}^{*}(\mathcal{U}), d\right) .
$$

Computational Techniques

EXPLICIT DESCRIPTION OF THE INVARIANT VARIATIONAL BICOMPLEX.

Given a local cross section $\mathcal{K}^{(k)} \subset J^{k}(E)$ to the action of \mathcal{G}^{k} on $J^{k}(E)$, let
$\mathcal{H}_{\mid \mathcal{K}^{(k)}}^{k}=\left\{\left(g^{k}, z^{k}\right) \mid z^{k} \in \mathcal{K}^{(k)}, g^{k}, z^{k}\right.$ based at the same point $\}$,
and let

$$
\mu^{k}: \mathcal{H}_{\mid \mathcal{K}^{(k)}}^{k} \rightarrow J^{k}(E), \quad \mu^{k}\left(g^{k}, z^{k}\right)=g^{k} \cdot z^{k} .
$$

Then, if the action is locally free, μ^{k} will be a \mathcal{G}-equivariant local diffeomorphism with the action of \mathcal{G} on $\mathcal{H}_{\mid \mathcal{K}^{(k)}}^{k}$ given by
$\varphi \cdot\left(g^{k}, z^{k}\right)=\left(\varphi \cdot g^{k}, z^{k}\right)$.

Computational Techniques

Upshot: Locally one can find a complete set of differential invariants $\left\{I_{\alpha}\right\}$ and a coframe on $\mathcal{U} \subset J^{k}(E)$ consisting of $\left\{d l_{\alpha}\right\}$ and \mathfrak{g}-invariant 1 -forms $\left\{\vartheta_{\beta}\right\}$ such that the algebra \mathcal{A} generated by $\left\{\vartheta_{\beta}\right\}$ is closed under $d \Longrightarrow$

$$
H_{\mathfrak{g}}^{*}(\mathcal{U}, d) \cong H^{*}(\mathcal{A}, d)
$$

(Apply the \mathfrak{g}-equivariant homotopy $I_{\alpha} \rightarrow t l_{\alpha}, d l_{\alpha} \rightarrow t d l_{\alpha}$, $\vartheta_{\beta} \rightarrow \vartheta_{\beta}, 0 \leq t \leq 1$.)

Gelfand-Fuks Сонomology

Formal power series vector fields on \mathbb{R}^{m} :

$$
W_{m}=\left\{\left.\sum_{l=1}^{m} a^{\prime} \frac{\partial}{\partial x^{\prime}} \right\rvert\, a^{\prime} \in \mathbb{R}\left[\left[x^{1}, \ldots, x^{m}\right]\right]\right\} .
$$

Lie bracket [,]: $W_{m} \times W_{m} \rightarrow W_{m}$.
Give W_{m} a topology relative to the ideal $m=<x^{1}, x^{2}$, $\Lambda_{c}^{*}\left(W_{m}\right)$: continuous alternating functionals on W_{m}.
$n_{*}^{*(1 N / m)}$ is gencrated by si where

Gelfand-Fuks Сонomology

Formal power series vector fields on \mathbb{R}^{m} :

$$
W_{m}=\left\{\left.\sum_{l=1}^{m} a^{\prime} \frac{\partial}{\partial x^{\prime}} \right\rvert\, a^{\prime} \in \mathbb{R}\left[\left[x^{1}, \ldots, x^{m}\right]\right]\right\} .
$$

Lie bracket [,]: $W_{m} \times W_{m} \rightarrow W_{m}$.
Give W_{m} a topology relative to the ideal $\mathbf{m}=<x^{1}, x^{2}, \ldots, x^{m}>$.
$\Lambda_{c}^{*}\left(W_{m}\right)$: continuous alternating functionals on W_{m}.
$\Lambda_{c}^{*}\left(W_{m}\right)$ is generated by $\delta_{j j_{j} \ldots j_{k}}^{i}$, where

$$
\delta_{j j_{2} \cdots j_{k}}^{j}\left(a^{\prime} \frac{\partial}{\partial x^{\prime}}\right)=\frac{\partial^{k} a^{i}}{\partial x^{j} \partial x^{j_{2}} \cdots \partial x^{j_{k}}}(0) .
$$

Gelfand-Fuks Сонomology

The differential $d_{G F}: \Lambda_{c}^{r}\left(W_{m}\right) \rightarrow \Lambda_{c}^{r+1}\left(W_{m}\right)$ is induced by Lie bracket of vector fields so that

$$
d_{G F} \omega(X, Y)=-\omega([X, Y]), \quad \omega \in \wedge_{c}^{1}\left(W_{m}\right) .
$$

$d_{G F}^{2}=0!$
Let $g_{0} \subset g \subset W_{m}$ be subalgebras. Define

Gelfand-Fuks Сономology

The differential $d_{G F}: \Lambda_{c}^{r}\left(W_{m}\right) \rightarrow \Lambda_{c}^{r+1}\left(W_{m}\right)$ is induced by Lie bracket of vector fields so that

$$
d_{G F} \omega(X, Y)=-\omega([X, Y]), \quad \omega \in \Lambda_{c}^{1}\left(W_{m}\right) .
$$

$d_{G F}^{2}=0!$
Let $\mathfrak{g}_{o} \subset \mathfrak{g} \subset W_{m}$ be subalgebras. Define

$$
\begin{aligned}
\Lambda_{c}^{*}(\mathfrak{g}) & =\Lambda_{c}^{*}\left(W_{m}\right)_{\mid \mathfrak{g}}, \\
\Lambda_{c}^{*}\left(\mathfrak{g}, \mathfrak{g}_{o}\right) & =\left\{\omega \in \Lambda_{c}^{*}(\mathfrak{g}) \mid X\right\lrcorner \omega=0, \\
& \left.X\lrcorner d_{G F F}=0, \quad \text { for all } X \in \mathfrak{g}_{o}\right\} .
\end{aligned}
$$

The Gelfand-Fuks cohomology $H_{G F}^{*}\left(\mathfrak{g}, \mathfrak{g}_{o}\right)$ of \mathfrak{g} relative to \mathfrak{g}_{o} is the cohomology of the complex $\left(\Lambda_{c}^{*}\left(\mathfrak{g}, \mathfrak{g}_{o}\right), d_{G F}\right)$.

Evaluation Mapping

Pick $\sigma^{\infty} \in J^{\infty}(E)$.
For a given infinitesimal transformation group \mathfrak{g} acting on E, let

$$
\mathfrak{g}_{o}=\left\{X \in \mathfrak{g} \mid \operatorname{pr} X\left(\sigma^{\infty}\right)=0\right\} .
$$

Define $\rho: \Lambda_{\mathfrak{g}}^{*}\left(J^{\infty}(E)\right) \rightarrow \Lambda_{c}^{*}\left(\mathfrak{g}, \mathfrak{g}_{o}\right)$ by

$$
\rho(\omega)\left(X_{1}, \ldots, X_{r}\right)=(-1)^{r} \omega\left(\operatorname{pr} X_{1}, \ldots, \operatorname{pr} X_{r}\right)\left(\sigma^{\infty}\right)
$$

Then ρ is a cochain mapping, that is, it commutes with the
application of d and $d_{G F}$, and thus induces a mapping

Goal is to show that $\bar{\rho}$ is an isomorphism (moving frames!),

Evaluation Mapping

Pick $\sigma^{\infty} \in J^{\infty}(E)$.
For a given infinitesimal transformation group \mathfrak{g} acting on E, let

$$
\mathfrak{g}_{o}=\left\{X \in \mathfrak{g} \mid \operatorname{pr} X\left(\sigma^{\infty}\right)=0\right\} .
$$

Define $\rho: \Lambda_{\mathfrak{g}}^{*}\left(J^{\infty}(E)\right) \rightarrow \Lambda_{c}^{*}\left(\mathfrak{g}, \mathfrak{g}_{o}\right)$ by

$$
\rho(\omega)\left(X_{1}, \ldots, X_{r}\right)=(-1)^{r} \omega\left(\operatorname{pr} X_{1}, \ldots, \operatorname{pr} X_{r}\right)\left(\sigma^{\infty}\right)
$$

Then ρ is a cochain mapping, that is, it commutes with the application of d and $d_{G F}$, and thus induces a mapping

$$
\bar{\rho}: H^{*}\left(\wedge_{\mathfrak{g}}^{*}\left(J^{\infty}(E)\right), d\right) \rightarrow H_{G F}^{*}\left(\mathfrak{g}, \mathfrak{g}_{o}\right)
$$

Goal is to show that $\bar{\rho}$ is an isomorphism (moving frames!).

Equivariant deformations

Construct a submanifold $\mathcal{P}^{\infty} \subset \mathcal{U} \subset J^{\infty}(E)$ such that

1. prg acts transitively on \mathcal{P}^{∞}, and
2. \mathcal{P}^{∞} is $\operatorname{pr} \mathfrak{g}$-equivariant strong deformation retract of \mathcal{U}, that is, there is a smooth map $H: \mathcal{U} \times[0,1] \rightarrow \mathcal{U}$ such that

$$
\begin{array}{rlrl}
H\left(\sigma^{\infty}, 0\right) & =\sigma^{\infty}, & & \text { for all } \sigma^{\infty} \in \mathcal{U}, \\
H\left(\sigma^{\infty}, 1\right) & \in \mathcal{P}^{\infty}, & & \text { for all } \sigma^{\infty} \in \mathcal{U}, \\
H\left(\sigma^{\infty}, t\right) & =\sigma^{\infty}, & & \text { for all }\left(\sigma^{\infty}, t\right) \in \mathcal{P}^{\infty} \times[0,1], \\
\left(H_{t}\right)_{*}\left(\operatorname{pr} V_{\mid \sigma^{\infty}}\right) & =\operatorname{pr} V_{\mid H\left(\sigma^{\infty}, t\right),}, & & \text { for all } V \in \mathfrak{g}, \\
& & \left(\sigma^{\infty}, t\right) \in \mathcal{U} \times[0,1] .
\end{array}
$$

EQUIVARIANT DEFORMATIONS

Under these circumstances the inclusion map

$$
\iota: \mathcal{P}^{\infty} \rightarrow \mathcal{U}
$$

and the evaluation map

$$
\rho: \Lambda_{\mathfrak{g}}^{*}\left(\mathcal{P}^{\infty}\right) \rightarrow \Lambda_{c}^{*}\left(\mathfrak{g}, \mathfrak{g}_{o}\right)
$$

induce isomorphisms in cohomology.

PKP equation again

The symmetry algebra $\mathfrak{g}_{P K P}$ of the PKP equation

$$
u_{t x}+\frac{3}{2} u_{x} u_{x x}+\frac{1}{4} u_{x x x x}+\frac{3}{4} s^{2} u_{y y}=0
$$

is spanned by the vector fields

$$
\begin{aligned}
X_{f} & =f \frac{\partial}{\partial t}+\frac{2}{3} y f^{\prime} \frac{\partial}{\partial y}+\left(\frac{1}{3} x f^{\prime}-\frac{2}{9} s^{2} y^{2} f^{\prime \prime}\right) \frac{\partial}{\partial x} \\
& +\left(-\frac{1}{3} u f^{\prime}+\frac{1}{9} x^{2} f^{\prime \prime}-\frac{4}{27} s^{2} x y^{2} f^{\prime \prime \prime}+\frac{4}{243} y^{4} f^{\prime \prime \prime \prime}\right) \frac{\partial}{\partial u}, \\
Y_{g} & =g \frac{\partial}{\partial y}-\frac{2}{3} s^{2} y g^{\prime} \frac{\partial}{\partial x}+\left(-\frac{4}{9} s^{2} x y g^{\prime \prime}+\frac{8}{81} y^{3} g^{\prime \prime \prime}\right) \frac{\partial}{\partial u}, \\
Z_{h} & =h \frac{\partial}{\partial x}+\left(\frac{2}{3} x h^{\prime}-\frac{4}{9} s^{2} y^{2} h^{\prime \prime}\right) \frac{\partial}{\partial u}, \\
W_{k} & =y k \frac{\partial}{\partial u}, \quad \text { and } \quad U_{l}=I \frac{\partial}{\partial u},
\end{aligned}
$$

where $f=f(t), g=g(t), h=h(t), k=k(t)$ and $I=I(t)$ are arbitrary smooth functions of t.

PKP equation
Now $E=\{(t, x, y, u)\} \rightarrow\{(t, x, y)\}$. The PKP source form

$$
\Delta_{P K P}=\left(u_{t x}+\frac{3}{2} u_{x} u_{x x}+u_{x x x x}+\frac{3}{4} s^{2} u_{y y}\right) \theta \wedge d t \wedge d x \wedge d y
$$

generates non-trivial cohomology in $H^{4}\left(\mathcal{E}_{\mathfrak{g}_{\text {PKP }}}\left(J^{\infty}(E)\right)\right)$!
The characterization problem of the PKP-equation by its symmetry algebra amounts to the computation of $H^{4}\left(\mathcal{E}_{\mathfrak{g} P K P}^{*}(\mathcal{U})\right)$. For a suitable $11 \subset 1 \infty\left(1\right.$ 亿) $H^{*}\left(\mathcal{E}^{*} \quad(11)\right)$ can he comnuted by an explicit description of differential invariants and an invariant coframe arising from the moving frames construction.

PKP equation

Now $E=\{(t, x, y, u)\} \rightarrow\{(t, x, y)\}$. The PKP source form

$$
\Delta_{P K P}=\left(u_{t x}+\frac{3}{2} u_{x} u_{x x}+u_{x x x x}+\frac{3}{4} s^{2} u_{y y}\right) \theta \wedge d t \wedge d x \wedge d y
$$

generates non-trivial cohomology in $H^{4}\left(\mathcal{E}_{\mathfrak{g}_{P K P}}\left(J^{\infty}(E)\right)\right)$!
The characterization problem of the PKP-equation by its symmetry algebra amounts to the computation of $H^{4}\left(\mathcal{E}_{\mathfrak{g}_{\text {PK }}}^{*}(\mathcal{U})\right)$.
For a suitable $\mathcal{U} \subset J^{\infty}(\mathcal{U}), H^{*}\left(\mathcal{E}_{\mathfrak{g} P K P}^{*}(\mathcal{U})\right)$ can be computed by an explicit description of differential invariants and an invariant coframe arising from the moving frames construction.

The Gelfand-Fuks complex for $\mathfrak{g}_{P K P}$ admits a basis $\alpha^{n}, \beta^{n}, \gamma^{n}$, $v^{n}, \vartheta^{n}, n=0,1,2, \ldots$, of invariant forms so that

$$
\begin{aligned}
& d \alpha^{n}=\sum_{k=0}^{n}\binom{n}{k} \alpha^{k} \wedge \alpha^{n-k+1}, \\
& d \beta^{n}=\sum_{k=0}^{n}\binom{n}{k}\left\{\alpha^{k} \wedge \beta^{n-k+1}-\frac{2}{3} \alpha^{k+1} \wedge \beta^{n-k}\right\} \\
& d \gamma^{n}=\sum_{k=0}^{n}\binom{n}{k}\left\{\alpha^{k} \wedge \gamma^{n-k+1}-\frac{1}{3} \alpha^{k+1} \wedge \gamma^{n-k}-\frac{2}{3} s^{2} \beta^{k} \wedge \beta^{n-k+1}\right\} \\
& d v^{n}=\sum_{k=0}^{n+1}\binom{n+1}{k}\left\{\alpha^{k} \wedge v^{n-k+1}+\frac{4}{9} s^{2}\left(\beta^{k+1} \wedge \gamma^{n-k+1}\right.\right. \\
& \left.d \vartheta^{n}=\sum_{k=0}^{n}\binom{n}{k}\left\{\alpha^{k} \wedge \vartheta^{n-k+1}+\frac{1}{3} \alpha^{k+1} \wedge \vartheta^{n-k} \quad-2 \beta^{k} \wedge \gamma^{n-k+2}\right)\right\} \\
& \left.\quad+\beta^{k} \wedge v^{n-k}+\frac{2}{3} \gamma^{k} \wedge \gamma^{n-k+1}\right\}
\end{aligned}
$$

The Gelfand-Fuks complex for $\mathfrak{g}_{P K P}$ admits a basis $\alpha^{n}, \beta^{n}, \gamma^{n}$, $v^{n}, \vartheta^{n}, n=0,1,2, \ldots$, of invariant forms so that

$$
\begin{aligned}
& d \alpha^{n}=\sum_{k=0}^{n}\binom{n}{k} \alpha^{k} \wedge \alpha^{n-k+1} \\
& d \beta^{n}=\sum_{k=0}^{n}\binom{n}{k}\left\{\alpha^{k} \wedge \beta^{n-k+1}-\frac{2}{3} \alpha^{k+1} \wedge \beta^{n-k}\right\} \\
& d \gamma^{n}=\sum_{k=0}^{n}\binom{n}{k}\left\{\alpha^{k} \wedge \gamma^{n-k+1}-\frac{1}{3} \alpha^{k+1} \wedge \gamma^{n-k}-\frac{2}{3} s^{2} \beta^{k} \wedge \beta^{n-k+1}\right\} \\
& d v^{n}=\sum_{k=0}^{n+1}\binom{n+1}{k}\left\{\alpha^{k} \wedge v^{n-k+1}+\frac{4}{9} s^{2}\left(\beta^{k+1} \wedge \gamma^{n-k+1}\right.\right. \\
& \left.d \vartheta^{n}=\sum_{k=0}^{n}\binom{n}{k}\left\{\alpha^{k} \wedge \vartheta^{n-k+1}+\frac{1}{3} \alpha^{k+1} \wedge \vartheta^{n-k} \quad-2 \beta^{k} \wedge \gamma^{n-k+2}\right)\right\} \\
& \left.\quad+\beta^{k} \wedge v^{n-k}+\frac{2}{3} \gamma^{k} \wedge \gamma^{n-k+1}\right\}
\end{aligned}
$$

The complex splits into a direct sum of simultaneous eigenspaces of 2 Lie derivative operators.

PKP EQUATION

Let A be a non-vanishing differential function on some open set $\mathcal{U} \subset J^{\infty}(E)$ satisfying

$$
\operatorname{pr} X_{f}(A)+\frac{1}{3} A f^{\prime}(t)=0, \quad \frac{\partial A}{\partial y}=0, \quad \text { for every smooth } f(t)
$$

and let B be a differential function on \mathcal{U} satisfying
pr $X_{f}(B)+\frac{2}{3} y A^{-1} f^{\prime \prime}(t)=0, \quad \frac{\partial B}{\partial y}=0, \quad$ for every smooth $f(t)$.
For example, one can choose

PKP EQUATION

Let A be a non-vanishing differential function on some open set $\mathcal{U} \subset J^{\infty}(E)$ satisfying

$$
\operatorname{pr} X_{f}(A)+\frac{1}{3} A f^{\prime}(t)=0, \quad \frac{\partial A}{\partial y}=0, \quad \text { for every smooth } f(t)
$$

and let B be a differential function on \mathcal{U} satisfying

$$
\text { pr } X_{f}(B)+\frac{2}{3} y A^{-1} f^{\prime \prime}(t)=0, \quad \frac{\partial B}{\partial y}=0, \quad \text { for every smooth } f(t) .
$$

For example, one can choose

$$
A=\left(u_{x^{n}}\right)^{\frac{1}{n+1}} \quad \text { and } \quad B=-\frac{3}{2} s^{2} u_{x^{n-1}}\left(u_{x^{n}}\right)^{-\frac{n+2}{n+1}}, \quad n \geq 3,
$$

on $\mathcal{U}=\left\{u_{x^{n}}>0\right\}$.

PKP equation

Theorem

Suppose that differential functions A and B, defined on an open $\mathcal{U} \subset J^{\infty}(E)$, are chosen as above. Then the dimensions of the cohomology spaces $H^{r}\left(\mathcal{E}_{\text {gpKp }}^{*}(\mathcal{U}), \delta_{V}\right)$ are

$$
\begin{array}{r|rrrrrrrr}
r & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \geq 8 \\
\hline \operatorname{dim} & 0 & 1 & 1 & 3 & 3 & 2 & 3 & 0
\end{array}
$$

Representatives of the Сohomology Classes

Let $\left\{\alpha^{0}, \beta^{0}, \gamma^{0}\right\}$ be the $\mathfrak{g}_{P K P}$ invariant horizontal frame defined by

$$
\begin{aligned}
& \alpha^{0}=A^{3} d t, \quad \beta^{0}=A^{2} d y+A^{3} B d t \\
& \gamma^{0}=A d x-\frac{2}{3} s^{2} A^{2} B d y+A^{3} C d t
\end{aligned}
$$

where

$$
C=-\frac{3}{2} u_{x} A^{-2}-\frac{1}{3} s^{2} B^{2}
$$

and let K be the $\mathfrak{g}_{P K P}$ differential invariant

$$
K=\left(u_{t x}+\frac{3}{4} s^{2} u_{y y}+\frac{3}{2} u_{x} u_{x x}\right) A^{-5} .
$$

Representatives of the Сонomology Classes

Let $\Delta^{1}, \Delta^{2} \in \mathcal{E}_{\mathfrak{g} P K \mathrm{P}}^{4}(\mathcal{U})$ be the source forms

$$
\begin{aligned}
& \Delta^{1}=\left(u_{t x}+\frac{3}{2} u_{x} u_{x x}+\frac{3}{4} s^{2} u_{y y}\right) d t \wedge d x \wedge d y \wedge d u, \\
& \Delta^{2}=u_{x x x x} d t \wedge d x \wedge d y \wedge d u,
\end{aligned}
$$

and let $\Delta^{3} \in \mathcal{E}_{\text {gr }}^{4}(\mathcal{U})$ be the source form which is the Euler-Lagrange expression

$$
\Delta^{3}=\mathrm{E}\left(B K \alpha^{0} \wedge \beta^{0} \wedge \gamma^{0}\right) .
$$

Representatives of the Сонomology Classes

Let $\Delta^{1}, \Delta^{2} \in \mathcal{E}_{\mathfrak{g} P K \mathrm{P}}^{4}(\mathcal{U})$ be the source forms

$$
\begin{aligned}
& \Delta^{1}=\left(u_{t x}+\frac{3}{2} u_{x} u_{x x}+\frac{3}{4} s^{2} u_{y y}\right) d t \wedge d x \wedge d y \wedge d u, \\
& \Delta^{2}=u_{x x x x} d t \wedge d x \wedge d y \wedge d u
\end{aligned}
$$

and let $\Delta^{3} \in \mathcal{E}_{\mathfrak{g} P K P}^{4}(\mathcal{U})$ be the source form which is the Euler-Lagrange expression

$$
\Delta^{3}=\mathrm{E}\left(B K \alpha^{0} \wedge \beta^{0} \wedge \gamma^{0}\right) .
$$

Then $H^{4}\left(\mathcal{E}^{*}(\mathcal{U}), \delta_{V}\right)=\left\langle\Delta^{1}, \Delta^{2}, \Delta^{3}\right\rangle$.
Note that the PKP source form is the sum $\Delta_{P K P}=\Delta^{1}+\Delta^{2}$.

COROLLARY:

Let $\Delta \in \mathcal{E}_{\mathfrak{g} \text { KKP }}^{4}(\mathcal{U})$ be a $\mathfrak{g}_{P K P}$ invariant source form that is the Euler-Lagrange expression of some Lagrangian 3 -form $\lambda \in \mathcal{E}^{3}(\mathcal{U})$. Then there are constants c_{1}, c_{2}, c_{3} and a

$$
\Delta=c_{1} \Delta^{1}+c_{2} \Delta^{2}+c_{3} \Delta^{3}+\mathrm{E}\left(\lambda_{0}\right) .
$$

Vector Field Theories

Here $E=T^{*} \mathbb{R}^{m}=\left\{\left(x^{i}, A_{j}\right)\right\} \rightarrow\left\{\left(x^{i}\right)\right\}$.
Now the infinitesimal transformation group \mathfrak{g} is spanned by

$$
T_{i}=\frac{\partial}{\partial x^{i}}, \quad V_{\phi}=\phi, i \frac{\partial}{\partial A_{i}},
$$

where ϕ is an arbitrary smooth function on \mathbb{R}^{m}.
Need to compute $H^{m+1}\left(\mathcal{E}_{\mathfrak{g}}^{*}\left(J^{\infty}\left(T^{*} \mathbb{R}^{m}\right)\right)\right)$!
The standard horizontal homotopy operator for the free variational bicomplex commutes with the action of \mathfrak{g}

Vector Field Theories

Here $E=T^{*} \mathbb{R}^{m}=\left\{\left(x^{i}, A_{j}\right)\right\} \rightarrow\left\{\left(x^{i}\right)\right\}$.
Now the infinitesimal transformation group \mathfrak{g} is spanned by

$$
T_{i}=\frac{\partial}{\partial x^{i}}, \quad V_{\phi}=\phi_{, i} \frac{\partial}{\partial A_{i}},
$$

where ϕ is an arbitrary smooth function on \mathbb{R}^{m}.
Need to compute $H^{m+1}\left(\mathcal{E}_{\mathfrak{g}}^{*}\left(J^{\infty}\left(T^{*} \mathbb{R}^{m}\right)\right)\right)$!
The standard horizontal homotopy operator for the free variational bicomplex commutes with the action of $\mathfrak{g} \Longrightarrow$

$$
H^{*, s}\left(\Lambda_{\mathfrak{g}}^{*, *}\left(J^{\infty}(E)\right), d_{H}, I\right)=\{0\}, \quad s \geq 1 .
$$

So it suffices to compute $H^{*}\left(\Lambda_{\mathrm{g}}^{*}\left(J^{\infty}(E)\right), d\right)$.

Vector Field Theories

Parametrize $J^{\infty}\left(T^{*} \mathbb{R}^{m}\right)$ by
$\left(x^{i}, A_{a}, A_{\left(a, b_{1}\right)}, F_{a b_{1}}, A_{\left(a, b_{1} b_{2}\right)}, F_{a\left(b_{1}, b_{2}\right)}, A_{\left(a, b_{1} b_{2} b_{3}\right)}, F_{a\left(b_{1}, b_{2} b_{3}\right)}, \ldots\right)$,
where $F_{a b}=A_{a, b}-A_{b, a}$.
Now the variables $F_{a\left(b_{1}, b_{2} \cdots b_{r}\right)}$ are invariant under the action of \mathfrak{g} \Longrightarrow

$$
\mathcal{P}^{\infty}=\left\{\sigma^{\infty} \in J^{\infty}\left(T^{*} \mathbb{R}^{m}\right) \mid F_{i j}\left(\sigma^{\infty}\right)=0, F_{i(j, h)}\left(\sigma^{\infty}\right)=0, \ldots\right\}
$$

is a \mathfrak{g}-equivariant strong deformation retract of $J^{\infty}\left(T^{*} M\right)$ on which \mathfrak{g} acts transitively.

Vector Field Theories

In conclusion,

$$
H^{*}\left(\mathcal{E}_{\mathfrak{g}}^{*}\left(J^{\infty}\left(T^{*} M\right)\right)\right) \cong H_{G F}^{*}(\widetilde{\mathfrak{g}})
$$

where the Lie algebra of formal vector fields $\tilde{\mathfrak{g}}$ is spanned by the vector fields T_{i} and

$$
V^{j_{1} j_{2} \ldots j_{k}}=x^{\left(j_{1}\right.} x^{j_{2}} \cdots x^{j_{k-1}} \partial_{A}^{\left.j_{k}\right)}, \quad \partial_{A}^{j}=\frac{\partial}{\partial A_{j}} .
$$

Vector Field Theories

A basis for $\boldsymbol{H}^{*}\left(\mathcal{E}_{\mathfrak{g}}^{*}\left(J^{\infty}\left(T^{*} M\right)\right)\right)$ is given by $d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}} \wedge F^{\prime} \in \Lambda_{g}^{r, 0}\left(J^{\infty}\left(T^{*} M\right)\right), \quad k+2 l=r$, $d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}} \wedge F^{\prime} \wedge\left(d_{V} A\right)^{s} \in \mathcal{F}_{\mathfrak{g}}^{s}\left(J^{\infty}\left(T^{*} M\right)\right), \quad k+2 I+s=m$.
$\left(A=A_{i} d x^{i}, F=F_{i j} d x^{i} \wedge d x^{j}.\right)$

Generators for $H^{m+1}\left(\mathcal{E}_{\mathfrak{g}}^{*}\left(J^{\infty}\left(T^{*} M\right)\right)\right)$
$\Delta^{i_{1} i_{2} \cdots i_{k}}=d x^{i_{1}} \wedge d x^{i_{2}} \wedge \cdots \wedge d x^{i_{k}} \wedge F^{\prime} \wedge d_{V} A, \quad k+2 I=m-1$, $\operatorname{dim} H^{m+1}\left(\mathcal{E}_{\mathfrak{g}}^{*}\left(J^{\infty}\left(T^{*} M\right)\right)\right)=2^{m}-1$.

Note that when $m=2 r+1, \Delta=F^{r} \wedge d_{V} A$ is the Chern-Simons mass term with components

$$
\Delta^{i}=\epsilon^{i_{1} k_{1} j_{2} k_{2} \cdots \cdots_{j} k_{r} k_{r}} F_{j 1} k_{1} F_{j_{2} k_{2}}^{\cdots F_{j r k_{r}} .}
$$

