Symmetries of b-manifolds and their generalizations

Eva Miranda

UPC-Barcelona

Exterior differential systems and Lie theory Fields Institute, Toronto

Eva Miranda (UPC)

Exterior differential systems and Lie theory

December 10, 2013 1 / 19

- Toric Symplectic manifolds
- 2 b-Symplectic manifolds
- 3 A Delzant theorem for b-symplectic manifolds
- 4 Generalizations

Definition (Symplectic case)

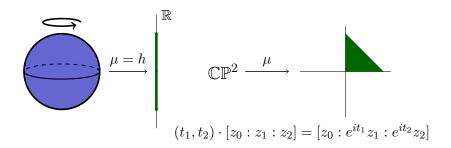
Let G be a compact Lie group acting symplectically on (M, ω) . The action is **Hamiltonian** if there exists an equivariant map $\mu : M \to \mathfrak{g}^*$ such that for each element $X \in \mathfrak{g}$,

$$d\mu^X = \iota_{X^{\#}}\omega,\tag{1}$$

with $\mu^X = <\mu, X>$. The map μ is called the **moment map**.

Theorem (Delzant)

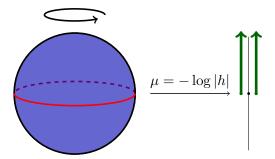
Toric manifolds are classified by Delzant's polytopes. The bijective correspondence between these two sets is given by the image of the moment map: $\begin{cases}
\text{toric manifolds} \\
(M^{2n}, \omega, \mathbb{T}^n, F) \\
\end{cases} \xrightarrow{} F(M)$



Adding singularities in the picture

 $(S^2, \frac{1}{h}dh \wedge d\theta) \iff (S^2, h\frac{\partial}{\partial h} \wedge \frac{\partial}{\partial \theta}).$

We want to study generalizations of rotations on a sphere.



b-Symplectic/*b*-Poisson structures

Definition

Let (M^{2n},Π) be an oriented Poisson manifold such that the map

$$p \in M \mapsto (\Pi(p))^n \in \Lambda^{2n}(TM)$$

is transverse to the zero section, then $Z = \{p \in M | (\Pi(p))^n = 0\}$ is a hypersurface called *the critical hypersurface* and we say that Π is a **Poisson** *b*-structure on (M, Z).

Disclaimer

b-symplectic manifolds =log-symplectic manifolds= b-log symplectic manifolds

Symplectic foliation of a Poisson b-manifold

The symplectic foliation has dense symplectic leaves and codimension 2 symplectic leaves whose union is Z.

Eva Miranda (UPC)

Examples: Dimension 2

Radko classified b-Poisson structures on compact oriented surfaces giving a list of invariants:

- Geometrical: The topology of S and the curves γ_i where Π vanishes.
- Dynamical: The periods of the "modular vector field" along γ_i .
- Measure: The regularized Liouville volume of S, $V_h^{\epsilon}(\Pi) = \int_{|h| > \epsilon} \omega_{\Pi}$ for h a function vanishing linearly on the curves $\gamma_1, \ldots, \gamma_n$.

Figure: Two admissible vanishing curves (a) and (b) for Π ; the ones in (b') is not admissible.

- The product of (R, π_R) a Radko compact surface and a (S, π) be a compact symplectic manifold is a *b*-Poisson manifold.
- Take (N, π) be a regular corank 1 Poisson manifold and let X be a Poisson vector field. Now consider the product $S^1 \times N$ with the bivector field

$$\Pi = f(\theta) \frac{\partial}{\partial \theta} \wedge X + \pi.$$

This is a *b*-Poisson manifold as long as,

1 the function f vanishes linearly.

2 The vector field X is transverse to the symplectic leaves of N.

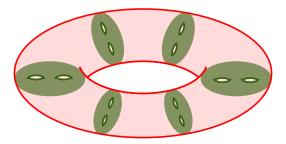
We then have as many copies of N as zeroes of f.

This last example is semilocally the *canonical* picture of a b-Poisson structure.

- The critical hypersurface Z has an induced regular Poisson structure of corank 1.
- **②** There exists a Poisson vector field transverse to the symplectic foliation induced on Z.
- Given a regular corank 1 Poisson structure, there exists a semilocal extension to a b-Poisson structure if an only if two foliated cohomology classes of the symplectic foliation vanish.

Theorem (Guillemin-M.-Pires)

If \mathcal{L} contains a compact leaf L, then M is the mapping torus of the symplectomorphism $\phi : L \to L$ determined by the flow of a Poisson vector field v transverse to the symplectic foliation.



A dual approach...

b-Poisson structures can be seen as symplectic structures modeled over a Lie algebroid (the b-tangent bundle).

A vector field v is a b-vector field if $v_p \in T_pZ$ for all $p \in Z$.

The *b*-tangent bundle ${}^{b}TM$ is defined by

$$\Gamma(U, {}^{b}TM) = \left\{ \begin{array}{c} \text{b-vector fields} \\ \text{on } (U, U \cap Z) \end{array} \right\}$$

The *b*-cotangent bundle ${}^{b}T^{*}M$ is $({}^{b}TM)^{*}$. Sections of $\Lambda^{p}({}^{b}T^{*}M)$ are *b*-forms, ${}^{b}\Omega^{p}(M)$. The standard differential extends to

 $d: {}^{b}\Omega^{p}(M) \to {}^{b}\Omega^{p+1}(M)$

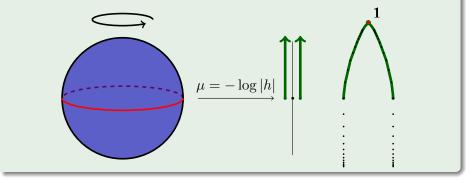
A *b*-symplectic form is a closed, nondegenerate, *b*-form of degree 2.

This dual point of view, allows to prove a *b*-Darboux theorem and semilocal forms via an adaptation of Moser's path method since we can play the same tricks as in the symplectic case.

Eva Miranda (UPC)

Example

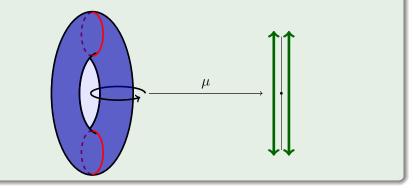
 $(\mathbb{S}^2, \omega = \frac{dh}{h} \wedge d\theta)$, with coordinates $h \in [-1, 1]$ and $\theta \in [0, 2\pi]$. The critical hypersurface Z is the equator, given by h = 0. For the usual \mathbb{S}^1 -action by rotations, the moment map is $\mu(h, \theta) = \log |h|$.



10 / 19

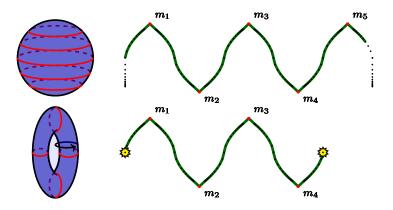
Example

On $(\mathbb{T}^2, \omega = \frac{d\theta_1}{\sin \theta_1} \wedge d\theta_2)$, with coordinates: $\theta_1, \theta_2 \in [0, 2\pi]$. The critical hypersurface Z is the union of two disjoint circles, given by $\theta_1 = 0$ and $\theta_1 = \pi$. Consider rotations in θ_2 the moment map is $\mu : \mathbb{T}^2 \to \mathbb{R}^2$ is given by $\mu(\theta_1, \theta_2) = \log \left| \tan \frac{\theta_1}{2} \right|$.



December 10, 2013 10 / 19

More generally...



December 10, 2013

< 行

э

Definition

An action of \mathbb{T}^n on a *b*-symplectic manifold (M, ω) is a **Hamiltonian** action if:

- for each $X \in \mathfrak{t}$, the *b*-one-form $\iota_{X^{\#}}\omega$ is exact (i.e., has a primitive $H_X \in {}^bC^{\infty}(M)$)
- for any $X,Y\in\mathfrak{t},$ we have $\omega(X^{\#},Y^{\#})=0.$

<

The action is **toric** if it is effective and the dimension of the torus is half the dimension of M.

b-moment map μ such that

$$< \mu(p), X >= H_X(p),$$

but we will have to allow $\mu(p)$ to take values of $\pm\infty,$ so we need to extend the pairing to accommodate that.

The *b*-line

The *b*-line is constructed by gluing copies of the extended real line $\overline{\mathbb{R}} := \mathbb{R} \cup \{\pm \infty\}$ together in a zig-zag pattern and $\mathbb{R}_{>0}$ -valued labels ("weights") on the points at infinity to prescribe a smooth structure.



Figure: A weighted *b*-line with $I = \mathbb{Z}$

The *b*-line with weight function wt is described as a topological space by ${}_{wt}^{b}\mathbb{R} \cong (\mathbb{Z} \times \overline{\mathbb{R}})/\{(a, (-1)^{a}\infty) \sim (a+1, (-1)^{a}\infty)\}$. The weights are given by the modular periods associated to each connected component of Z.

Theorem (Guillemin, M., Pires, Scott)

Let $(M, Z, \omega, \mathbb{T}^n)$ be a b-symplectic manifold with an effective Hamiltonian toric action. For an appropriately-chosen ${}^b\mathfrak{t}^*$ or ${}^b\mathfrak{t}^*/\langle a \rangle$, there is a moment map $\mu: M \to {}^b\mathfrak{t}^*$ or $\mu: M \to {}^b\mathfrak{t}^*/\langle a \rangle$.

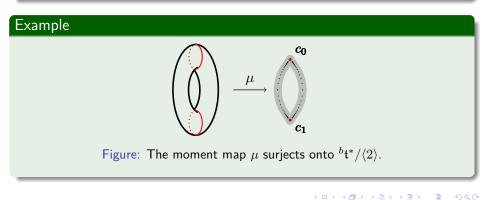
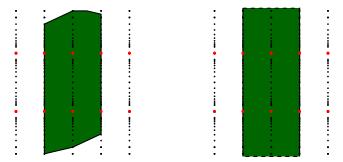


Image of the moment map.



We can recover information about the action from a standard Delzant polytope on a mapping torus via *symplectic cutting* in a neighbourhood of the critical hypersurface.

Fix ${}^{b}\mathfrak{t}^{*}$ with wt(1) = c. For any Delzant polytope $\Delta \subseteq \mathfrak{t}_{Z}^{*}$ with corresponding symplectic toric manifold $(X_{\Delta}, \omega_{\Delta}, \mu_{\Delta})$, the **semilocal model** of the *b*-symplectic manifold as

$$M_{\rm lm} = X_{\Delta} \times \mathbb{S}^1 \times \mathbb{R} \qquad \omega_{\rm lm} = \omega_{\Delta} + c \frac{dt}{t} \wedge d\theta$$

where θ and t are the coordinates on \mathbb{S}^1 and \mathbb{R} respectively. The $\mathbb{S}^1 \times \mathbb{T}_Z$ action on M_{lm} given by $(\rho, g) \cdot (x, \theta, t) = (g \cdot x, \theta + \rho, t)$ has moment map $\mu_{\mathrm{lm}}(x, \theta, t) = (y_0 = t, \mu_{\Delta}(x)).$

Theorem (Guillemin, M., Pires, Scott)

For a fixed primitive lattice vector $v \in \mathfrak{t}^*$ and weight function $wt : [1, N] \to \mathbb{R}_{>0}$, the maps

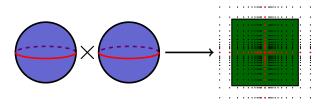
$$\left\{ \begin{array}{c} b-symplectic \ toric \ manifolds \\ (M, Z, \omega, \mu: M \to {}^{b}\mathfrak{t}^{*}) \end{array} \right\} \to \left\{ \begin{array}{c} Delzant \ b-polytopes \\ in \ {}^{b}\mathfrak{t}^{*} \end{array} \right\}$$
(2)

and

$$\left\{ \begin{array}{c} b-symplectic \ toric \ manifolds\\ (M,Z,\omega,\mu:M \to {}^{b}\mathfrak{t}^{*}/\langle N \rangle) \end{array} \right\} \to \left\{ \begin{array}{c} Delzant \ b-polytopes\\ in \ {}^{b}\mathfrak{t}^{*}/\langle N \rangle \end{array} \right\}$$
(3)

that send a *b*-symplectic toric manifold to the image of its moment map are bijections.

Product of two toric *b*-spheres. This is a toric *c*-symplectic manifold (c for "corners").



These *c*-manifolds admit Morse-like singularities and a Moser path method seems to work too. Are they topologically constrained?

The sphere S^4

- does not admit a symplectic structure.
- does not admit a *b*-symplectic structure. (Marcut-Osorno and Cavalcanti)
- Using inversion we can construct Poisson structures on S^4 with quadratic type singularities and an isolated singularity (symplectic elsewhere).

Question

Does S^4 admit a *c*-structure?

Example

Consider the projective submodule generated by $X = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$ and $Y = x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x}$. By Serre-Swan, it has an associated vector bundle E. This example corresponds to isolated elliptic singularities in dimension 2.

E-symplectic manifolds

Goal: Study the Poisson geometry underlying a projective submodule V which is a Lie subalgebra of Vect(M).

We then have a Lie algebroid structure with anchor map $a: T^m M \longrightarrow TM$. The singular locus is the set where the differential is not surjective.

19 / 19