On the Van Est homomorphism for Lie groupoids

Eckhard Meinrenken (based on joint work with David Li-Bland)

Fields Institute, December 13, 2013
Let $G \rightrightarrows M$ be a Lie groupoid, with Lie algebroid $A = \text{Lie}(G)$.

Weinstein-Xu (1991) constructed a cochain map

$$\text{VE}: C^\bullet(G) \to C^\bullet(A)$$

from smooth groupoid cochains to the Chevalley-Eilenberg complex of the Lie algebroid A of G.

Crainic (2003) proved a Van Est Theorem for this map.

Weinstein, Mehta (2006), and Abad-Crainic (2008, 2011) generalized to

$$\text{VE}: W^\bullet_\bullet(G) \to W^\bullet_\bullet(A)$$

for suitably defined Weil algebras.
Let $G \rightrightarrows M$ be a Lie groupoid, with Lie algebroid $A = \text{Lie}(G)$

Weinstein-Xu (1991) constructed a cochain map

$$\text{VE}: C^\bullet(G) \to C^\bullet(A)$$

from smooth groupoid cochains to the Chevalley-Eilenberg complex of the Lie algebroid A of G.

Crainic (2003) proved a *Van Est Theorem* for this map.
Let $G \rightrightarrows M$ be a Lie groupoid, with Lie algebroid $A = \text{Lie}(G)$

Weinstein-Xu (1991) constructed a cochain map

$$\text{VE}: C^\bullet(G) \to C^\bullet(A)$$

from smooth groupoid cochains to the Chevalley-Eilenberg complex of the Lie algebroid A of G.

Crainic (2003) proved a Van Est Theorem for this map.

Weinstein, Mehta (2006), and Abad-Crainic (2008, 2011) generalized to

$$\text{VE}: W^{\bullet,\bullet}(G) \to W^{\bullet,\bullet}(A)$$

for suitably defined Weil algebras.
Overview

Applications

- Foliation theory
- Integration of (quasi-)Poisson manifolds and Dirac structures
- Multiplicative forms on groupoids (Mackenzie-Xu, Bursztyn-Cabrera-Ortiz)
- Index theory (Posthuma-Pflaum-Tang)
- Lie pseudogroups and Spencer operators (Crainic-Salazar-Struchiner),
- ...
Overview

Applications

- Foliation theory
- Integration of (quasi-)Poisson manifolds and Dirac structures
- Multiplicative forms on groupoids (Mackenzie-Xu, Bursztyn-Cabrera-Ortiz)
- Index theory (Posthuma-Pflaum-Tang)
- Lie pseudogroups and Spencer operators (Crainic-Salazar-Struchiner),
- ...

Using the **Fundamental Lemma** of homological perturbation theory, we’ll give a simple construction of VE (and its properties).
Let $G \rightrightarrows M$ be a Lie groupoid over $M \subseteq G$.

$$m_0 \overset{g}{\leftarrow} m_1.$$

Multiplication $(g_1, g_2) \mapsto g_1 g_2$ defined for *composable arrows*:

$$\left(m_0 \overset{g_1}{\leftarrow} m_1 \overset{g_2}{\leftarrow} m_2 \right) \mapsto \left(m_0 \overset{g_1 g_2}{\leftarrow} m_2 \right).$$
Let $G \rightrightarrows M$ be a Lie groupoid over $M \subseteq G$.

$\begin{align*}
m_0 & \xleftarrow{g} m_1.
\end{align*}$

Multiplication $(g_1, g_2) \mapsto g_1 g_2$ defined for \textit{composable arrows}:

$\begin{align*}
\left(m_0 \xleftarrow{g_1} m_1 \xleftarrow{g_2} m_2 \right) & \mapsto \left(m_0 \xleftarrow{g_1 g_2} m_2 \right).
\end{align*}$

Examples

- Lie group $G \rightrightarrows pt$
- Pair groupoid $\text{Pair}(M) = M \times M \rightrightarrows M$
- Fundamental groupoid $\Pi(M) \rightrightarrows M$
- Foliation groupoid(s), e.g., $\Pi_{\mathcal{F}}(M) \rightrightarrows M$
- Gauge groupoids of principal bundles
- Action groupoids $K \ltimes M \rightrightarrows M$
- Groupoids associated with hypersurfaces
Let $B_p G$ be the manifold of p-arrows (g_1, \ldots, g_p):

$$m_0 \xleftarrow{g_1} m_1 \xleftarrow{g_2} m_2 \cdots \xleftarrow{g_p} m_p$$

It is a simplicial manifold, with face maps

$$\partial_i : B_p G \to B_{p-1} G, \ i = 0, \ldots, p$$

removing m_i and degeneracies $\epsilon_i : B_p G \to B_{p+1} G$ repeating m_i.

For example

$$\partial_1 \left(m_0 \xleftarrow{g_1} m_1 \xleftarrow{g_2} m_2 \cdots \xleftarrow{g_p} m_p \right) = \left(m_0 \xleftarrow{g_1 g_2} m_2 \cdots \xleftarrow{g_p} m_p \right).$$
Groupoid cochain complex: $C^\bullet(G) := C^\infty(B\mathbf{\bullet}G)$ with differential

$$\delta = \sum_{i=0}^{p+1} (-1)^i \partial^*_i : C^\infty(B_pG) \to C^\infty(B_{p+1}G)$$

and algebra structure $C^p(G) \otimes C^{p'}(G) \to C^{p+p'}(G)$,

$$f \cup f' = \text{pr}^* f (\text{pr}')^* f',$$

where pr, pr' are the ‘front face’ and ‘back face’ projections.
Groupoid cochain complex: $C^\bullet(G) := C^\infty(B_\bullet G)$ with differential

$$\delta = \sum_{i=0}^{p+1} (-1)^i \partial_i^*: C^\infty(B_p G) \to C^\infty(B_{p+1} G)$$

and algebra structure $C^p(G) \otimes C^{p'}(G) \to C^{p+p'}(G)$,

$$f \cup f' = \text{pr}^* f (\text{pr}')^* f',$$

where pr, pr' are the ‘front face’ and ‘back face’ projections.

Variations:

- Normalized subcomplex $\tilde{C}^\bullet(G)$: kernel of degeneracy maps ϵ_i.
- More generally, with coefficients in G-modules $S \to M$.
- $C^\bullet(G)_M := C^\infty(B_\bullet G)_M$, the germs along $M \subseteq B_p G$.
- Extends to double complex $W^\bullet,\bullet(G) := \Omega^\bullet(B_\bullet G)$.

Eckhard Meinrenken (based on joint work with David Li-Bland)
Example (Alexander-Spanier complex)

$C^\bullet(\text{Pair}(M))_M = C^\infty(M^{p+1})_M$

$$(\delta f)(m_0, \ldots, m_{p+1}) = \sum_{i=0}^{p+1} (-1)^i f(m_0, \ldots, \hat{m_i}, \ldots, m_{p+1})$$
Let $A \to M$ be a Lie algebroid, with anchor $a: A \to TM$ and bracket $[\cdot , \cdot]_A$ on $\Gamma(A)$. Thus

$$[X, fY] = f[X, Y] + (a(X)f) Y.$$

Examples

- Lie algebra g
- Tangent bundle TM
- Tangent bundle to foliation $T_F M \subset TM$
- Atiyah algebroid of principal bundle
- Cotangent Lie algebroid of Poisson manifold
- Action Lie algebroids $k \ltimes M$
- Lie algebroids associated with hypersurfaces

...
Lie algebroid cohomology

Let $A \to M$ be a Lie algebroid, with anchor $a: A \to TM$ and bracket $[\cdot, \cdot]_A$ on $\Gamma(A)$. Thus

$$[X, fY] = f[X, Y] + (a(X)f) Y.$$

Examples

- Lie algebra \mathfrak{g}
- Tangent bundle TM
- Tangent bundle to foliation $T_F M \subset TM$
- Atiyah algebroid of principal bundle
- Cotangent Lie algebroid of Poisson manifold
- Action Lie algebroids $\mathfrak{k} \ltimes M$
- Lie algebroids associated with hypersurfaces
- ...
The Chevalley-Eilenberg complex is $C^\bullet(A) = \Gamma(\bigwedge^\bullet A^*)$ with differential

$$(d_{CE}\phi)(X_0, \ldots, X_p)$$

$$= \sum_{i=0}^p (-1)^i a(X_i)\phi(X_0, \ldots, \hat{X}_i, \ldots, X_p)$$

$$+ \sum_{i<j} (-1)^{i+j} \phi([X_i, X_j], X_0, \ldots, \hat{X}_i, \ldots, \hat{X}_j, \ldots, X_p)$$

and with product the wedge product.
The **Chevalley-Eilenberg complex** is $C^\bullet(A) = \Gamma(\wedge^\bullet A^*)$ with differential

$$(d_{CE}\phi)(X_0, \ldots, X_p)$$

$$= \sum_{i=0}^{p} (-1)^i a(X_i)\phi(X_0, \ldots, \hat{X}_i, \ldots, X_p)$$

$$+ \sum_{i<j} (-1)^{i+j} \phi([X_i, X_j], X_0, \ldots, \hat{X}_i, \ldots, \hat{X}_j, \ldots, X_p)$$

and with product the wedge product.

- More generally, with coefficients in A-modules $S \to M$.
- Extends to double complex $W^{\bullet, \bullet}(A)$
- For $A = T_\mathcal{F}M$, get foliated de Rham complex $\Omega_\mathcal{F}(M)$.

Eckhard Meinrenken (based on joint work with David Li-Bland)
A Lie groupoid $G \rightrightarrows M$ has an associated Lie algebroid:

- $\text{Lie}(G) = \nu(M, G)$
- anchor $a: \text{Lie}(G) \to TM$ induced from $Tt - Ts: TG \to TM$,
- $[\cdot, \cdot]$ from $\Gamma(\text{Lie}(G)) = \text{Lie}(\Gamma(G))$ where $\Gamma(G)$ is the group of bisections.

The Van Est map relates the corresponding cochain complexes.
A Lie groupoid $G \rightrightarrows M$ has an associated Lie algebroid:
- $\text{Lie}(G) = \nu(M, G)$
- anchor $a : \text{Lie}(G) \to TM$ induced from $Tt - Ts : TG \to TM$,
- $[\cdot, \cdot]$ from $\Gamma(\text{Lie}(G)) = \text{Lie}(\Gamma(G))$ where $\Gamma(G)$ is the group of bisections.

The Van Est map relates the corresponding cochain complexes.
A Lie groupoid $G \rightrightarrows M$ has an associated Lie algebroid:
- $\text{Lie}(G) = \nu(M, G)$
- anchor $a \colon \text{Lie}(G) \to TM$ induced from $Tt - Ts \colon TG \to TM$,
- $[\cdot, \cdot]$ from $\Gamma(\text{Lie}(G)) = \text{Lie}(\Gamma(G))$ where $\Gamma(G)$ is the group of bisections.

The Van Est map relates the corresponding cochain complexes.

We’ll explain this map using a double complex.
Define a principal G-bundle

$$E_p G \xrightarrow{\kappa_p} B_p G$$

where $E_p G \subseteq G^{p+1}$ consists of elements (a_0, \ldots, a_p) with common source:
.. and where π_p and κ_p take such an element to the common source m, respectively to

$$m_0 \leftarrow m_1 \leftarrow \ldots \leftarrow m_p$$

with $g_i = a_i a_{i-1}^{-1}$.
.. and where \(\pi_p \) and \(\kappa_p \) take such an element

\[
\begin{array}{c}
m \\
\downarrow \quad a_1 \\
\downarrow \\
m_1 \\
m_0 \\
\end{array}
\quad \downarrow \quad \leftarrow \quad \downarrow \\
\vdots \\
\downarrow \\
\quad \leftarrow \quad \downarrow \\
\quad \leftarrow \quad \leftarrow \quad \leftarrow \\
m_p \\
\end{array}
\]

to the common source \(m \), respectively to

\[
\begin{array}{c}
m_0 \leftarrow g_1 \\
m_1 \leftarrow g_2 \\
\vdots \\
m_0 \leftarrow g_p \\
m_p \\
\end{array}
\]

with \(g_i = a_ia_i^{-1} \). The groupoid action of an element \(m' \xleftarrow{g} m \) takes this element to

\[
\begin{array}{c}
m' \\
\downarrow \quad a_1g^{-1} \\
\downarrow \\
m_1 \\
m_0 \\
\end{array}
\quad \downarrow \quad \leftarrow \quad \downarrow \\
\vdots \\
\downarrow \\
\quad \leftarrow \quad \leftarrow \quad \leftarrow \\
m_p \\
\end{array}
\]
View M as a simplicial manifold (with all $M_p = M$). Then

\[
\begin{array}{c}
E_p G \xrightarrow{\kappa_p} B_p G \\
\pi_p \downarrow \\
M
\end{array}
\]

is a simplicial principal G-bundle. The map

\[\iota_p : M \to E_p G, \ m \mapsto (m, \ldots, m)\]

is a simplicial inclusion; $\pi_p \circ \iota_p = \text{id}$.
Van Est double complex

View M as a simplicial manifold (with all $M_p = M$). Then

$$
\begin{array}{ccc}
E_p G & \xrightarrow{\kappa_p} & B_p G \\
\pi_p \downarrow & & \downarrow \\
M & &
\end{array}
$$

is a simplicial principal G-bundle. The map

$$
\iota_p : M \to E_p G, \ m \mapsto (m, \ldots, m)
$$

is a simplicial inclusion; $\pi_p \circ \iota_p = \text{id}$.

Theorem

There is a (canonical) simplicial deformation retraction from $E \cdot G$ onto M.

See: G. Segal, Classifying spaces and spectral sequences (1968).
Van Est double complex

Since $E \cdot G$ is a simplicial manifold, have cochain complex

$$C^\infty(E \cdot G), \quad \delta = \sum_{i=0}^{p+1} (-1)^i \partial_i^*, \quad \partial_i^* = \partial_i + \cdots + \partial_{i+1},$$

with cochain maps

$$C^\infty(E \cdot G) \xleftarrow{\kappa^*} C^\infty(B \cdot G) = C^\bullet(G) \xrightarrow{\pi^*} C^\infty(M \cdot)$$

The map $h: C^\infty(E_{p+1}G) \to C^\infty(E_pG)$,

$$(hf)(a_0, \ldots, a_p) = \sum_{i=0}^{p} (-1)^{i+1} f(a_0, \ldots, a_i, m \ldots, m)$$

with $m = \pi_p(a_0, \ldots, a_p)$, is a δ-homotopy: $h\delta + \delta h = 1 - \pi^* i^*$.

Eckhard Meinrenken (based on joint work with David Li-Bland) On the Van Est homomorphism for Lie groupoids
Let \(A = \text{Lie}(G) \). Since \(\kappa_p: E_pG \to B_pG \) is a principal \(G \)-bundle, have
\[
T_F E_p G \cong \pi^*_p A,
\]
and \(T_F E \bullet G \to A \) is a morphism of simplicial Lie algebroids.

Get double complex
\[
(\Omega^q_F(E_p G), \delta, d)
\]
with \(d = (-1)^p d_{CE} \).
Have morphism of double complexes

\[
\begin{align*}
\Omega^\bullet_F(E \cdot G) & \xleftarrow{\kappa^*} C^\infty(B \cdot G) = C^\bullet(G) \\
\Gamma(\wedge \bullet A^\bullet) & = C^\bullet(A_\bullet)
\end{align*}
\]

where \(d = 0 \) on \(C^\infty(B \cdot G) \).
Van Est double complex

Have morphism of double complexes

\[
\Omega_{\mathcal{F}}(E \cdot G) \xleftarrow{\kappa^*} C^\infty(B \cdot G) = C^\cdot(G)
\]

\[
\pi^* \quad \Gamma(\wedge \cdot A^*) = C^\cdot(A^*)
\]

where \(d = 0\) on \(C^\infty(B \cdot G)\).

Here \(\pi^*\) is a homotopy inverse to \(\iota^*\), with \(h\) as above.
Van Est double complex

Have morphism of double complexes

\[
\Omega^\bullet_{\mathcal{F}}(E \cdot G) \xleftarrow{\kappa^*} C^\infty(B \cdot G) = C^\bullet(G)
\]

\[
\Gamma(\wedge^\bullet A^\bullet) = C^\bullet(A^\bullet)
\]

where \(d = 0\) on \(C^\infty(B \cdot G)\).

Here \(\pi^\bullet\) is a homotopy inverse to \(\iota^\bullet\), with \(h\) as above.

Want to turn this into homotopy equivalence with respect to \(d + \delta\).
Set-up:

- $(C^{\bullet,\bullet}, d, \delta)$ be a double complex
- $i: D \hookrightarrow C$ a sub-double complex
- $r: C \to D$ a (bigraded) projection
- $h: C^{\bullet,\bullet} \to C^{\bullet-1,\bullet}$ with $h\delta + \delta h = 1 - i \circ r$.

Lemma (Fundamental Lemma of homological perturbation theory)

Put $i' = (1 + h)d - 1$, $r' = r(1 + dh) - 1$, $h' = h(1 + dh) - 1$.

Then $i' \circ r'$ is a cochain map for $d + \delta$, and $h'(d + \delta) + (d + \delta)h' = 1 - i' \circ r'$.

References: Gugenheim-Lambe-Stasheff, Brown, Crainic, ...
Perturbation theory

Set-up:

- \((C \bullet, \bullet, d, \delta) \) be a double complex
- \(i: D \hookrightarrow C \) a sub-double complex
- \(r: C \rightarrow D \) a (bigraded) projection
- \(h: C \bullet, \bullet \rightarrow C \bullet -1, \bullet \) with \(h\delta + \delta h = 1 - i \circ r \).

Lemma (Fundamental Lemma of homological perturbation theory)

Put

\[
i' = (1 + hd)^{-1}i, \quad r' = r(1 + dh)^{-1}, \quad h' = h(1 + dh)^{-1}.
\]

Then \(i' \circ r' \) is a cochain map for \(d + \delta \), and

\[
h'(d + \delta) + (d + \delta)h' = 1 - i' \circ r'.
\]

References: Gugenheim-Lambe-Stasheff, Brown, Crainic,
In our case, this shows that

\[\iota^* \circ (1 + d h)^{-1} : \Omega^\bullet_F(E \bullet G) \to \Gamma(\wedge^\bullet A^\bullet) \]

is a homotopy equivalence, with homotopy inverse \((1 + h d)^{-1} \circ \pi^*\).
In our case, this shows that

\[\iota^* \circ (1 + dh)^{-1} : \Omega^*_F(E\cdot G) \to \Gamma^{\bullet}(A^*) \]

is a homotopy equivalence, with homotopy inverse \((1 + hd)^{-1} \circ \pi^*\). But we also have obvious homotopy equivalences

\[\Gamma^{\bullet}(A^*) \leftrightarrow \Gamma^{\bullet}(A^*) \]

Hence:

Theorem

The map

\[\iota_0^* \circ (1 + dh)^{-1} : \Omega^*_F(EG) \to \Gamma^{\bullet}(A^*) \]

is a homotopy equivalence (for \(d + \delta\)), with homotopy inverse \(\pi_0^*\).
In our case, this shows that

\[\iota^* \circ (1 + dh)^{-1} : \Omega^*_\mathcal{F}(EG) \to \Gamma(\wedge^* A^*_\bullet) \]

is a homotopy equivalence, with homotopy inverse \((1 + hd)^{-1} \circ \pi^* \).

But we also have obvious homotopy equivalences

\[\Gamma(\wedge^* A^*_\bullet) \leftarrow \Gamma(\wedge^* A^*_\bullet) \]

Hence:

Theorem

The map

\[\iota_0^* \circ (1 + dh)^{-1} : \Omega^*_\mathcal{F}(EG) \to \Gamma(\wedge A^*_\bullet) \]

is a homotopy equivalence (for \(d + \delta \)), with homotopy inverse \(\pi_0^* \).

Using \(\kappa^* : C^\infty(BG) \to \Omega^*_\mathcal{F}(EG) \) we get the desired cochain map:
Definition

The composition

\[\text{VE} := \iota_0^* \circ (1 + dh)^{-1} \circ \kappa^* : C^\infty(BG) \to \Gamma(\wedge A^*) \]

is called the Van Est map.

Proposition

This map agrees with the Van Est map of Weinstein-Xu.
Equivalently, we may write $\text{VE} = \iota_0^* \circ (1 + dh)^{-1} \circ \kappa^*$ as

$$\text{VE} = (-1)^p \iota_0^* \circ (d \circ h)^p \circ \kappa_p^* : C^\infty(B_p G) \to \Gamma(\wedge^p A^*)$$

corresponding to a ‘zig-zag’: E.g., for $p = 2$

$$C^\infty(B_2 G) \xrightarrow{\kappa_2^*} \Omega_F^0(E_2 G) \xrightarrow{h} \Omega_F^0(E_1 G) \xrightarrow{d} \Omega_F^1(E_1 G) \xrightarrow{h} \Omega_F^1(E_0 G) \xrightarrow{d} \Omega_F^2(E_0 G) \xrightarrow{\iota_2^*} \Gamma(\wedge^2 A^*).$$
Let \(j_p : B_p G \to E_p G \) be the inclusion as submanifold for which \(a_0 \in M \).
Let $j_p: B_p G \rightarrow E_p G$ be the inclusion as submanifold for which $a_0 \in M$.

IF given retraction of G onto M along t-fibers
Let $j_p : B_p G \to E_p G$ be the inclusion as submanifold for which $a_0 \in M$.

IF given retraction of G onto M along t-fibers

\rightsquigarrow retraction of $E_p G$ onto $j_p(B_p G)$ along κ_p-fibers,
Let $j_p : B_p G \to E_p G$ be the inclusion as submanifold for which $a_0 \in M$.

IF given retraction of G onto M along t-fibers

\rightsquigarrow retraction of $E_p G$ onto $j_p(B_p G)$ along κ_p-fibers,

\rightsquigarrow homotopy operator $k : \Omega^{-\bullet}_{\mathcal{F}}(E \bullet G) \to \Omega^{-1}_{\mathcal{F}}(E \bullet G)$ with $kd + dk = 1 - \kappa^* j^*$.

Recall that $C^\infty(BG)$ denotes 'germs'.

Corollary For any (local) Lie groupoid, $\text{VE}: C^\infty(BG) \to \Gamma(\wedge A^\bullet)$ is a quasi-isomorphism.
Let $j_p : B_p G \to E_p G$ be the inclusion as submanifold for which $a_0 \in M$.

IF given retraction of G onto M along t-fibers

\[\rightsquigarrow \text{retraction of } E_p G \text{ onto } j_p(B_p G) \text{ along } \kappa_p\text{-fibers}, \]

\[\rightsquigarrow \text{homotopy operator } k : \Omega^{\bullet}(E\cdot G) \to \Omega^{\bullet-1}(E\cdot G) \text{ with } \]

\[kd + dk = 1 - \kappa^* j^*. \]

\[\rightsquigarrow \text{‘integration’ } j^* \circ (1 + \delta k)^{-1} \circ \pi^* : \Gamma(\wedge^{\bullet} A^*) \to C^\infty(B\cdot G). \]
Van Est map

Let \(j_p : B_p G \to E_p G \) be the inclusion as submanifold for which \(a_0 \in M \).

IF given retraction of \(G \) onto \(M \) along \(t \)-fibers

\[\mapsto \text{retraction of } E_p G \text{ onto } j_p(B_p G) \text{ along } \kappa_p \text{-fibers}, \]

\[\mapsto \text{homotopy operator } k : \Omega^\bullet_F(E_* G) \to \Omega^\bullet_{F^{-1}}(E_* G) \text{ with } \]

\[kd + dk = 1 - \kappa^* j^*. \]

\[\mapsto \text{‘integration’ } j^* \circ (1 + \delta k)^{-1} \circ \pi^* : \Gamma(\wedge^\bullet A^*) \to C^\infty(B_* G). \]

Recall that \(C^\infty(BG)_M \) denotes ‘germs’.

Corollary

For any (local) Lie groupoid,

\[\text{VE} : C^\infty(BG)_M \to \Gamma(\wedge A^*) \]

is a quasi-isomorphism.
Consider following situation:

- (C, d, δ) be a bigraded bidifferential algebra
- $i: D \hookrightarrow C$ a sub-bidifferential algebra
- $r: C \to D$ a projection preserving products
- $h: C^{\bullet, \bullet} \to C^{\bullet-1, \bullet}$ with

$$h\delta + \delta h = 1 - i \circ r.$$

Lemma (Gugenheim-Lambe-Stasheff)

Suppose h is a twisted derivation

$$h(\omega \cup \omega') = h(\omega) \cup (i \circ r)(\omega') + (-1)^{|\omega|} \omega \cup h(\omega'),$$

and that it satisfies the side conditions $h \circ h = 0$ and $h \circ i = 0$. Then

$$i' = (1 + hd)^{-1}i, \quad r' = r(1 + dh)^{-1}$$

are morphisms of graded differential algebras (w.r.t. $d + \delta$).
In our case, these conditions hold once we restrict to the normalized subcomplex

$$\tilde{C}^{\infty}(B\dot{G}) \subset C^{\infty}(B\dot{G})$$

(i.e. kernel of the degeneracy maps ϵ_i^*). Hence we obtain

The map

$$\text{VE}: \tilde{C}^{\infty}(BG) \rightarrow \Gamma(\wedge A^*)$$

preserves products.
The discussion also applies to the more general Van Est map

$$\text{VE}: W^{p,q}(G) = \Omega^q(B_p G) \to W^{p,q}(A).$$

In particular:

- given a retraction of G along t-fibers there is a canonical ‘integration map’ in opposite direction
- over the normalized complex, VE preserves products
The discussion also applies to the more general Van Est map

$$\text{VE}: W^{p,q}(G) = \Omega^q(B_p G) \to W^{p,q}(A).$$

In particular:

- given a retraction of G along t-fibers there is a canonical ‘integration map’ in opposite direction
- over the normalized complex, VE preserves products

Another definition: Note that $\Gamma(\wedge^p A^*)$ are skew-symmetric multilinear functions on $A \times_M A \cdots \times_M A$ (p factors).

Another definition: Note that $\Gamma(\wedge^p A^*)$ are skew-symmetric multilinear functions on $A \times_M A \cdots \times_M A$ (p factors).

Definition

$W^{p,q}(A)$ are the skew-symmetric multi-linear q-forms on $A \times_M A \cdots \times_M A$ (p factors).
Another definition: ‘Kähler differentials’. Start with any vector bundle $A \to M$.

\[\Omega^1_R = \text{hom}_R(X^1_R, R) \]

Ω^q_R skew-symmetric R-multilinear q-forms $W^q(A) = \Gamma(\Omega^q_R)$. $W(A)$ has a ‘de Rham’ differential of degree $(0, 1)$.

Any degree k derivation X of $\Gamma(R)$ extends to a degree $(k, 0)$ derivation L_X of $W(A)$. If A is a Lie algebroid, apply this to $X = d_{CE}$.

Eckhard Meinrenken (based on joint work with David Li-Bland)

On the Van Est homomorphism for Lie groupoids
Another definition: ‘Kähler differentials’. Start with any vector bundle $A \to M$.

- $R := \wedge A^*$
Another definition: ‘Kähler differentials’. Start with any vector bundle $A \to M$.

- $R := \wedge^\ast A$
- $\mathcal{X}_R^1 = \text{der}(R)$. I.e., $\Gamma(\mathcal{X}_R^1) = \text{der}(\Gamma(R))$.

Eckhard Meinrenken (based on joint work with David Li-Bland)
Another definition: ‘Kähler differentials’. Start with any vector bundle $A \to M$.

- $R := \wedge A^*$
- $\mathcal{X}_R^1 = \text{der}(R)$. I.e., $\Gamma(\mathcal{X}_R^1) = \text{der}(\Gamma(R))$.
- $\Omega^1_R = \text{hom}_R(\mathcal{X}_R^1, R)$.

Eckhard Meinrenken (based on joint work with David Li-Bland)
Another definition: ‘Kähler differentials’. Start with any vector bundle \(A \rightarrow M \).

- \(R := \wedge A^* \)
- \(\mathcal{X}^1_R = \text{der}(R) \). I.e., \(\Gamma(\mathcal{X}^1_R) = \text{der}(\Gamma(R)) \).
- \(\Omega^1_R = \text{hom}_R(\mathcal{X}^1_R, R) \).
- \(\Omega^q_R \) skew-symmetric \(R \)-multilinear \(q \)-forms
Another definition: ‘Kähler differentials’. Start with any vector bundle $A \to M$.

- $R := \wedge A^*$
- $\mathfrak{X}^1_R = \text{der}(R)$. i.e., $\Gamma(\mathfrak{X}^1_R) = \text{der}(\Gamma(R))$.
- $\Omega^1_R = \text{hom}_R(\mathfrak{X}^1_R, R)$.
- Ω^q_R skew-symmetric R-multilinear q-forms
- $W^{\bullet, q}(A) = \Gamma(\Omega^q_R)$.
Another definition: ‘Kähler differentials’. Start with any vector bundle $A \to M$.

- $R := \bigwedge A^*$
- $\mathfrak{X}_R^1 = \text{der}(R)$. I.e., $\Gamma(\mathfrak{X}_R^1) = \text{der}(\Gamma(R))$.
- $\Omega_R^1 = \text{hom}_R(\mathfrak{X}_R^1, R)$.
- Ω_R^q skew-symmetric R-multilinear q-forms
- $W^{\bullet,q}(A) = \Gamma(\Omega_R^q)$.
- $W(A)$ has a ‘de Rham’ differential of degree $(0, 1)$.
Another definition: ‘Kähler differentials’. Start with any vector bundle $A \to M$.

- $R := \wedge A^*$
- $\mathfrak{x}^1_R = \text{der}(R)$. I.e., $\Gamma(\mathfrak{x}^1_R) = \text{der}(\Gamma(R))$.
- $\Omega^1_R = \text{hom}_R(\mathfrak{x}^1_R, R)$.
- Ω^q_R skew-symmetric R-multilinear q-forms
- $W^{\bullet, q}(A) = \Gamma(\Omega^q_R)$.
- $W(A)$ has a ‘de Rham’ differential of degree $(0, 1)$.

Any degree k derivation X of $\Gamma(R)$ extends to a degree $(k, 0)$ derivation \mathcal{L}_X of $W(A)$. If A is a Lie algebroid, apply this to $X = d_{CE}$.

Eckhard Meinrenken (based on joint work with David Li-Bland)
Thanks.