1. Test page

This page is for testing.

STOP!

1. Test page

This page is for testing.

1. Test page

This page is for testing.

1. Test page

This page is for testing.

1. Test page

This page is for testing.

1. Test page

This page is for testing.

STOP!

1. Test page

This page is for testing.

STOP!

1. Test page

This page is for testing.

STOP!

1. Test page

This page is for testing.

STOP!

Multiple differentiation processes in differential geometry

Kirill Mackenzie
Sheffield, UK

Focused Research Workshop on Exterior Differential Systems and Lie Theory
Fields Institute
December 13, 2013

1. Introduction

Charles Ehresmann (1905-79) :

1. Introduction

Charles Ehresmann (1905-79) :

- Lie groupoids (groupoïdes différentiables)
- Jets
- multiple categories
- (and much else)

1. Introduction

Charles Ehresmann (1905-79) :

- Lie groupoids (groupoïdes différentiables)
- Jets
- multiple categories
- (and much else)

1. Introduction

Charles Ehresmann (1905-79) :

- Lie groupoids (groupoïdes différentiables)
- Jets
- multiple categories
- (and much else)

1. Introduction

Charles Ehresmann (1905-79) :

- Lie groupoids (groupoïdes différentiables)
- Jets
- multiple categories
- (and much else)

2. First order processes

- Most basic: manifold M to $T M$, Lie group G to Lie algebra \mathfrak{g}.
- Foliation \mathscr{F} on M to tangent distribution.
- Group action $G \times M \rightarrow M$ to infinitesimal action $\mathfrak{g} \rightarrow \mathscr{X}(M)$.
- Principal bundle $P(M, G)$ to Atiyah sequence $\frac{T P}{G}$
- Parallel translation in vector bundle E on M to connection ∇ in E.

2. First order processes

- Most basic: manifold M to $T M$, Lie group G to Lie algebra \mathfrak{g}.
- $M \times M$ has Lie algebroid $T M$
- Foliation \mathscr{F} on M to tangent distribution.
- Group action $G \times M \rightarrow M$ to infinitesimal action $\mathfrak{g} \rightarrow \mathscr{X}(M)$.
- Principal bundle $P(M, G)$ to Atiyah sequence $\frac{T P}{G}$
- Parallel translation in vector bundle E on M to connection ∇ in E.

2. First order processes

- Most basic: manifold M to $T M$, Lie group G to Lie algebra \mathfrak{g}.
- $M \times M$ has Lie algebroid $T M$
- Foliation \mathscr{F} on M to tangent distribution.
- Group action $G \times M \rightarrow M$ to infinitesimal action $\mathfrak{g} \rightarrow \mathscr{X}(M)$.
- Principal bundle $P(M, G)$ to Atiyah sequence $\frac{T P}{G}$
- Parallel translation in vector bundle E on M to connection ∇ in E.

All are instances of the process

Lie groupoid \Longrightarrow Lie algebroid
$\mathscr{G} \rightrightarrows M$

2. First order processes

- Most basic: manifold M to $T M$, Lie group G to Lie algebra \mathfrak{g}.
- $M \times M$ has Lie algebroid $T M$
- Foliation \mathscr{F} on M to tangent distribution.
\triangleright Holonomy/Monodromy groupoids of \mathscr{F} have Lie algebroid $T(\mathscr{F})$
- Group action $G \times M \rightarrow M$ to infinitesimal action $\mathfrak{g} \rightarrow \mathscr{X}(M)$.
- Principal bundle $P(M, G)$ to Atiyah sequence $\frac{T P}{G}$
- Parallel translation in vector bundle E on M to connection ∇ in E.

All are instances of the process

Lie groupoid \Longrightarrow Lie algebroid
$\mathscr{G} \rightrightarrows M$

2. First order processes

- Most basic: manifold M to $T M$, Lie group G to Lie algebra \mathfrak{g}.
- $M \times M$ has Lie algebroid $T M$
- Foliation \mathscr{F} on M to tangent distribution.
- Holonomy/Monodromy groupoids of \mathscr{F} have Lie algebroid $T(\mathscr{F})$
- Group action $G \times M \rightarrow M$ to infinitesimal action $\mathfrak{g} \rightarrow \mathscr{X}(M)$.
- Principal bundle $P(M, G)$ to Atiyah sequence $\frac{T P}{G}$
- Parallel translation in vector bundle E on M to connection ∇ in E.

All are instances of the process

Lie groupoid \quad Lie algebroid
$G \rightrightarrows M$

2. First order processes

- Most basic: manifold M to $T M$, Lie group G to Lie algebra \mathfrak{g}.
- $M \times M$ has Lie algebroid $T M$
- Foliation \mathscr{F} on M to tangent distribution.
- Holonomy/Monodromy groupoids of \mathscr{F} have Lie algebroid $T(\mathscr{F})$
- Group action $G \times M \rightarrow M$ to infinitesimal action $\mathfrak{g} \rightarrow \mathscr{X}(M)$.
- Action groupoid $G<M \rightrightarrows M$ has action Lie algebroid $\mathfrak{g} \varangle M$
- Principal bundle $P(M, G)$ to Atiyah sequence $\frac{T P}{G}$
- Parallel translation in vector bundle E on M to connection ∇ in E.

All are instances of the process

Lie groupoid \Longrightarrow Lie algebroid
$\mathscr{G} \rightrightarrows M$

2. First order processes

- Most basic: manifold M to $T M$, Lie group G to Lie algebra \mathfrak{g}.
- $M \times M$ has Lie algebroid $T M$
- Foliation \mathscr{F} on M to tangent distribution.
- Holonomy/Monodromy groupoids of \mathscr{F} have Lie algebroid $T(\mathscr{F})$
- Group action $G \times M \rightarrow M$ to infinitesimal action $\mathfrak{g} \rightarrow \mathscr{X}(M)$.
- Action groupoid $G \varangle M \rightrightarrows M$ has action Lie algebroid $\mathfrak{g} \varangle M$
- Principal bundle $P(M, G)$ to Atiyah sequence $\frac{T P}{G}$
- Parallel translation in vector bundle E on M to connection ∇ in E.

All are instances of the process

Lie groupoid \Longrightarrow Lie algebroid
G ヨ M

2. First order processes

- Most basic: manifold M to $T M$, Lie group G to Lie algebra \mathfrak{g}.
- $M \times M$ has Lie algebroid $T M$
- Foliation \mathscr{F} on M to tangent distribution.
- Holonomy/Monodromy groupoids of \mathscr{F} have Lie algebroid $T(\mathscr{F})$
- Group action $G \times M \rightarrow M$ to infinitesimal action $\mathfrak{g} \rightarrow \mathscr{X}(M)$.
- Action groupoid $G \varangle M \rightrightarrows M$ has action Lie algebroid $\mathfrak{g} \varangle M$
- Principal bundle $P(M, G)$ to Atiyah sequence $\frac{T P}{G}$
- Gauge groupoid $\frac{P \times P}{G}$ has Lie algebroid $\frac{T P}{G}$
- Parallel translation in vector bundle E on M to connection ∇ in E

All are instances of the process
Lie groupoid \Longrightarrow Lie algebroid
$\mathscr{G} \rightrightarrows M$

2. First order processes

- Most basic: manifold M to $T M$, Lie group G to Lie algebra \mathfrak{g}.
- $M \times M$ has Lie algebroid $T M$
- Foliation \mathscr{F} on M to tangent distribution.
- Holonomy/Monodromy groupoids of \mathscr{F} have Lie algebroid $T(\mathscr{F})$
- Group action $G \times M \rightarrow M$ to infinitesimal action $\mathfrak{g} \rightarrow \mathscr{X}(M)$.
- Action groupoid $G \varangle M \rightrightarrows M$ has action Lie algebroid $\mathfrak{g} \varangle M$
- Principal bundle $P(M, G)$ to Atiyah sequence $\frac{T P}{G}$
- Gauge groupoid $\frac{P \times P}{G}$ has Lie algebroid $\frac{T P}{G}$
- Parallel translation in vector bundle E on M to connection ∇ in E

All are instances of the process
Lie groupoid \Longrightarrow Lie algebroid
$\mathscr{G} \rightrightarrows M$

2. First order processes

- Most basic: manifold M to $T M$, Lie group G to Lie algebra \mathfrak{g}.
- $M \times M$ has Lie algebroid $T M$
- Foliation \mathscr{F} on M to tangent distribution.
- Holonomy/Monodromy groupoids of \mathscr{F} have Lie algebroid $T(\mathscr{F})$
- Group action $G \times M \rightarrow M$ to infinitesimal action $\mathfrak{g} \rightarrow \mathscr{X}(M)$.
- Action groupoid $G \varangle M \rightrightarrows M$ has action Lie algebroid $\mathfrak{g} \varangle M$
- Principal bundle $P(M, G)$ to Atiyah sequence $\frac{T P}{G}$
- Gauge groupoid $\frac{P \times P}{G}$ has Lie algebroid $\frac{T P}{G}$
- Parallel translation in vector bundle E on M to connection ∇ in E.
\Rightarrow Frame groupoid of all isomorphisms between fibres has Lie algebroid for which sections are all ∇_{X} for all ∇ and all $X \in \mathscr{X}(M)$ (and all $\nabla_{X}-\nabla_{X}^{\prime}$)

All are instances of the process

G ヨ M

2. First order processes

- Most basic: manifold M to $T M$, Lie group G to Lie algebra \mathfrak{g}.
- $M \times M$ has Lie algebroid $T M$
- Foliation \mathscr{F} on M to tangent distribution.
- Holonomy/Monodromy groupoids of \mathscr{F} have Lie algebroid $T(\mathscr{F})$
- Group action $G \times M \rightarrow M$ to infinitesimal action $\mathfrak{g} \rightarrow \mathscr{X}(M)$.
- Action groupoid $G \varangle M \rightrightarrows M$ has action Lie algebroid $\mathfrak{g} \varangle M$
- Principal bundle $P(M, G)$ to Atiyah sequence $\frac{T P}{G}$
- Gauge groupoid $\frac{P \times P}{G}$ has Lie algebroid $\frac{T P}{G}$
- Parallel translation in vector bundle E on M to connection ∇ in E.
- Frame groupoid of all isomorphisms between fibres has Lie algebroid for which sections are all ∇_{X} for all ∇ and all $X \in \mathscr{X}(M)$ (and all $\nabla_{X}-\nabla_{X}^{\prime}$)

All are instances of the process

2. First order processes

- Most basic: manifold M to $T M$, Lie group G to Lie algebra \mathfrak{g}.
- $M \times M$ has Lie algebroid $T M$
- Foliation \mathscr{F} on M to tangent distribution.
- Holonomy/Monodromy groupoids of \mathscr{F} have Lie algebroid $T(\mathscr{F})$
- Group action $G \times M \rightarrow M$ to infinitesimal action $\mathfrak{g} \rightarrow \mathscr{X}(M)$.
- Action groupoid $G \varangle M \rightrightarrows M$ has action Lie algebroid $\mathfrak{g} \varangle M$
- Principal bundle $P(M, G)$ to Atiyah sequence $\frac{T P}{G}$
- Gauge groupoid $\frac{P \times P}{G}$ has Lie algebroid $\frac{T P}{G}$
- Parallel translation in vector bundle E on M to connection ∇ in E.
- Frame groupoid of all isomorphisms between fibres has Lie algebroid for which sections are all ∇_{X} for all ∇ and all $X \in \mathscr{X}(M)$ (and all $\nabla_{X}-\nabla_{X}^{\prime}$)
- ...

All are instances of the process

2. First order processes

- Most basic: manifold M to $T M$, Lie group G to Lie algebra \mathfrak{g}.
- $M \times M$ has Lie algebroid $T M$
- Foliation \mathscr{F} on M to tangent distribution.
- Holonomy/Monodromy groupoids of \mathscr{F} have Lie algebroid $T(\mathscr{F})$
- Group action $G \times M \rightarrow M$ to infinitesimal action $\mathfrak{g} \rightarrow \mathscr{X}(M)$.
- Action groupoid $G \varangle M \rightrightarrows M$ has action Lie algebroid $\mathfrak{g} \varangle M$
- Principal bundle $P(M, G)$ to Atiyah sequence $\frac{T P}{G}$
- Gauge groupoid $\frac{P \times P}{G}$ has Lie algebroid $\frac{T P}{G}$
- Parallel translation in vector bundle E on M to connection ∇ in E.
- Frame groupoid of all isomorphisms between fibres has Lie algebroid for which sections are all ∇_{X} for all ∇ and all $X \in \mathscr{X}(M)$ (and all $\nabla_{X}-\nabla_{X}^{\prime}$)
- ...

All are instances of the process

$$
\begin{array}{rll}
\text { Lie groupoid } & \Longrightarrow & \text { Lie algebroid } \\
\mathscr{G} \rightrightarrows M & & A \mathscr{G}
\end{array}
$$

2. First order processes

- Most basic: manifold M to $T M$, Lie group G to Lie algebra \mathfrak{g}.
- $M \times M$ has Lie algebroid $T M$
- Foliation \mathscr{F} on M to tangent distribution.
- Holonomy/Monodromy groupoids of \mathscr{F} have Lie algebroid $T(\mathscr{F})$
- Group action $G \times M \rightarrow M$ to infinitesimal action $\mathfrak{g} \rightarrow \mathscr{X}(M)$.
- Action groupoid $G \varangle M \rightrightarrows M$ has action Lie algebroid $\mathfrak{g} \varangle M$
- Principal bundle $P(M, G)$ to Atiyah sequence $\frac{T P}{G}$
- Gauge groupoid $\frac{P \times P}{G}$ has Lie algebroid $\frac{T P}{G}$
- Parallel translation in vector bundle E on M to connection ∇ in E.
- Frame groupoid of all isomorphisms between fibres has Lie algebroid for which sections are all ∇_{X} for all ∇ and all $X \in \mathscr{X}(M)$ (and all $\nabla_{X}-\nabla_{X}^{\prime}$)
- ...

All are instances of the process

$$
\begin{array}{rll}
\text { Lie groupoid } & \Longrightarrow & \text { Lie algebroid } \\
\mathscr{G} \rightrightarrows M & & A \mathscr{G}
\end{array}
$$

There are double and multiple versions of this.

3. Double Lie groupoids

The elements of a double Lie groupoid S are 'squares' which have horizontal sides from a Lie groupoid $H \rightrightarrows M$ and vertical sides from a Lie groupoid $V \rightrightarrows M$, with corner points from a manifold M.

Horizontal composition (when $v_{1}^{\prime}=v_{2}$) has vertical sources and targets as follows :

3. Double Lie groupoids

The elements of a double Lie groupoid S are 'squares' which have horizontal sides from a Lie groupoid $H \rightrightarrows M$ and vertical sides from a Lie groupoid $V \rightrightarrows M$, with corner points from a manifold M.

Horizontal composition (when $v_{1}^{\prime}=v_{2}$) has vertical sources and targets as follows

3. Double Lie groupoids

The elements of a double Lie groupoid S are 'squares' which have horizontal sides from a Lie groupoid $H \rightrightarrows M$ and vertical sides from a Lie groupoid $V \rightrightarrows M$, with corner points from a manifold M.

Horizontal composition (when $v_{1}^{\prime}=v_{2}$) has vertical sources and targets as follows

3. Double Lie groupoids

The elements of a double Lie groupoid S are 'squares' which have horizontal sides from a Lie groupoid $H \rightrightarrows M$ and vertical sides from a Lie groupoid $V \rightrightarrows M$, with corner points from a manifold M.

Horizontal composition (when $v_{1}^{\prime}=v_{2}$) has vertical sources and targets as follows

3. Double Lie groupoids

The elements of a double Lie groupoid S are 'squares' which have horizontal sides from a Lie groupoid $H \rightrightarrows M$ and vertical sides from a Lie groupoid $V \rightrightarrows M$, with corner points from a manifold M.

Horizontal composition (when $v_{1}^{\prime}=v_{2}$) has vertical sources and targets as follows :

3. Double Lie groupoids

The elements of a double Lie groupoid S are 'squares' which have horizontal sides from a Lie groupoid $H \rightrightarrows M$ and vertical sides from a Lie groupoid $V \rightrightarrows M$, with corner points from a manifold M.

Horizontal composition (when $v_{1}^{\prime}=v_{2}$) has vertical sources and targets as follows :

3. Double Lie groupoids

The elements of a double Lie groupoid S are 'squares' which have horizontal sides from a Lie groupoid $H \rightrightarrows M$ and vertical sides from a Lie groupoid $V \rightrightarrows M$, with corner points from a manifold M.

Horizontal composition (when $v_{1}^{\prime}=v_{2}$) has vertical sources and targets as follows :

4. Double Lie groupoids, p2

The main compatibility condition between the two structures is that products of the form

are well-defined:
composing each row horizontally and then the results vertically
and
composing each column vertically and then the results horizontally
give the same result.

4. Double Lie groupoids, p2

The main compatibility condition between the two structures is that products of the form

are well-defined:
composing each row horizontally and then the results vertically
and
composing each column vertically and then the results horizontally
give the same result.

4. Double Lie groupoids, p2

The main compatibility condition between the two structures is that products of the form

are well-defined:
composing each row horizontally and then the results vertically and
composing each column vertically and then the results horizontally
give the same result.

4. Double Lie groupoids, p2

The main compatibility condition between the two structures is that products of the form

are well-defined:
composing each row horizontally and then the results vertically and
composing each column vertically and then the results horizontally
give the same result.

4. Double Lie groupoids, p2

The main compatibility condition between the two structures is that products of the form

are well-defined:
composing each row horizontally and then the results vertically and
composing each column vertically and then the results horizontally
give the same result.

5. Lie algebroids of a double Lie groupoid

Given a double Lie groupoid, one can take the Lie algebroid of either groupoid structure on S.

Take the Lie algebroid of the vertical structure; the horizontal groupoid structure prolongs to the vertical Lie algebroid.

Take the Lie algebroid of the horizontal groupoid.

$A_{H}\left(A_{V} S\right)$ is a Lie algebroid over base $A V$
The vertical structure $\wedge_{H}\left(\wedge_{V} S\right) \rightarrow \Lambda H$ is at present just a vector bundle.

5. Lie algebroids of a double Lie groupoid

Given a double Lie groupoid, one can take the Lie algebroid of either groupoid structure on S.

Take the Lie algebroid of the vertical structure; the horizontal groupoid structure prolongs to the vertical Lie algebroid.

Take the Lie algebroid of the horizontal groupoid.

$A_{H}\left(A_{V} S\right)$ is a Lie algebroid over base $A V$
The vertical structure $\wedge_{H}\left(\wedge_{V} S\right) \rightarrow \Lambda H$ is at present just a vector bundle.

5. Lie algebroids of a double Lie groupoid

Given a double Lie groupoid, one can take the Lie algebroid of either groupoid structure on S.

Take the Lie algebroid of the vertical structure; the horizontal groupoid structure prolongs to the vertical Lie algebroid.

Take the Lie algebroid of the horizontal groupoid.

$A_{H}\left(A_{V} S\right)$ is a Lie algebroid over base $A V$
The vertical structure $A_{H}\left(A_{1} S\right) \rightarrow A H$ is at present just a vector bundle.

5. Lie algebroids of a double Lie groupoid

Given a double Lie groupoid, one can take the Lie algebroid of either groupoid structure on S.

Take the Lie algebroid of the vertical structure; the horizontal groupoid structure prolongs to the vertical Lie algebroid.

Take the Lie algebroid of the horizontal groupoid.

$A_{H}\left(A_{V} S\right)$ is a Lie algebroid over base $A V$.
The vertical structure $A_{H}\left(A_{V} S\right) \rightarrow A H$ is at present just a vector bundle.

5. Lie algebroids of a double Lie groupoid

Given a double Lie groupoid, one can take the Lie algebroid of either groupoid structure on S.

Take the Lie algebroid of the vertical structure; the horizontal groupoid structure prolongs to the vertical Lie algebroid.

Take the Lie algebroid of the horizontal groupoid.

$A_{H}\left(A_{V} S\right)$ is a Lie algebroid over base $A V$.
The vertical structure $A_{H}\left(A_{V} S\right) \rightarrow A H$ is at present just a vector bundle.
6. Lie algebroids of a double Lie groupoid, p2

Recap from previous frame:

Now do it the other way:

6. Lie algebroids of a double Lie groupoid, p2

Recap from previous frame:

Now do it the other way:

6. Lie algebroids of a double Lie groupoid, p2

Recap from previous frame:

Now do it the other way:

6. Lie algebroids of a double Lie groupoid, p2

Recap from previous frame:

Now do it the other way:

6. Lie algebroids of a double Lie groupoid, p2

Recap from previous frame:

Every manifold has a canonical involution $T^{2} S \rightarrow T^{2} S$ which 'interchanges the order of differentiation'.

6. Lie algebroids of a double Lie groupoid, p2

Recap from previous frame:

Now do it the other way:

Every manifold has a canonical involution $T^{2} S \rightarrow T^{2} S$ which 'interchanges the order of differentiation'. It restricts to a diffeomorphism $A_{H}\left(A_{V} S\right) \cong A_{V}\left(A_{H} S\right)$.

6. Lie algebroids of a double Lie groupoid, p2

Recap from previous frame:

Every manifold has a canonical involution $T^{2} S \rightarrow T^{2} S$ which 'interchanges the order of differentiation'. It restricts to a diffeomorphism $A_{H}\left(A_{V} S\right) \cong A_{V}\left(A_{H} S\right)$.

Use this to transfer one structure to the other.

6. Lie algebroids of a double Lie groupoid, p2

Recap from previous frame:

Now do it the other way:

Every manifold has a canonical involution $T^{2} S \rightarrow T^{2} S$ which 'interchanges the order of differentiation'. It restricts to a diffeomorphism $A_{H}\left(A_{V} S\right) \cong A_{V}\left(A_{H} S\right)$.

Use this to transfer one structure to the other.
The result is the double Lie algebroid of S.

7. Basic example

For $G \rightrightarrows M$ any Lie groupoid, take $S=G \times G$

7. Basic example

For $G \rightrightarrows M$ any Lie groupoid, take $S=G \times G$

7. Basic example

For $G \rightrightarrows M$ any Lie groupoid, take $S=G \times G$

$T(A G) \longrightarrow A G$

7. Basic example

For $G \rightrightarrows M$ any Lie groupoid, take $S=G \times G$

7. Basic example

For $G \rightrightarrows M$ any Lie groupoid, take $S=G \times G$

$G \times G \Longrightarrow G$

7. Basic example

For $G \rightrightarrows M$ any Lie groupoid, take $S=G \times G$

$G \times G \Longrightarrow G$

7. Basic example

For $G \rightrightarrows M$ any Lie groupoid, take $S=G \times G$

7. Basic example

For $G \rightrightarrows M$ any Lie groupoid, take $S=G \times G$

There is a canonical diffeomorphism $T(A G) \cong A(T G)$.

8. In particular ...

Put $G=M \times M$. Then the preceding example is $S=M^{4}$
and the two forms of the
double Lie algebroid are

8. In particular ...

Put $G=M \times M$. Then the preceding example is $S=M^{4}$ and the two forms of the double Lie algebroid are

and the canonical diffeomorphism $T^{2} M \rightarrow T^{2} M$ is the standard 'interchange of order of differentiation' J

8. In particular ...

Put $G=M \times M$. Then the preceding example is $S=M^{4}$ and the two forms of the double Lie algebroid are

and the canonical diffeomorphism $T^{2} M \rightarrow T^{2} M$ is the standard 'interchange of order of differentiation' J which also interchanges the bundle structures on $T^{2} M$.

8. In particular ...

Put $G=M \times M$. Then the preceding example is $S=M^{4}$ and the two forms of the double Lie algebroid are

and the canonical diffeomorphism $T^{2} M \rightarrow T^{2} M$ is the standard 'interchange of order of differentiation' J which also interchanges the bundle structures on $T^{2} M$.

8. In particular ...

Put $G=M \times M$. Then the preceding example is $S=M^{4}$ and the two forms of the double Lie algebroid are

and the canonical diffeomorphism $T^{2} M \rightarrow T^{2} M$ is the standard 'interchange of order of differentiation' J which also interchanges the bundle structures on $T^{2} M$.

8. In particular ...

Put $G=M \times M$. Then the preceding example is $S=M^{4}$ and the two forms of the double Lie algebroid are

and the canonical diffeomorphism $T^{2} M \rightarrow T^{2} M$ is the standard 'interchange of order of differentiation' J which also interchanges the bundle structures on $T^{2} M$.

9. Local representation

Take $\xi \in T^{2} M$ with projections $\quad \xi \xrightarrow{p_{T M}} Y$

If $X=0$ then ξ is vertical and if $Y=0$ then ξ is at a zero.
So if $X=Y=0$ then ξ can be identified with an element Z of $T M$.
Represent elements of $T^{2} M$ 'locally' as (X, Y, Z) where the Z is called a core element.

Write $T^{2} M$ 'locally' as $T M * T M * T M$.
Then $J: T^{2} M \rightarrow T^{2} M$ is 'locally',

$$
J(X, Y, Z)=(Y, X, Z)
$$

9. Local representation

If $X=0$ then ξ is vertical and if $Y=0$ then ξ is at a zero.
So if $X=Y=0$ then ξ can be identified with an element Z of $T M$.
Represent elements of $T^{2} M$ 'locally' as (X, Y, Z) where the Z is called a core element.

Write $T^{2} M$ 'locally' as $T M * T M * T M$.
Then $J: T^{2} M \rightarrow T^{2} M$ is 'locally',

$$
J(X, Y, Z)=(Y, X, Z)
$$

9. Local representation

If $X=0$ then ξ is vertical and if $Y=0$ then ξ is at a zero.
So if $X=Y=0$ then ξ can be identified with an element Z of $T M$.
Represent elements of $T^{2} M$ 'locally' as (X, Y, Z) where the Z is called a core element.

Write $T^{2} M$ 'locally' as $T M * T M * T M$.
Then $J: T^{2} M \rightarrow T^{2} M$ is 'locally',

$$
J(X, Y, Z)=(Y, X, Z)
$$

9. Local representation

If $X=0$ then ξ is vertical and if $Y=0$ then ξ is at a zero.
So if $X=Y=0$ then ξ can be identified with an element Z of $T M$.
Represent elements of $T^{2} M$ 'locally' as (X, Y, Z) where the Z is called a core element.

Write $T^{2} M$ 'locally' as $T M * T M * T M$.
Then $J: T^{2} M \rightarrow T^{2} M$ is 'locally',

$$
J(X, Y, Z)=(Y, X, Z)
$$

9. Local representation

If $X=0$ then ξ is vertical and if $Y=0$ then ξ is at a zero.
So if $X=Y=0$ then ξ can be identified with an element Z of $T M$.
Represent elements of $T^{2} M$ 'locally' as (X, Y, Z) where the Z is called a core element.

Write $T^{2} M$ 'locally' as $T M * T M * T M$.
Then $J: T^{2} M \rightarrow T^{2} M$ is 'locally',
$J(X, Y, Z)=(Y, X, Z)$.

9. Local representation

If $X=0$ then ξ is vertical and if $Y=0$ then ξ is at a zero.
So if $X=Y=0$ then ξ can be identified with an element Z of $T M$.
Represent elements of $T^{2} M$ 'locally' as (X, Y, Z) where the Z is called a core element.

Write $T^{2} M$ 'locally' as $T M * T M * T M$.
Then $J: T^{2} M \rightarrow T^{2} M$ is 'locally',

$$
J(X, Y, Z)=(Y, X, Z)
$$

10. Local representation, p2

More generally, for any vector bundle E on M, there is a double vector bundle

Write elements as

If $X=0$ and $e=0$ then ξ can be identified with an element of E.
Write TE 'locally' as $T M * E * E$ and elements as $\left(X, e_{1}, e_{2}\right)$.
The e_{2} is the core element.
Now dualize $T E$ over E and we get

The core is now $T^{*} M$,
10. Local representation, p2

More generally, for any vector bundle E on M, there is a double vector bundle

Write elements as

If $X=0$ and $e=0$ then ξ can be identified with an element of E.
Write TE 'locally' as $T M * E * E$ and elements as $\left(X, e_{1}, e_{2}\right)$.
The e_{2} is the core element.
Now dualize $T E$ over E and we get

The core is now $T^{*} M$,
10. Local representation, p2

More generally, for any vector bundle E on M, there is a double vector bundle

Write elements as

If $X=0$ and $e=0$ then ξ can be identified with an element of E.
Write TE 'locally' as TM $* E * E$ and elements as $\left(X, e_{1}, e_{2}\right)$
The e_{2} is the core element.
Now dualize $T E$ over E and we get

10. Local representation, p2

More generally, for any vector bundle E on M, there is a double vector bundle

Write elements as

If $X=0$ and $e=0$ then ξ can be identified with an element of E.
Write $T E$ 'locally' as $T M * E * E$ and elements as $\left(X, e_{1}, e_{2}\right)$.
The e_{2} is the core element.
Now dualize $T E$ over E and we get

The core is now $T^{*} M$,
10. Local representation, p2

More generally, for any vector bundle E on M, there is a double vector bundle

Write elements as

If $X=0$ and $e=0$ then ξ can be identified with an element of E.
Write $T E$ 'locally' as $T M * E * E$ and elements as $\left(X, e_{1}, e_{2}\right)$.
The e_{2} is the core element.
Now dualize $T E$ over E and we get

10. Local representation, p2

More generally, for any vector bundle E on M, there is a double vector bundle

Write elements as

If $X=0$ and $e=0$ then ξ can be identified with an element of E.
Write $T E$ 'locally' as $T M * E * E$ and elements as $\left(X, e_{1}, e_{2}\right)$.
The e_{2} is the core element.
Now dualize $T E$ over E and we get

10. Local representation, p2

More generally, for any vector bundle E on M, there is a double vector bundle

Write elements as

If $X=0$ and $e=0$ then ξ can be identified with an element of E.
Write $T E$ 'locally' as $T M * E * E$ and elements as $\left(X, e_{1}, e_{2}\right)$.
The e_{2} is the core element.
Now dualize $T E$ over E and we get

The core is now $T^{*} M$,

11. Canonical diffeomorphism R

For any vector bundle E there is an isomorphism of double vector bundles

Locally this is $(\varphi, e, \theta) \mapsto(e, \varphi,-\theta) \quad$ where $\varphi \in E^{*}, e \in E, \theta \in T^{*} M$.
Apply this to $E=T M$ and we get $R: T^{*}\left(T^{*} M\right) \rightarrow T^{*}(T M)$,

11. Canonical diffeomorphism R

For any vector bundle E there is an isomorphism of double vector bundles

Locally this is $(\varphi, e, \theta) \mapsto(e, \varphi,-\theta) \quad$ where $\varphi \in E^{*}, e \in E, \theta \in T^{*} M$.
Apply this to $E=T M$ and we get $R: T^{*}\left(T^{*} M\right) \rightarrow T^{*}(T M)$,

12. Canonical diffeomorphism $\#$

The canonical symplectic structure $d \lambda$ on $T^{*} M$ induces an isomorphism

$$
\sharp: T^{*}\left(T^{*} M\right) \rightarrow T\left(T^{*} M\right) .
$$

Locally this is

$$
\left(\varphi_{1}, X, \varphi_{2}\right) \mapsto\left(\varphi_{1}, X,-\varphi_{2}\right)
$$

12. Canonical diffeomorphism $\#$

The canonical symplectic structure $d \lambda$ on $T^{*} M$ induces an isomorphism

$$
\sharp: T^{*}\left(T^{*} M\right) \rightarrow T\left(T^{*} M\right) .
$$

Locally this is

$$
\left(\varphi_{1}, X, \varphi_{2}\right) \mapsto\left(\varphi_{1}, X,-\varphi_{2}\right)
$$

12. Canonical diffeomorphism $\#$

The canonical symplectic structure $d \lambda$ on $T^{*} M$ induces an isomorphism

$$
\sharp: T^{*}\left(T^{*} M\right) \rightarrow T\left(T^{*} M\right) .
$$

Locally this is

$$
\left(\varphi_{1}, X, \varphi_{2}\right) \mapsto\left(\varphi_{1}, X,-\varphi_{2}\right)
$$

12. Canonical diffeomorphism $\#$

The canonical symplectic structure $d \lambda$ on $T^{*} M$ induces an isomorphism

$$
\sharp: T^{*}\left(T^{*} M\right) \rightarrow T\left(T^{*} M\right) .
$$

Locally this is

$$
\left(\varphi_{1}, X, \varphi_{2}\right) \mapsto\left(\varphi_{1}, X,-\varphi_{2}\right)
$$

13. Canonical diffeomorphism Θ

13. Canonical diffeomorphism Θ

13. Canonical diffeomorphism Θ

So Θ is locally $\left(\varphi_{1}, X, \varphi_{2}\right) \mapsto\left(X, \varphi_{1}, \varphi_{2}\right)$ and involves no minus signs.
13. Canonical diffeomorphism Θ

So Θ is locally $\left(\varphi_{1}, X, \varphi_{2}\right) \mapsto\left(X, \varphi_{1}, \varphi_{2}\right)$ and involves no minus signs.
Θ may be regarded as the dual of $J: T^{2} M \rightarrow T^{2} M$.
13. Canonical diffeomorphism Θ

So Θ is locally $\left(\varphi_{1}, X, \varphi_{2}\right) \mapsto\left(X, \varphi_{1}, \varphi_{2}\right)$ and involves no minus signs.
Θ may be regarded as the dual of $J: T^{2} M \rightarrow T^{2} M$.
J is locally $(X, Y, Z) \mapsto(Y, X, Z)$.
13. Canonical diffeomorphism Θ

So Θ is locally $\left(\varphi_{1}, X, \varphi_{2}\right) \mapsto\left(X, \varphi_{1}, \varphi_{2}\right)$ and involves no minus signs.
Θ may be regarded as the dual of $J: T^{2} M \rightarrow T^{2} M$.
J is locally $(X, Y, Z) \mapsto(Y, X, Z)$.
Dualizing over X gives $\left(X, \varphi_{1}, \varphi_{2}\right) \rightarrow\left(\varphi_{1}, X, \varphi_{2}\right)$.
13. Canonical diffeomorphism Θ

So Θ is locally $\left(\varphi_{1}, X, \varphi_{2}\right) \mapsto\left(X, \varphi_{1}, \varphi_{2}\right)$ and involves no minus signs.
Θ may be regarded as the dual of $J: T^{2} M \rightarrow T^{2} M$.
J is locally $(X, Y, Z) \mapsto(Y, X, Z)$.
Dualizing over X gives $\left(X, \varphi_{1}, \varphi_{2}\right) \rightarrow\left(\varphi_{1}, X, \varphi_{2}\right)$. Then take the inverse.
13. Canonical diffeomorphism Θ

So Θ is locally $\left(\varphi_{1}, X, \varphi_{2}\right) \mapsto\left(X, \varphi_{1}, \varphi_{2}\right)$ and involves no minus signs.
Θ may be regarded as the dual of $J: T^{2} M \rightarrow T^{2} M$.
J is locally $(X, Y, Z) \mapsto(Y, X, Z)$.
Dualizing over X gives $\left(X, \varphi_{1}, \varphi_{2}\right) \rightarrow\left(\varphi_{1}, X, \varphi_{2}\right)$. Then take the inverse.

This all extends to double Lie groupoids. The question is, why do we want to ?
14. Double Lie groupoids again

Take the Lie algebroids of a double Lie groupoid S :

In each case take the dual. We get

The groupoid $K \rightrightarrows M$ here is the 'core groupoid' of S. The elements of K are the $s \in S$ for which both sources are identity elements.

14. Double Lie groupoids again

Take the Lie algebroids of a double Lie groupoid S :

In each case take the dual. We get

The groupoid $K \rightrightarrows M$ here is the 'core groupoid' of S. The elements of K are the $s \in S$ for which both sources are identity elements.

14. Double Lie groupoids again

Take the Lie algebroids of a double Lie groupoid S :

In each case take the dual. We get

The groupoid $K \rightrightarrows M$ here is the 'core groupoid' of S. The elements of K are the $s \in S$ for which both sources are identity elements.

14. Double Lie groupoids again

Take the Lie algebroids of a double Lie groupoid S :

In each case take the dual. We get

The groupoid $K \rightrightarrows M$ here is the 'core groupoid' of S. The elements of K are the
$s \in S$ for which both sources are identity elements.

14. Double Lie groupoids again

Take the Lie algebroids of a double Lie groupoid S :

In each case take the dual. We get

The groupoid $K \rightrightarrows M$ here is the 'core groupoid' of S. The elements of K are the $s \in S$ for which both sources are identity elements.

15. Theorem :

$A_{V}^{*} S \rightrightarrows A^{*} K$ and $A_{H}^{*} S \rightrightarrows A^{*} K$ are Poisson groupoids with respect to the Lie-Poisson structures, and are in duality as Poisson groupoids.

In particular, there is an isomorphism of Lie algebroids

$$
\tilde{\#}: A^{*}\left(A_{V}^{*} S\right) \rightarrow A\left(A_{H}^{*} S\right) .
$$

For $S=M^{4}$ this is $\sharp: T^{*}\left(T^{*} M\right) \rightarrow T\left(T^{*} M\right)$.
Further there is a commutative diagram.

and $\widetilde{\Theta}$ may be regarded as the dual of

$$
\widetilde{J}: A\left(A_{V} S\right) \rightarrow A\left(A_{H} S\right)
$$

The commutative diagram is essential for working with the bialgebroid structure.

15. Theorem :

$A_{V}^{*} S \rightrightarrows A^{*} K$ and $A_{H}^{*} S \rightrightarrows A^{*} K$ are Poisson groupoids with respect to the Lie-Poisson structures, and are in duality as Poisson groupoids.

In particular, there is an isomorphism of Lie algebroids

$$
\tilde{\#}: A^{*}\left(A_{V}^{*} S\right) \rightarrow A\left(A_{H}^{*} S\right) .
$$

For $S=M^{4}$ this is $\sharp: T^{*}\left(T^{*} M\right) \rightarrow T\left(T^{*} M\right)$.
Further there is a commutative diagram.

and $\widetilde{\Theta}$ may be regarded as the dual of

$$
\widetilde{J}: A\left(A_{V} S\right) \rightarrow A\left(A_{H} S\right)
$$

15. Theorem :

$A_{V}^{*} S \rightrightarrows A^{*} K$ and $A_{H}^{*} S \rightrightarrows A^{*} K$ are Poisson groupoids with respect to the Lie-Poisson structures, and are in duality as Poisson groupoids.

In particular, there is an isomorphism of Lie algebroids

$$
\widetilde{\#}: A^{*}\left(A_{V}^{*} S\right) \rightarrow A\left(A_{H}^{*} S\right)
$$

For $S=M^{4}$ this is $\sharp: T^{*}\left(T^{*} M\right) \rightarrow T\left(T^{*} M\right)$.
Further there is a commutative diagram.

and $\widetilde{\Theta}$ may be regarded as the dual of

$$
\tilde{J}^{\prime}: A\left(A_{V} S\right) \rightarrow A\left(A_{H} S\right) .
$$

15. Theorem :

$A_{V}^{*} S \rightrightarrows A^{*} K$ and $A_{H}^{*} S \rightrightarrows A^{*} K$ are Poisson groupoids with respect to the Lie-Poisson structures, and are in duality as Poisson groupoids.

In particular, there is an isomorphism of Lie algebroids

$$
\widetilde{\#}: A^{*}\left(A_{V}^{*} S\right) \rightarrow A\left(A_{H}^{*} S\right) .
$$

For $S=M^{4}$ this is $\sharp: T^{*}\left(T^{*} M\right) \rightarrow T\left(T^{*} M\right)$.
Further there is a commutative diagram.

and $\widetilde{\Theta}$ may be regarded as the dual of

$$
\tilde{J}^{\prime}: A\left(A_{V} S\right) \rightarrow A\left(A_{H} S\right) .
$$

15. Theorem :

$A_{V}^{*} S \rightrightarrows A^{*} K$ and $A_{H}^{*} S \rightrightarrows A^{*} K$ are Poisson groupoids with respect to the Lie-Poisson structures, and are in duality as Poisson groupoids.

In particular, there is an isomorphism of Lie algebroids

$$
\widetilde{\#}: A^{*}\left(A_{V}^{*} S\right) \rightarrow A\left(A_{H}^{*} S\right) .
$$

For $S=M^{4}$ this is $\sharp: T^{*}\left(T^{*} M\right) \rightarrow T\left(T^{*} M\right)$.
Further there is a commutative diagram.

and $\widetilde{\Theta}$ may be regarded as the dual of $\mathcal{J}: A\left(A_{V} S\right) \rightarrow A\left(A_{H} S\right)$.

15. Theorem :

$A_{V}^{*} S \rightrightarrows A^{*} K$ and $A_{H}^{*} S \rightrightarrows A^{*} K$ are Poisson groupoids with respect to the Lie-Poisson structures, and are in duality as Poisson groupoids.

In particular, there is an isomorphism of Lie algebroids

$$
\widetilde{\#}: A^{*}\left(A_{V}^{*} S\right) \rightarrow A\left(A_{H}^{*} S\right) .
$$

For $S=M^{4}$ this is $\sharp: T^{*}\left(T^{*} M\right) \rightarrow T\left(T^{*} M\right)$.
Further there is a commutative diagram.

and $\widetilde{\Theta}$ may be regarded as the dual of

$$
\tilde{J}: A\left(A_{V} S\right) \rightarrow A\left(A_{H} S\right)
$$

15. Theorem :

$A_{V}^{*} S \rightrightarrows A^{*} K$ and $A_{H}^{*} S \rightrightarrows A^{*} K$ are Poisson groupoids with respect to the Lie-Poisson structures, and are in duality as Poisson groupoids.

In particular, there is an isomorphism of Lie algebroids

$$
\widetilde{\#}: A^{*}\left(A_{V}^{*} S\right) \rightarrow A\left(A_{H}^{*} S\right)
$$

For $S=M^{4}$ this is $\sharp: T^{*}\left(T^{*} M\right) \rightarrow T\left(T^{*} M\right)$.
Further there is a commutative diagram.

and $\widetilde{\Theta}$ may be regarded as the dual of

$$
\tilde{J}: A\left(A_{V} S\right) \rightarrow A\left(A_{H} S\right)
$$

The commutative diagram is essential for working with the bialgebroid structure.

16. Remark on Poisson group(oid)s

For G a Poisson Lie group:

For $\mathscr{G} \rightrightarrows M$ a Poisson Lie groupoid:

For S a double Lie groupoid:

16. Remark on Poisson group(oid)s

For G a Poisson Lie group:

For $\mathscr{G} \rightrightarrows M$ a Poisson Lie groupoid:

For S a double Lie groupoid:

16. Remark on Poisson group(oid)s

For G a Poisson Lie group:

For $\mathscr{G} \rightrightarrows M$ a Poisson Lie groupoid:

For S a double Lie groupoid:

16. Remark on Poisson group(oid)s

For G a Poisson Lie group:

For $\mathscr{G} \rightrightarrows M$ a Poisson Lie groupoid:

For S a double Lie groupoid:

$T^{*}\left(A\left(A_{V}^{*} S\right)\right) \longrightarrow A\left(A_{H}^{*} S\right)$

16. Remark on Poisson group(oid)s

For G a Poisson Lie group:

For $\mathscr{G} \rightrightarrows M$ a Poisson Lie groupoid:

For S a double Lie groupoid:

$T^{*}\left(A\left(A_{V}^{*} S\right)\right) \longrightarrow A\left(A_{H}^{*} S\right)$

16. Remark on Poisson group(oid)s

For G a Poisson Lie group:

For $\mathscr{G} \rightrightarrows M$ a Poisson Lie groupoid:

For S a double Lie groupoid:

16. Remark on Poisson group(oid)s

For G a Poisson Lie group:

For $\mathscr{G} \rightrightarrows M$ a Poisson Lie groupoid:

For S a double Lie groupoid:

16. Remark on Poisson group(oid)s

For G a Poisson Lie group:

For $\mathscr{G} \rightrightarrows M$ a Poisson Lie groupoid:

For S a double Lie groupoid:

17. n-fold Lie algebroids; super formulation (Th. Voronov)

A Q-manifold is a super vector bundle E on M with a homological vector field Q of weight 1.

Write $A=\Pi E$ for the parity reversed bundle.
Write i for the natural odd injection

$$
i:\ulcorner A \rightarrow \mathcal{D}(A),
$$

Then Q defines a Lie algebroid structure on A with anchor

$$
a(u) f:=[[Q, i(u)], f]
$$

and bracket

$$
i([u, v]):=(-1)^{u}[[Q, i(u)], i(v)]
$$

for $f \in C^{\infty}(M)$, and $u, v \in \Gamma A$. (Vainntrob.)
In local coordinates (x^{a} in the base, ξ^{i} in the parity-reversed fibres)

$$
Q=\xi^{i} Q_{i}^{a}(x) \frac{\partial}{\partial x^{a}}+\frac{1}{2} \xi^{i} \xi^{j} Q_{j i}^{k}(x) \frac{\partial}{\partial \xi^{k}}
$$

Given a super double vector bundle, and writing D for the double-parity-reversed double vector bundle, two homological vector fields Q_{1}, Q_{2} define a double Lie algebroid structure on D if

$$
\left[Q_{1}, Q_{2}\right]=0 .
$$

This extends in a ready fashion to the n-fold case.
17. n-fold Lie algebroids; super formulation (Th. Voronov)

A Q-manifold is a super vector bundle E on M with a homological vector field Q of weight 1. 'Homological' means $Q^{2}=0$.

Write $A=\Pi E$ for the parity reversed bundle.
Write i for the natural odd injection

$$
i:\ulcorner A \rightarrow \mathcal{D}(A),
$$

Then Q defines a Lie algebroid structure on A with anchor

$$
a(u) f:=[[Q, i(u)], f]
$$

and bracket

$$
i([u, v]):=(-1)^{u}[[Q, i(u)], i(v)]
$$

for $f \in C^{\infty}(M)$, and $u, v \in \Gamma A$. (Vainntrob.)
In local coordinates (x^{a} in the base, ξ^{i} in the parity-reversed fibres)

$$
Q=\xi^{i} Q_{i}^{a}(x) \frac{\partial}{\partial x^{a}}+\frac{1}{2} \xi^{i} \xi^{j} Q_{j i}^{k}(x) \frac{\partial}{\partial \xi^{k}}
$$

Given a super double vector bundle, and writing D for the double-parity-reversed double vector bundle, two homological vector fields Q_{1}, Q_{2} define a double Lie algebroid structure on D if

$$
\left[Q_{1}, Q_{2}\right]=0 .
$$

This extends in a ready fashion to the n-fold case.
17. n-fold Lie algebroids; super formulation (Th. Voronov)

A Q-manifold is a super vector bundle E on M with a homological vector field Q of weight 1. 'Homological' means $Q^{2}=0$.

Write $A=\Pi E$ for the parity reversed bundle.
Write i for the natural odd injection

Then Q defines a Lie algebroid structure on A with anchor

$$
a(u) f:=\lceil[Q, i(u)], f\rceil
$$

and bracket

$$
i([u, v]):=(-1)^{u}[[Q, i(u)], i(v)]
$$

for $f \in C^{\infty}(M)$, and $u, v \in \Gamma A$. (Vainntrob.)
In local coordinates (x^{a} in the base ξ^{i} in the parity-reversed fibres)

Given a super double vector bundle, and writing D for the double-parity-reversed double vector bundle, two homological vector fields Q_{1}, Q_{2} define a double Lie algebroid structure on D if

$$
\left[Q_{1}, Q_{2}\right]=0
$$

17. n-fold Lie algebroids; super formulation (Th. Voronov)

A Q-manifold is a super vector bundle E on M with a homological vector field Q of weight 1. 'Homological' means $Q^{2}=0$.

Write $A=\Pi E$ for the parity reversed bundle.
Write i for the natural odd injection

$$
i:\ulcorner A \rightarrow \mathscr{X}(A),
$$

Then Q defines a Lie algebroid structure on A with anchor

$$
a(u) f:=[[Q, i(u)], f]
$$

and bracket

$$
i([u, v]):=(-1)^{u}[[Q, i(u)], i(v)]
$$

for $f \in C^{\infty}(M)$, and $u, v \in \Gamma A$. (Vainntrob.)
In local coordinates (x^{a} in the base, ξ^{i} in the parity-reversed fibres)

Given a super double vector bundle, and writing D for the double-parity-reversed double vector bundle, two homological vector fields Q_{1}, Q_{2} define a double Lie algebroid structure on D if

$$
\left[Q_{1}, Q_{2}\right]=0
$$

17. n-fold Lie algebroids; super formulation (Th. Voronov)

A Q-manifold is a super vector bundle E on M with a homological vector field Q of weight 1. 'Homological' means $Q^{2}=0$.

Write $A=\Pi E$ for the parity reversed bundle.
Write i for the natural odd injection

$$
i: Г A \rightarrow \mathscr{X}(A),
$$

Then Q defines a Lie algebroid structure on A with anchor

$$
a(u) f:=[[Q, i(u)], f]
$$

and bracket

$$
i([u, v]):=(-1)^{u}[[Q, i(u)], i(v)] .
$$

for $f \in C^{\infty}(M)$, and $u, v \in \Gamma A$. (Vainntrob.)
In local coordinates (x^{a} in the base, ξ^{i} in the parity-reversed fibres)

Given a super double vector bundle, and writing D for the double-parity-reversed double vector bundle, two homological vector fields Q_{1}, Q_{2} define a double Lie algebroid structure on D if

17. n-fold Lie algebroids; super formulation (Th. Voronov)

A Q-manifold is a super vector bundle E on M with a homological vector field Q of weight 1. 'Homological' means $Q^{2}=0$.

Write $A=\Pi E$ for the parity reversed bundle.
Write i for the natural odd injection

$$
i: Г A \rightarrow \mathscr{X}(A),
$$

Then Q defines a Lie algebroid structure on A with anchor

$$
a(u) f:=[[Q, i(u)], f]
$$

and bracket

$$
i([u, v]):=(-1)^{u}[[Q, i(u)], i(v)] .
$$

for $f \in C^{\infty}(M)$, and $u, v \in \Gamma A$. (Vainntrob.)
In local coordinates (x^{a} in the base, ξ^{i} in the parity-reversed fibres)

Given a super double vector bundle, and writing D for the double-parity-reversed double vector bundle, two homological vector fields Q_{1}, Q_{2} define a double Lie algebroid structure on D if
17. n-fold Lie algebroids; super formulation (Th. Voronov)

A Q-manifold is a super vector bundle E on M with a homological vector field Q of weight 1. 'Homological' means $Q^{2}=0$.

Write $A=\Pi E$ for the parity reversed bundle.
Write i for the natural odd injection

$$
i: Г A \rightarrow \mathscr{X}(A),
$$

Then Q defines a Lie algebroid structure on A with anchor

$$
a(u) f:=[[Q, i(u)], f]
$$

and bracket

$$
i([u, v]):=(-1)^{u}[[Q, i(u)], i(v)] .
$$

for $f \in C^{\infty}(M)$, and $u, v \in \Gamma A$. (Vainntrob.)
In local coordinates (x^{a} in the base, ξ^{i} in the parity-reversed fibres)

Given a super double vector bundle, and writing D for the double-parity-reversed double vector bundle, two homological vector fields Q_{1}, Q_{2} define a double Lie algebroid structure on D if

A Q-manifold is a super vector bundle E on M with a homological vector field Q of weight 1. 'Homological' means $Q^{2}=0$.

Write $A=\Pi E$ for the parity reversed bundle.
Write i for the natural odd injection

$$
i:\ulcorner A \rightarrow \mathscr{X}(A),
$$

Then Q defines a Lie algebroid structure on A with anchor

$$
a(u) f:=[[Q, i(u)], f]
$$

and bracket

$$
i([u, v]):=(-1)^{u}[[Q, i(u)], i(v)] .
$$

for $f \in C^{\infty}(M)$, and $u, v \in \Gamma A$. (Vainntrob.)
In local coordinates (x^{a} in the base, ξ^{i} in the parity-reversed fibres)

$$
Q=\xi^{i} Q_{i}^{a}(x) \frac{\partial}{\partial x^{a}}+\frac{1}{2} \xi^{i} \xi^{j} Q_{j i}^{k}(x) \frac{\partial}{\partial \xi^{k}} .
$$

Given a super double vector bundle, and writing D for the double-parity-reversed double vector bundle, two homological vector fields Q_{1}, Q_{2} define a double Lie algebroid structure on D if

A Q-manifold is a super vector bundle E on M with a homological vector field Q of weight 1. 'Homological' means $Q^{2}=0$.

Write $A=\Pi E$ for the parity reversed bundle.
Write i for the natural odd injection

$$
i:\ulcorner A \rightarrow \mathscr{X}(A),
$$

Then Q defines a Lie algebroid structure on A with anchor

$$
a(u) f:=[[Q, i(u)], f]
$$

and bracket

$$
i([u, v]):=(-1)^{u}[[Q, i(u)], i(v)] .
$$

for $f \in C^{\infty}(M)$, and $u, v \in \Gamma A$. (Vainntrob.)
In local coordinates (x^{a} in the base, ξ^{i} in the parity-reversed fibres)

$$
Q=\xi^{i} Q_{i}^{a}(x) \frac{\partial}{\partial x^{a}}+\frac{1}{2} \xi^{i} \xi^{j} Q_{j i}^{k}(x) \frac{\partial}{\partial \xi^{k}} .
$$

Given a super double vector bundle, and writing D for the double-parity-reversed double vector bundle, two homological vector fields Q_{1}, Q_{2} define a double Lie algebroid structure on D if

$$
\left[Q_{1}, Q_{2}\right]=0
$$

A Q-manifold is a super vector bundle E on M with a homological vector field Q of weight 1. 'Homological' means $Q^{2}=0$.

Write $A=\Pi E$ for the parity reversed bundle.
Write i for the natural odd injection

$$
i:\ulcorner A \rightarrow \mathscr{X}(A),
$$

Then Q defines a Lie algebroid structure on A with anchor

$$
a(u) f:=[[Q, i(u)], f]
$$

and bracket

$$
i([u, v]):=(-1)^{u}[[Q, i(u)], i(v)] .
$$

for $f \in C^{\infty}(M)$, and $u, v \in \Gamma A$. (Vainntrob.)
In local coordinates (x^{a} in the base, ξ^{i} in the parity-reversed fibres)

$$
Q=\xi^{i} Q_{i}^{a}(x) \frac{\partial}{\partial x^{a}}+\frac{1}{2} \xi^{i} \xi^{j} Q_{j i}^{k}(x) \frac{\partial}{\partial \xi^{k}} .
$$

Given a super double vector bundle, and writing D for the double-parity-reversed double vector bundle, two homological vector fields Q_{1}, Q_{2} define a double Lie algebroid structure on D if

$$
\left[Q_{1}, Q_{2}\right]=0
$$

This extends in a ready fashion to the n-fold case.

18. A few references

For double Lie groupoids and double Lie algebroids see

- KM, Ehresmann doubles and Drinfel'd doubles for Lie algebroids and Lie bialgebroids. J. Reine Angew. Math., 658:193-245, 2011.
and earlier KM papers cited there.
- Lie bialgebroids were introduced in

KM and Ping Xu, Lie bialgebroids and Poisson groupoids
Duke Math. J. 73, 1994, 415-452.

- The formulation of Lie algebroids in terms of Q-manifolds is from
A. Vaĭntrob, Lie algebroids and homological vector fields. Uspekhi Matem. Nauk, 52(2):428-429, 1997.
- The formulation of double Lie algebroids in terms of Q-manifolds is due to

Th. Th. Voronov. Q-Manifolds and Mackenzie Theory. Comm. Math. Phys., 315(2):279-310, 2012.
19. End frame

