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2. First order processes

I Most basic: manifold M to TM , Lie group G to Lie algebra g .
I M × M has Lie algebroid TM

I Foliation F on M to tangent distribution.
I Holonomy/Monodromy groupoids of F have Lie algebroid T (F )

I Group action G ×M → M to infinitesimal action g→ X (M) .
I Action groupoid G <7 M ⇒ M has action Lie algebroid g <7 M

I Principal bundle P(M,G) to Atiyah sequence TP
G

I Gauge groupoid P×P
G has Lie algebroid TP

G

I Parallel translation in vector bundle E on M to connection ∇ in E .
I Frame groupoid of all isomorphisms between fibres has Lie algebroid for which sections

are all ∇X for all ∇ and all X ∈ X (M) (and all ∇X −∇′X )

I . . .

All are instances of the process

Lie groupoid =⇒ Lie algebroid

G ⇒ M AG

There are double and multiple versions of this.
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3. Double Lie groupoids

The elements of a double Lie groupoid S are ‘squares’ which have horizontal sides
from a Lie groupoid H ⇒ M and vertical sides from a Lie groupoid V ⇒ M , with
corner points from a manifold M .

h2oo

sv2

OO

h1

oo

v1

OO S ////

�� ��

V

�� ��
H //// M

Horizontal composition (when v ′1 = v2 ) has vertical sources and targets as follows :

h′2oo

s′v′2

OO

h′1

oo

v′1

OO
h2oo

sv2

OO

h1

oo

v1

OO
h′2h2oo

s′ ·H sv′2

OO

h′1h1

oo

v1

OO
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4. Double Lie groupoids, p2

The main compatibility condition between the two structures is that products of the form

oo

s1

OO

oo

OOoo

s2

OO

oo

OO

oo

s4

OO

oo

OOoo

s3

OO

oo

OO

are well-defined:

composing each row horizontally and then the results vertically

and

composing each column vertically and then the results horizontally

give the same result.
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5. Lie algebroids of a double Lie groupoid

Given a double Lie groupoid, one
can take the Lie algebroid of
either groupoid structure on S .

S ////

����

V

����
H // // M

Take the Lie algebroid of the
vertical structure; the horizontal
groupoid structure prolongs to the
vertical Lie algebroid.

AV S ////

��

AV

��
H //// M

Take the Lie algebroid of the
horizontal groupoid.

AH (AV S) //

��

AV

��
AH // M

AH (AV S) is a Lie algebroid over base AV .

The vertical structure AH (AV S)→ AH is at present just a vector bundle.
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Every manifold has a canonical involution T 2S → T 2S which ‘interchanges the order
of differentiation’. It restricts to a diffeomorphism AH (AV S) ∼= AV (AHS) .

Use this to transfer one structure to the other.

The result is the double Lie algebroid of S .
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There is a canonical diffeomorphism T (AG) ∼= A(TG) .



8. In particular . . .

Put G = M ×M . Then the preceding example is S = M4 and the two forms of the
double Lie algebroid are

T (TM)
pTM //

T (p)
��

TM

p
��

TM
p
// M

T (TM)
T (p) //

pTM
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TM

��
TM // M

and the canonical diffeomorphism T 2M → T 2M is the standard ‘interchange of order
of differentiation’ J which also interchanges the bundle structures on T 2M .

T 2M
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pTM
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J
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pTM //

T (p)
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9. Local representation

Take ξ ∈ T 2M with projections ξ
pTM //

T (p)
��

Y

p
��

X
p
// m

If X = 0 then ξ is vertical and if Y = 0 then ξ is at a zero.

So if X = Y = 0 then ξ can be identified with an element Z of TM .

Represent elements of T 2M ‘locally’ as (X ,Y ,Z ) where the Z is called
a core element.

Write T 2M ‘locally’ as TM ∗ TM ∗ TM .

Then J : T 2M → T 2M is ‘locally’,

J(X ,Y ,Z ) = (Y ,X ,Z ).
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10. Local representation, p2

More generally, for any vector bundle E on M , there is a double vector bundle
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q
��

TM
p
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Write elements as ξ
pTM //

T (q)
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e

q
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X
p
// m

If X = 0 and e = 0 then ξ can be identified with an element of E .

Write TE ‘locally’ as TM ∗ E ∗ E and elements as (X , e1, e2) .

The e2 is the core element.

Now dualize TE over E and we get T∗E
pE //

T (q)
��

E

q
��

E∗
p
// M

written locally as E ∗ E∗ ∗ T∗M .

The core is now T∗M ,
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11. Canonical diffeomorphism R

For any vector bundle E there is an isomorphism of double vector bundles

T∗(E∗) //

��
R
''

E∗

��
E // M T∗(E) //

��

E∗

��
E // M

Locally this is (ϕ, e, θ) 7→ (e, ϕ,−θ) where ϕ ∈ E∗ , e ∈ E , θ ∈ T∗M .

Apply this to E = TM and we get R : T∗(T∗M)→ T∗(TM) ,
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R //

]
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(X , ϕ1,−ϕ2)
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Θ
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This all extends to double Lie groupoids. The question is, why do we want to ?



14. Double Lie groupoids again

Take the Lie algebroids of a double Lie groupoid S :

AV S // //
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AV
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H //// M

AHS
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// V
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AH // M

In each case take the dual. We get

A∗V S // //

��

A∗K

��
H //// M

A∗HS

����

// V

�� ��
A∗K // M

The groupoid K ⇒ M here is the ‘core groupoid’ of S . The elements of K are the
s ∈ S for which both sources are identity elements.
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15. Theorem :

A∗V S ⇒ A∗K and A∗HS ⇒ A∗K are Poisson groupoids with respect to the Lie-Poisson
structures, and are in duality as Poisson groupoids.

In particular, there is an isomorphism of Lie algebroids

]̃ : A∗(A∗V S)→ A(A∗HS).

For S = M4 this is ] : T∗(T∗M)→ T (T∗M) .

Further there is a commutative diagram.

A∗(A∗V S)
R̃ //

]̃

��

A∗(AV S)

A(A∗HS)

Θ̃

::

and Θ̃ may be regarded as the dual of

J̃ : A(AV S)→ A(AHS).

The commutative diagram is essential for working with the bialgebroid structure.
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16. Remark on Poisson group(oid)s

For G a Poisson Lie group:

Σ
////

����

G∗

����
G //// {·}

int⇐=

T∗G ////

��

g∗

��
G //// {·}

diff
=⇒

g× g∗ //

��

g∗

��
g // {·}

For G ⇒ M a Poisson Lie groupoid:

Σ
////

����

G ∗

����
G //// M

int?⇐=

T∗G ////

��

A∗G

��
G //// M

diff
=⇒

T∗AG //

��

A∗G

��
AG // M

For S a double Lie groupoid:

T∗S ////

����

A∗HS

����
A∗V S //// A∗K

diff
=⇒ · · · · · · diff

=⇒

T∗(A(A∗V S)) //

��

A(A∗HS)

��
A(A∗V S) // A∗K
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17. n -fold Lie algebroids; super formulation (Th. Voronov)

A Q -manifold is a super vector bundle E on M with a homological vector field Q of
weight 1. ‘Homological’ means Q2 = 0.

Write A = ΠE for the parity reversed bundle.

Write i for the natural odd injection

i : ΓA→ X (A),

Then Q defines a Lie algebroid structure on A with anchor

a(u)f :=
[
[Q, i(u)], f

]
and bracket

i([u, v ]) := (−1)u[[Q, i(u)], i(v)
]
.

for f ∈ C∞(M) , and u, v ∈ ΓA . (Vaı̆ntrob.)

In local coordinates (xa in the base, ξi in the parity-reversed fibres)

Q = ξi Qa
i (x)

∂

∂xa
+

1
2
ξiξj Qk

ji (x)
∂

∂ξk
.

Given a super double vector bundle, and writing D for the double-parity-reversed
double vector bundle, two homological vector fields Q1 , Q2 define a double Lie
algebroid structure on D if

[Q1,Q2] = 0.

This extends in a ready fashion to the n -fold case.
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weight 1. ‘Homological’ means Q2 = 0.

Write A = ΠE for the parity reversed bundle.

Write i for the natural odd injection

i : ΓA→ X (A),

Then Q defines a Lie algebroid structure on A with anchor

a(u)f :=
[
[Q, i(u)], f

]
and bracket

i([u, v ]) := (−1)u[[Q, i(u)], i(v)
]
.

for f ∈ C∞(M) , and u, v ∈ ΓA . (Vaı̆ntrob.)

In local coordinates (xa in the base, ξi in the parity-reversed fibres)

Q = ξi Qa
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2
ξiξj Qk
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∂

∂ξk
.
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algebroid structure on D if
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