Student Information Package

for the 2014 North American School of Information Theory in Toronto (June 18-21)

Contents

1	Location	1
2	Arrival	1
3	Registration	2
4	Maps	2
5	Poster Sessions and 30-Second Madness	2
6	WiFi	3
7	Meals	3
8	Social Programs	3

1 Location

Lodging for students is provided at The New College Residence (40 Willcocks Street).

The IT school itself will take place at **The Bahen Centre for Information Technology** (40 St. George Street) with lectures located in room **BA-1160**, and poster sessions taking place in the Bahen Lobby

2 Arrival

If you arrive in Toronto by plane, transportation from **Pearson International Airport** to downtown is available by

- Subway (closest subway stations to the UofT campus are **Queens Park Station** and **St. George Station**. Cost is \$3)
- Limousine or by taxi (approximately \$60 one-way)
- Bus service to downtown hotels (approximately \$14 one-way or \$24 round-trip)
- Renting a car at the airport

Travel to downtown can take anywhere from 30 minutes to one-and-a-half hours depending upon traffic.

For attendants arriving from **Billy Bishop Airport**, a complimentary express shuttle bus to Union Subway Station is available in addition to the limousine/taxi/car-rental options above.

For attendants traveling **by car**, parking is available across College St. from the Institute (cash only), the underground at the Centre for Addiction and Mental Health (CAMH) (entry on Spadina Ave., just north of College St.), and underground at the Bahen Centre for Information Technology (entry on Huron Street, just north of College).

If you arrive in Toronto by inter-city bus, St. Patrick Station is the closest subway station to the Bay & Dundas Toronto Bus Terminal.

If you arrive in Toronto by train, Union Station connects underground with The Union subway station.

3 Registration

Students can check into their rooms on Tuesday, June 17 at The New College Residence (40 Willcocks Street).

The workshop registration will begin on Tuesday, June 17 from 4-6 p.m. at The Fields Institute (222 College Street).

Registration will also be available from June 18-21 at 8:00 a.m. in the lobby of The Bahen Centre for Information Technology (40 St. George Street) outside lecture room BA-1160.

4 Maps

See attached map or visit the NASIT website and click on maps to venues and residence. http://www.fields.utoronto.ca/programs/scientific/13-14/infotheory/

5 Poster Sessions and 30-Second Madness

Location: lobby of The Bahen Centre for Information Technology (40 St. George Street)

In addition to a poster session, students should also prepare a **30-sec talk** that they will present during 30-Second Madness. During this quick and fun event, each student presenting a poster will have a 30-second opportunity prior to the poster session to describe/advertise the content of their poster. For example: "My name is ABC, and my poster is a tutorial on XYZ. In this poster you will learn how to ..." Students should line up to present their talk in the the order specified by the poster listings at the end of this document.

Posters should fit within a 6 ft (width) \times 2.5 ft (height) area, which can approximately fit twelve letter-sized sheets of paper. They will be posted using Velcro tape, which will be provided. Students are encouraged to have their posters printed beforehand, however a variety of independent printing stores are located near the university along College Street.

6 WiFi

Eduroam is available for attendants of participating universities. New College also offers free wired internet access, but students are required to bring their own ethernet cable.

Other methods TBD

7 Meals

Both lunch and a continental breakfast are provided at The Bahen Centre. The cost of breakfast at the New College Residence is \$7.

In general, students are responsible for their own dinner. However, we do plan to organize optional social events at which food will be provided

8 Social Programs

In addition to the regular NASIT program, there will also be evening activities planned by the UofT students and NASIT organizing committee. We hope to see you at these fun and interactive events.

Wednesday, June 18th

Student board game night and SET tournament: free food, board games and prizes!

Description: Are you ready to match wits against other students in a game of patterns, deduction, and speed? Then come out to **Ready**, **SET**, **Go**, where the exciting card game, SET, will be played **tournament** style. The tournament will be accompanied by other fast-moving, mind-bending **card/board games**. This is a terrific opportunity to meet other students attending NASIT, and to learn some new games. If you aren't convinced yet, we forgot to mention that there will be **prizes** for the finalists, and **free food** for everybody!

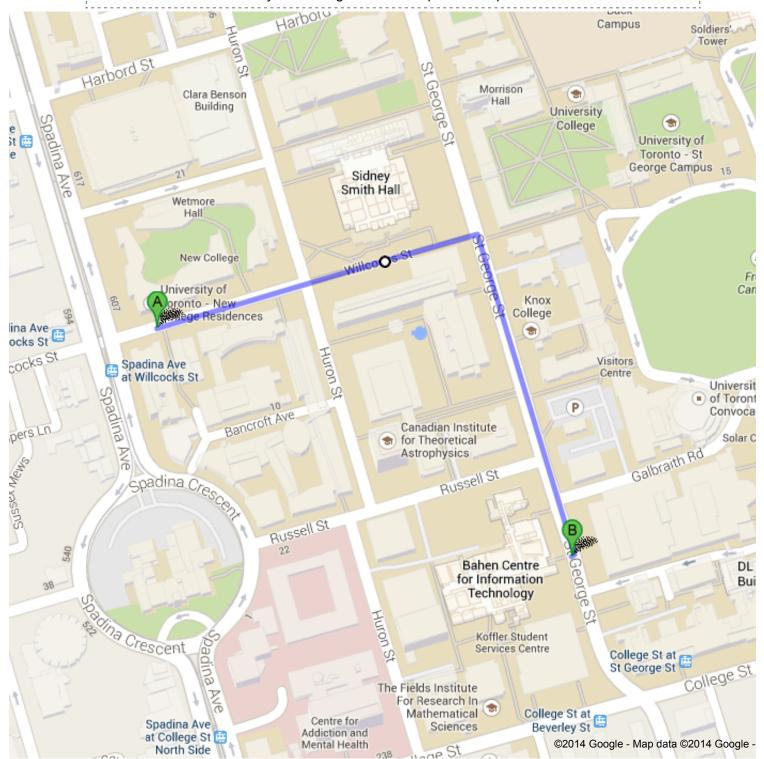
Thursday, June 19th

Evening BBQ at Toronto Islands (weather permitting): free food, scenic views of lake Ontario and iconic views of Toronto downtown.

Description: The Toronto Islands are a chain of small islands in the city of Toronto, Ontario. Comprising the only group of islands in the western part of Lake Ontario, the Toronto Islands are located just offshore from the city centre and are connected to the mainland by several ferry services. The islands are a popular recreational destination, and are home to a small residential community and to the Billy Bishop Toronto City Airport. Join us for a **BBQ** with other fellow NASIT attendees: throw a **frisbee**, kick a **soccer ball**, or just explore these surreal pockets of tranquility located just minutes away from the bustling Toronto downtown.

Friday, June 20th

The reception will be in the Bahen Lobby following the industry panel.


Stay tuned for further details

Directions to Bahen Centre for Information Technology 40 St George St, Toronto, ON M5S 2E4 **550 m** – about **6 mins**

Walking directions are in beta.

Use caution – This route may be missing sidewalks or pedestrian paths.

University of Toronto - New College Residences

40 Willcocks St, Toronto, ON M5S 1C6

 Head east on Willcocks St toward Huron St	go 270 m
About 3 mins	total 270 m
O. Turns sight anto St. Coopers St.	ana 070 m

2. Turn right onto **St George St**About 3 mins

go 270 m
total 550 m

3. Turn right go 2 m total 550 m

Bahen Centre for Information Technology

40 St George St, Toronto, ON M5S 2E4

These directions are for planning purposes only. You may find that construction projects, traffic, weather, or other events may cause conditions to differ from the map results, and you should plan your route accordingly. You must obey all signs or notices regarding your route.

Map data ©2014 Google

Directions weren't right? Please find your route on maps.google.ca and click "Report a problem" at the bottom left.

Program at a Glance

	Wedesday	Thursday	Friday	Saturday
8-8:15	Registration &	Registration &	Registration &	Registration &
8:15-8:30	Breakfast	Breakfast	Breakfast	Breakfast
8:30-8:45	(in Bahen Lobby)	(in Bahen Lobby)	(in Bahen Lobby)	(in Bahen Lobby)
8:45-9	Opening remarks			
	Lecture 1a	Lecture 3a	Lecture 5a	Lecture 6a
	in BA-1160	in BA-1160	in BA-1160	in BA-1160
	coffee break	coffee break	coffee break	coffee break
10:30-11	Lecture 1b	Lecture 3b	Lecture 5b	Lecture 6b
	in BA-1160	in BA-1160	in BA-1160	in BA-1160
11:30-12	30-sec madness			
12-12:30	Lunch &	Lunch &	Lunch &	
	Poster A	Poster B	Poster C	
1-1:30	in BA lobby	in BA lobby	in BA lobby	
1:30-2				
2-2:30				
2:30-3	Lecture 2a	Lecture 4a	Workshop &	
3-3:30	in BA-1160	in BA-1160	Industry Panel	
	coffee break	coffee break	in BA-1160	
4-4:30	Lecture 2b	Lecture 4b		
4:30-5	in BA-1160	in BA-1160		
5-5:30			Reception	
	Social programming	Social programming	(in Bahen Lobby)	
6-6:30				
6:30-7				
7				

- 1. Prof. Alon Orlitsky 2. Prof. En-hui Yang

Lecturers:

- 3. Prof. Andrea Goldsmith
- 4. Prof. Brendan Frey
- 5. Prof. Henry Pfister6. Prof. Robert Calderbank

Wednesday

No.	Full Name	University/Affiliation	Topic	Title
1	Abou Saleh, Ahmad	Queen's University	Shannon Theory	Source-Channel-State Transmission for Fading channels with Correlated Interference
2	Chou, Remi	Georgia Institute of Technology	Shannon Theory	Secret-key generation under computational, bandwidth, and uncertainty constraints
3	Kadhe, Swanand	Texas A&M University	Shannon Theory	Weakly Secure Regenerating Codes for Distributed Storage
4	Ayoughi, Seyed Arvin	University of Toronto	Network Information Theory	A Review of Capacity Results for the Relay Channel
5	Etezadi, Farrokh	University of Toronto	Network Information Theory	Two results on Real-Time Streaming of Markov Sources over Burst-Erasure Channels
6	Khezeli, Kia	McMaster University	Network Information Theory	A Source-Channel Separation Theorem with Application to the Source Broadcast Problem
7	Li, Simon	University of Toronto	Network Information Theory	Privacy in Smart Metering Systems
8	Noorzad, Parham	California Institute of Technology	Network Information Theory	Cooperation in MACs: Can Low-Rate Cooperation Yield a Large Gain?
9	Vaezi, Mojtaba	McGill	Network Information Theory	Superposition Coding-Based Capacity Regions for Cognitive Interference Channels
10	Al-Tous, Hanan	United Arab Emirates University	Wireless	Resource Allocation for Two-Sources Single-Relay AF-OFDMA Systems
11	Badiei Khuzani, Masoud	University of Waterloo	Wireless	On online Energy Harvesting in Multiple Access Communication Systems
12	Dai, Binbin	University of Toronto	Wireless	Sparse Beamforming Design for Network MIMO System with Per-Base-Station Backhaul Constraints
13	Hassanzadeh, Parisa	NYU Polytechnic School of Engineering	Wireless	On communications in the wideband regime
14	Kocak, Mustafa Anil	NYU Polytechnic Institute	Wireless	Communicating Lists Over a Noisy Channel
15	Minasian, Arin	University of Toronto	Wireless	Energy Harvesting for Relay-Assisted Communications
16	Jamal, Nadia	University of Waterloo	Wireless	Throughput Scaling of MIMO Channels with Imperfect CSIT in the Low SNR Regime
17	Wu, Xianwen	University of Arkansas	Wireless	Optimal Scheduling of Collaborative Sensing in Energy Harvesting Sensor Networks
18	Zhu, Caiyi	University of Toronto	Wireless	Approximate Bounds for Limited Backhaul Uplink Multicell Processing with Single-User Compression
19	Bibard, Jerome	University of Waterloo	Coding Theory	Low-Density Lattice Codes (LDLC)
20	Chen, Junyu	The Chinese University of Hong Kong	Coding Theory	A Polynomial Construction of Sector-Disk Codes
21	Ebrahimzadeh, Ehsan	Univerity of California, LA	Coding Theory	Data Reconciliation With Unknown Error Profile
22	Huang, Kechao	Sun Yat-sen University	Coding Theory	Performance Comparison of Non-Binary LDPC Block and Spatially Coupled Codes
23	Liu, Siyu	University of Toronto	Coding Theory	Kotter Interpolation in Skew Polynomial Rings
24	Mahmood, Rafid	University of Toronto	Coding Theory	Characterizing Low-Delay Streaming Codes for the Gilbert-Elliott Erasure Channel
25	Tan, Louis	University of Toronto	Coding Theory	Successive Segmentation-based Coding for Broadcasting over Erasure Channels
26	Wang, LeLe	UCSD	Coding Theory	Universal polarization
27	Barot, Suhail	University of Toronto	Other/Power Systems	Minkowski Sum Aggregation of Demand Response Resources
28	Li, Xingguo	University of Minnesota	Other/Signal Processing	Locating Salient Regions in Images from Adaptive Compressive Samples
29	Srikantha, Pirathayini	University of Toronto	Other/Game theory	Secure Distributed Routing in Cyber-Enabled Power Systems via Network Formation Games
30	Xu, He	University of Toronto	Other/Quantum	high speed Quantum random number generator with quantum phase fluctuation.
31	Zhang, Dejiao	University of Michigan	Other/Compressed Sensing	Grassmannian Rank-One Update Subspace Estimation via Compressive Sensing
32	Ghavami, Siavash	University of Tehran/University of Toronto	Other/Biological Communication	Information Theoretic Analysis of Energy Efficient Neurons with Biologically Plausible Constraints

Thursday

No.	Full Name	University/Affiliation	Topic	Title
1	Asoodeh, Shahab	Queen's University	Shannon Theory	Privacy Capacity and Randomness Extraction
2	Deng, Mo	MIT	Shannon Theory	TBD
3	Satpathy, Sanket	Princeton University	Shannon Theory	Secure Coordination with a Two-Sided Helper
4	Bawre, Jamel	KNUST	Network Information Theory	TBD
5	Farag, Michael	Boston University	Network Information Theory	The Symmetric Ergodic Capacity of Phase-Fading three-user Interference Channels to within a Constant Gap
6	Koken, Erman	University of California, Riverside	Network Information Theory	On robustness of Gaussian digital analog source-channel coding with bandwidth-mismatch
7	Liu, Jingbo	Princeton University	Network Information Theory	Key Capacity for Product Sources with Application for Stationary Gaussian Processes
8	Patil, Pratik	University of Toronto	Network Information Theory	Hybrid Compression and Data-Sharing Strategy for the Downlink Cloud Radio-Access Network
9	Xu, Rui	McMaster University	Network Information Theory	Information Channels with Common Information
10	Amirnavaei, Fatemeh	UOIT	Wireless	The Achievable Average Rate- Outage Probability Trade off Curve In Two-hop Block Fading Channels
11	Chen, Hao	University of Kansas	Wireless	Cognitive radio
12	Ghimire, Jagadesh	University of Waterloo	Wireless	Impact of Limited Backhaul Capacity on User Scheduling in Heterogeneous Networks
13	Hosseini, Kianoush	University of Toronto	Wireless	Large-Scale MIMO versus Network MIMO for Multicell Interference Mitigation
14	Li, Yan	University of Kansas	Wireless	DoA Estimation and Capacity Analysis for 3D Massive MIMO Systems
15	Ramezanikebrya, Ali	University of Toronto	Wireless	Likelihood-Based Modulation Classification for Multiple-Antenna Receiver
16	Sohrabi, Foad	University of Toronto	Wireless	Survey on Hybrid Precoding in Large-Scale MIMO Systems with Limited RF Chains
17	Yuan, Zhong Lin	University of Toronto	Wireless	A literature review of Multi-user Massive MIMO
18	Beheshti, Seyed Parsa	Queen's University	Coding Theory	MAP Decoding of Correlated Sources over Soft-Decision Orthogonal Multiple Access Fading Channels with Memory
19	Blake, Christopher	University of Toronto	Coding Theory	On the Area-Time Complexity of Capacity Approaching LDPC Codes
20	Chen, Yao	University of Waterloo	Coding Theory	New Bounds and Constructions of Algebraic Manipulation Detection Codes
21	Fan, Bing	University of California, San Diego	Coding Theory	Iterative Detection and Turbo Equalization for 2D- ISI Channels
22	Huo, Fei	University of Waterloo	Coding Theory	Zero Correlation Zones of Binary/QAM Golay Sequences and Their applications
23	Liu, Xishuo	UW-Madison	Coding Theory	ADMM decoding of non-binary LDPC codes in F2m
24	McNutt, David	Dalhousie University	Coding Theory	Threshold Saturation for Coupled Scalar Recursions Using Lyapunov's Method
25	Vakilinia, Kasra	UCLA	Coding Theory	Short-Blocklength Non-Binary LDPC Codes with Feedback-Dependent Incremental Transmissions
26	Wood, Richard	Queen's University	Coding Theory	Real Time Coding with an Adaptive Quantizer
27	Datta Gupta, Syamantak	University of Waterloo	Other/Causality	Inferring causal dependences
28	Lipor, John	University of Michigan, Ann Arbor	Other/Sensor Networks	Robust Blind Calibration via Total Least Squares
29	Suresh, Ananda Theertha	University of California, San Diego	Other/Learning	Optimal Discrete Probability Estimation
30	yang, Jun	Queen's University	Other/Probability	Lower Bounds on the Probability of a Finite Union of Events
31	Roy Feng	University of Waterloo	Wireless	Vulnerability Analysis and Countermeasures for WiFi-based Location Services and Applications

Friday

No.	Full Name	University/Affiliation	Topic	Title
1	Basciftci, Yuksel	The Ohio State University	Shannon Theory	Private Broadcasting with Probing Cost
2	Gao, Yuguang	Cornell University	Shannon Theory	Phase transition in the number partitioning problem
3	Shkel, Yanina	UW-Madison	Shannon Theory	Channel Coding with Unequal Message Protection
4	Dong, Zheng	McMaster University	Network Information Theory	Towards a General Formula for Degrees of Freedom of the Interference Channel
5	He, Wenbo	Boston University	Network Information Theory	Uplink-Downlink Duality for Integer-Forcing: Effective SINRs and Iterative Optimization
		Sick Kids Hospital, Peter Gilgan		
6	Lankarany, Milad	Center for Research and Learning	Network Information Theory	Multiplexed coding of low and high frequency signals by populations of spiking neurons
7	Nan, Ting-Ting	University of Wisconsin-Madison FERDOWSI UNIVERSITY OF	Network Information Theory	TBD
8	Sahebalam, Assadallah	MASHHAD The Chinese University of Hong	Network Information Theory	TBD
9	Zhiyan, Wang	Kong	Network Information Theory	Mutual Information Rate of Two-way Relay ISI Channel with Physical-layer Network Coding
10	Belaifa, Salah	AEK Communication Laboratory	Wireless	Information Theory in GSM Network / Evolution of Error Control Code in Cellular Communications Systems (1G, 2G, 3G and 4G)
11	Chen, Meng-Hsi	University of Toronto	Wireless	On Cooperative and Malicious Behaviors in Multirelay Fading Channels
12	Hammad, Eman	University of Toronto	Wireless	Distributed Cooperation Dynamics for Microgrid Networks
13	Shahrbaf Motlagh, Meysam	University of Waterloo	Wireless	On Lossy Joint Source-Channel Coding In Energy Harvesting Single-User Communication Systems: An Online Continuous-Time Regin
14	Liu, Tang	University of Illinois at Chicago	Wireless	Sum DoF of asymmetric MIMO interference channel
15	Sadr, Sanam	University of Toronto	Wireless	Joint Tier Association and Spectrum Partitioning for Maximum Rate Coverage in Multi-tier Heterogeneous Networks
16	Sridharan, Gokul	University of Toronto University of British Columbia	Wireless	Degrees of Freedom of MIMO Cellular Networks: Decomposition and Linear beamforming Design
17	Zhu, Bingcheng	Okanagan Campus Centre National d'Etudes Spatiales	Wireless	Performance Bounds of Multi-branch Receptions Over Arbitrarily Correlated Rician Fading Channels
18	Benaddi, Tarik	(CNES)	Coding Theory	Asymptotic Design of Systematic IRA Ensemble Codes for Continuous Phase Modulation
19	Bolkema, Jessalyn	University of Nebraska - Lincoln	Coding Theory	An Introduction to Polar Codes
20	Disckson, Ernest Paul	Dalhousie University	Coding Theory	Improving Joint Random Access Satellite Communications through Iterative Demodulation and Channel Estimation
21	Goldberg, Adina	University of Toronto	Coding Theory	Privacy versus security in the joint design of secure sketch biometric systems
22	Lian, Mengke	Texas A&M University	Coding Theory	TBD
23	Mahdaviani, Kaveh	University of Toronto	Coding Theory	Delay sensitive data streaming under channel erasure and delayed feedback
24	Singh, Manpreet	University of Waterloo	Coding Theory	FPGA Optimizations for Decoding of Low-Density Parity-Check Codes
	Vasista Stinivasan Ranganathan,			
	Sudarsan	University of California, Los Angeles		Design of High-Rate Irregular Non-binary LDPC Codes Using Algorithmic Stopping-Set Cancellation
	Zhang, Lei	University of Toronto	Coding Theory	Analysis of spatially-coupled product codes under iterative syndrome decoding
27	Lalitha, Anusha	University of California, San Diego University at Buffalo, The State	Other/Hypothesis Testing	Social Learning and Distributed Hypothesis testing
28	Markopoulos, Panagiotis	University of New York	Other/Signal Processing	A New Paradigm in Machine Learning and Signal Processing: Optimal L1-Principal Component Analysis
29	Wang, Weina	Arizona State University	Other/Security	A Minimax Distortion View of Non-Interactive Differential Privacy
30	Yao, Jiyun	Lehigh University	Other/Security	On the Privacy-Cost Tradeoff of Battery Control Mechanisms in Demand Response
31	Zhao, Wanyao	University of Toronto	Other/Security	Secret-key Agreement over Noncoherent Fading Channel