Connesamenability of B(G)

Volker Runde

Amenability...for locally compact groupsand for Banach algebras

Dual Banacł algebras

Connesamenability

Diagonal-type elements

Normal, virtual diagonals C^{W}_{σ} -diagonals

The Fourier-Stieltjes algebra

Connes-amenability of B(G)

Volker Runde

University of Alberta

The Fields Institute, April 15, 2014

Amenable, locally compact groups

Connesamenability of B(G)

Volker Runde

Amenability... ...for locally compact groups ...and for Banach algebras

Dual Banach algebras

Connesamenability

Diagonal-type elements

Normal, virtual diagonals C_{σ}^{W} -diagonals

The Fourier Stieltjes algebra

Let G be a locally compact group. A mean on $L^{\infty}(G)$ is a functional $M \in L^{\infty}(G)^*$ such that $\langle 1, M \rangle = ||M|| = 1$.

Definition (J. von Neumann 1929; M. M. Day, 1949)

G is amenable if there is a mean on $L^{\infty}(G)$ that is left invariant, i.e.,

$$\langle L_x \phi, M \rangle = \langle \phi, M \rangle$$
 $(x \in G, \phi \in L^{\infty}(G)),$

where

Definition

$$(L_x\phi)(y):=\phi(xy)\qquad (y\in G).$$

Some amenable and non-amenable groups

Connesamenability of B(G)

Volker Runde

- Amenability.
- ... for locally compact groups ... and for Banach algebras
- Dual Banach algebras
- Connesamenability
- Diagonal-type elements
- Normal, virtual diagonals \mathcal{C}^{W}_{σ} -diagonals
- The Fourier Stieltjes algebra

Examples

- **1** Compact groups are amenable: M = Haar measure.
- 2 Abelian groups are amenable: use Markov-Kakutani to get M.
- 3 If G is amenable and H < G, then H is amenable.
- 4 If G is is amenable and $N \lhd G$, then G/N is amenable.
- **5** If G and $N \lhd G$ are such that N and G/N are amenable, then G is amenable.
- **6** \mathbb{F}_2 , the free group in two generators, is not amenable.
- **7** If G contains \mathbb{F}_2 as a closed subgroup, then G is not amenable.

Banach **A-bimodules** and derivations

Connesamenability of B(G)

Volker Runde

Amenability... ...for locally compact groups ...and for Banach algebras

Dual Banach algebras

Connesamenability

Diagonal-type elements

Normal, virtual diagonals C^{W}_{σ} -diagonals

The Fourier Stieltjes algebra

Definition

Let \mathfrak{A} be a Banach algebra, and let E be a Banach \mathfrak{A} -bimodule. A bounded linear map $D : \mathfrak{A} \to E$ is called a derivation if

$$D(ab) := a \cdot Db + (Da) \cdot b$$
 $(a, b \in \mathfrak{A}).$

If there is $x \in E$ such that

$$Da = a \cdot x - x \cdot a$$
 $(a \in \mathfrak{A}),$

we call D an inner derivation.

Amenable Banach algebras

Connesamenability of B(G)

Volker Runde

Amenability... ...for locally compact groups ...and for Banach algebras

Dual Banacl algebras

Connesamenability

Diagonal-type elements

Normal, virtual diagonals C^w_{σ} -diagonals

The Fourier-Stieltjes algebra

If E is a Banach \mathfrak{A} -bimodule, then so is E^* :

$$\langle x, a \cdot \phi \rangle := \langle x \cdot a, \phi \rangle$$
 $(a \in \mathfrak{A}, \phi \in E^*, x \in E)$

and

Remark

$$\langle x, \phi \cdot a \rangle := \langle a \cdot x, \phi \rangle$$
 $(a \in \mathfrak{A}, \phi \in E^*, x \in E).$

We call E^* a dual Banach \mathfrak{A} -bimodule.

Definition (B. E. Johnson, 1972)

 \mathfrak{A} is called amenable if, for every dual Banach \mathfrak{A} -bimodule E, every derivation $D : \mathfrak{A} \to E$, is inner.

Approximate and virtual diagonals, I

Definition (B. E. Johnson, 1972)

Connesamenability of B(G)

Volker Runde

Amenability... ...for locally compact groups ...and for Banach algebras

Dual Banach algebras

Connesamenability

Diagonal-type elements

Normal, virtual diagonals C^{W}_{σ} -diagonals

The Fourier Stieltjes algebra

An approximate diagonal for A is a bounded net (d_α)_α in the projective tensor product A ÂA such that

$$oldsymbol{a}\cdot oldsymbol{d}_lpha-oldsymbol{d}_lpha\cdot oldsymbol{a}
ightarrow 0 \qquad (oldsymbol{a}\in\mathfrak{A})$$

and

$$a\Delta \mathbf{d}_{lpha}
ightarrow a \qquad ig(a\in\mathfrak{A}ig)$$

with $\Delta : \mathfrak{A} \hat{\otimes} \mathfrak{A} \to \mathfrak{A}$ denoting multiplication.

2 A virtual diagonal for \mathfrak{A} is an element $D \in (\mathfrak{A} \hat{\otimes} \mathfrak{A})^{**}$ such that

$$a \cdot \mathbf{D} = \mathbf{D} \cdot a$$
 and $a \cdot \Delta^{**} \mathbf{D} = a$ $(a \in \mathfrak{A}).$

Approximate and virtual diagonals, II

Volker Runde

Amenability... ...for locally compact groups ...and for Banach algebras

Dual Banach algebras

Connesamenabilit

Diagonal-type elements

Normal, virtual diagonals C_{σ}^{W} -diagonals

The Fourier-Stieltjes algebra

Theorem (B. E. Johnson, 1972)

The following are equivalent for a Banach algebra \mathfrak{A} :

- 1 A has an approximate diagonal;
- **2** \mathfrak{A} has a virtual diagonal;
- $3 \mathfrak{A}$ is amenable.

The meaning of amenability, I

Connesamenability of B(G)

Volker Runde

Amenability... ...for locally compact groups ...and for Banach algebras

Dual Banach algebras

Connesamenability

Diagonal-type elements

Normal, virtual diagonals C^{W}_{σ} -diagonals

The Fourier Stieltjes algebra

Theorem (B. E. Johnson, 1972)

The following are equivalent for a locally compact group G: **1** $L^{1}(G)$, the group algebra of G, is amenable;

2 *G* is amenable.

Grand theme

Let $\mathcal C$ be a class of Banach algebras. Characterize the amenable members of $\mathcal C!$

The meaning of amenability, II

Connesamenability of B(G)

Volker Runde

Amenability...for locally compact groupsand for Banach algebras

Dual Banach algebras

Connesamenability

Diagonal-type elements

Normal, virtual diagonals C^{W}_{σ} -diagonals

The Fourier Stieltjes algebra Theorem (A. Connes, U. Haagerup, et al.)

The following are equivalent for a C^* -algebra \mathfrak{A} :

- **1** \mathfrak{A} is amenable;
- **2** \mathfrak{A} is nuclear.

Theorem (H. G. Dales, F. Ghahramani, & A. Ya. Helemskiĭ, 2002)

The following are equivalent for a locally compact group G:

- **1** M(G), the measure algebra of G, is amenable;
- **2** *G* is amenable and discrete.

The meaning of amenability, III

Connesamenability of B(G)

Volker Runde

Amenability... ...for locally compact groups ...and for Banach algebras

Dual Banach algebras

Connesamenability

Diagonal-type elements

Normal, virtual diagonals C^{W}_{σ} -diagonals

The Fourier Stieltjes algebra

Theorem (B. E. Forrest & VR, 2005)

The following are equivalent for a locally compact group G:

1 A(G), the Fourier algebra of G, is amenable;

2 *G* is almost abelian, i.e., has an abelian subgroup of finite index.

Corollary

The following are equivalent for a locally compact group G: **1** B(G), the Fourier-Stieltjes algebra of G, is amenable;

2 *G* is almost abelian and compact.

Dual Banach algebras

Connesamenability of B(G)

Volker Runde

Amenability....for locally compact groupsand for Banach algebras

Dual Banach algebras

Connesamenability

Diagonal-type elements

Normal, virtual diagonals C^w_{σ} -diagonals

The Fourier Stieltjes algebra

Definition

A dual Banach algebra is a pair $(\mathfrak{A}, \mathfrak{A}_*)$ of Banach spaces such that:

- 1 $\mathfrak{A} = (\mathfrak{A}_*)^*;$
- **2** \mathfrak{A} is a Banach algebra, and multiplication in \mathfrak{A} is separately $\sigma(\mathfrak{A}, \mathfrak{A}_*)$ continuous.

Examples

- **1** Every von Neumann algebra;
- **2** $(M(G), \mathcal{C}_0(G))$ for every locally compact group G;
- (M(S), C(S)) for every compact, semitopological semigroup S;
- 4 $(B(G), C^*(G))$ for every locally compact group G.

Normality and Connes-amenability

Connesamenability of B(G)

Volker Runde

Amenability... ...for locally compact groups ...and for Banach algebras

Dual Banach algebras

Connesamenability

Diagonal-type elements

diagonals C_{σ}^{W} -diagonals

The Fourier Stieltjes algebra

Definition (R. Kadison, BEJ, & J. Ringrose, 1972)

Let \mathfrak{M} be a von Neumann algebra, and let E be a dual Banach \mathfrak{M} -bimodule. Then E is called normal if the module actions

$$\mathfrak{M} imes E o E, \quad (a, x) \mapsto \left\{ egin{array}{c} a \cdot x \ x \cdot a \end{array}
ight.$$

are separately weak*-weak* continuous. If *E* is normal, we call a derivation $D: \mathfrak{M} \to E$ normal if it is weak*-weak* continuous.

Definition (A. Connes, 1976; A. Ya. Helemskiĭ, 1991)

A von Neumann algebra \mathfrak{M} is Connes-amenable if, for every normal Banach \mathfrak{M} -bimodule E, every normal derivation $D: \mathfrak{M} \to E$ is inner.

Injectivity, semidiscreteness, and hyperfiniteness

Connesamenability of B(G)

Volker Runde

Amenability... ...for locally compact groups ...and for Banach algebras

Dual Banac algebras

Connesamenability

Diagonal-type elements

Normal, virtual diagonals C^{W}_{σ} -diagonals

The Fourier Stieltjes algebra

Definition

- A von Neumann algebra $\mathfrak{M} \subset \mathcal{B}(\mathfrak{H})$ is called
 - injective if there is a norm one projection E : B(𝔅) → 𝔐' (this property is independent of the representation of 𝔐 on 𝔅);
 - 2 semidiscrete if there is a net $(S_{\lambda})_{\lambda}$ of unital, weak*-weak* continuous, completely positive finite rank maps such that

$$S_{\lambda} a \stackrel{\mathsf{weak}^*}{\longrightarrow} a \qquad (a \in \mathfrak{M});$$

3 hyperfinite if there is a directed family (𝔐_λ)_λ of finite-dimensional *-subalgebras of 𝔐 such that ⋃_λ 𝔐_λ is weak* dense in 𝔐.

Connes-amenability, and injectivity, etc.

Connesamenability of B(G)

Volker Runde

Amenability... ...for locally compact groups ...and for Banach algebras

Dual Banach algebras

Connesamenability

Diagonal-type elements

Normal, virtual diagonals \mathcal{C}^w_{σ} -diagonals

The Fourier Stieltjes algebra

Theorem (A. Connes, et al.)

The following are equivalent:

1 M is Connes-amenable;

- **2** \mathfrak{M} is injective;
- **3** M is semidiscrete;

4 M is hyperfinite.

The notions of normality and Connes-amenability make sense for every dual Banach algebra...

Normal, virtual diagonals, I

Connesamenability of B(G)

Volker Runde

Amenability... ... for locally compact groups ... and for Banach algebras

Dual Banach algebras

Connesamenability

Diagonal-type elements

Normal, virtual diagonals C^{W}_{-} -diagonals

The Fourier Stieltjes algebra

Notation

For a dual Banach algebra \mathfrak{A} , let $\mathcal{B}^2_{\sigma}(\mathfrak{A}, \mathbb{C})$ denote the separately weak^{*} continuous bilinear functionals on \mathfrak{A} .

Observations

1 $\mathcal{B}^2_{\sigma}(\mathfrak{A},\mathbb{C})$ is a closed submodule of $(\mathfrak{A}\hat{\otimes}\mathfrak{A})^*$.

2 Δ^{*}𝔄_{*} ⊂ B²_σ(𝔄, ℂ), so that Δ^{**} : (𝔄Â𝔅𝔄)^{**} → 𝔅^{**} drops to a bimodule homomorphism Δ_σ : B²_σ(𝔄, ℂ)^{*} → 𝔅.

Normal, virtual diagonals, II

Connesamenability of B(G)

Volker Runde

Amenability... ...for locally compact groups ...and for Banach algebras

Dual Banach algebras

Connesamenability

Diagonal-type elements

Normal, virtual diagonals

The Fourier-Stieltjes algebra Definition (E. G. Effros, 1988; for von Neumann algebras)

Let \mathfrak{A} be a dual Banach algebra. Then $\mathbf{D} \in \mathcal{B}^2_{\sigma}(\mathfrak{A}, \mathbb{C})^*$ is called a normal, virtual diagonal for \mathfrak{A} if

$$a \cdot \mathbf{D} = \mathbf{D} \cdot a \qquad (a \in \mathfrak{A})$$

and

$$a\Delta_{\sigma} \mathbf{D} = a \qquad (a \in \mathfrak{A}).$$

Proposition

Suppose that ${\mathfrak A}$ has a normal, virtual diagonal. Then ${\mathfrak A}$ is Connes-amenable.

Normal, virtual diagonals and Connes-amenability

Connesamenability of B(G)

Volker Runde

Amenability... ...for locally compact groups ...and for Banach algebras

Dual Banach algebras

Connesamenability

Diagonal-type elements

Normal, virtual diagonals C^{W}_{-} -diagonals

The Fourier Stieltjes algebra

Question

Is the converse true?

Theorem (E. G. Effros, 1988)

A von Neumann algebra ${\mathfrak M}$ is Connes-amenable if and only if ${\mathfrak M}$ has a normal virtual diagonal.

Theorem (VR, 2003)

The following are equivalent for a locally compact group G:

- **1** *G* is amenable;
- **2** M(G) is Connes-amenable;
- 3 M(G) has a normal virtual diagonal.

Weakly almost periodic functions

Connesamenability of B(G)

Volker Runde

Amenability... ...for locally compact groups ...and for Banach algebras

Dual Banach algebras

Connesamenability

Diagonal-type elements

Normal, virtual diagonals C_{∞}^{W} -diagonals

The Fourier-Stieltjes algebra A bounded continuous function $f : G \to \mathbb{C}$ is called weakly almost periodic if $\{L_x f : x \in G\}$ is relatively weakly compact in $\mathcal{C}_b(G)$. We set

 $\mathcal{WAP}(G) := \{ f \in \mathcal{C}_b(G) : f \text{ is weakly almost periodic} \}.$

Remark

Definition

 $\mathcal{WAP}(G)$ is a commutative C^* -algebra. Its character space $G_{\mathcal{WAP}}$ is a compact, semitopological semigroup containing G as a dense subsemigroup. This turns $\mathcal{WAP}(G)^* \cong M(G_{\mathcal{WAP}})$ into a dual Banach algebra.

Connes-amenability without a normal, virtual diagonal

Connesamenability of B(G)

Volker Runde

Amenability...for locally compact groupsand for Banach algebras

Dual Banach algebras

Connesamenability

Diagonal-type elements

Normal, virtual diagonals C_{σ}^{W} -diagonals

The Fourier Stieltjes algebra

Proposition

The following are equivalent:

1 *G* is amenable;

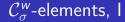
2 $WAP(G)^*$ is Connes-amenable.

Theorem (VR, 2006 & 2013)

Suppose that G is a [SIN]-group. Then the following are equivalent:

1 $\mathcal{WAP}(G)^*$ has a normal virtual diagonal;

2 *G* is compact.



Connesamenability of B(G)

Volker Runde

Amenability... ... for locally compact groups ... and for Banach algebras

Dual Banach algebras

Connesamenability

Diagonal-type elements

Normal, virtua diagonals C_{σ}^{W} -diagonals

The Fourier Stieltjes algebra

Definition

Let \mathfrak{A} be a dual Banach algebra, and let E be a Banach \mathfrak{A} -bimodule. We call $x \in E$ a \mathcal{C}_{σ}^{w} -element if the maps

$$\mathfrak{A} o E, \quad a \mapsto \left\{ egin{array}{c} a \cdot x \ x \cdot a \end{array}
ight.$$

are weak*-weakly continuous.

Notation

$$\mathcal{C}^w_{\sigma}(E) := \{x \in E : x \text{ is a } \mathcal{C}^w_{\sigma}\text{-element}\}.$$

Connesamenability of B(G)

- Volker Runde
- Amenability... ...for locally compact groups ...and for Banach algebras
- Dual Banacl algebras
- Connesamenability
- Diagonal-type elements
- Normal, virtual diagonals C^w_{σ} -diagonals
- The Fourier Stieltjes algebra

Observations

- **1** $C^w_{\sigma}(E)$ is a closed submodule of E.
- **2** $\mathcal{C}^w_{\sigma}(E)^*$ is normal.
- **3** E^* is normal if and only if $E = C^w_{\sigma}(E)$.
- 4 If $\theta: E \to F$ is a bounded, \mathfrak{A} -bimodule homomorphism, then $\theta(\mathcal{C}_{\sigma}^{w}(E)) \subset \mathcal{C}_{\sigma}^{w}(F)$.
- **5** As $\mathfrak{A}_* \subset \mathcal{C}^w_{\sigma}(\mathfrak{A}^*)$, we have $\Delta^*\mathfrak{A}_* \subset \mathcal{C}^w_{\sigma}((\mathfrak{A}\hat{\otimes}\mathfrak{A})^*)$, and so $\Delta^{**}: (\mathfrak{A}\hat{\otimes}\mathfrak{A})^{**} \to \mathfrak{A}^{**}$ drops to a bimodule homomorphism $\Delta^w_{\sigma}: \mathcal{C}^w_{\sigma}((\mathfrak{A}\hat{\otimes}\mathfrak{A})^*)^* \to \mathfrak{A}$.

$\mathcal{C}_{\boldsymbol{\sigma}}^{\scriptscriptstyle w}\text{-}\mathsf{diagonals}$ and Connes-amenability

Connesamenability of B(G)

D(0)

Amenability... ...for locally compact groups ...and for Banach algebras

Dual Banach algebras

Connesamenability

Diagonal-type elements

Normal, virtual diagonals C^{W}_{σ} -diagonals

The Fourier Stieltjes algebra

Let \mathfrak{A} be a dual Banach algebra. Then $\mathbf{D}\in\mathcal{C}^w_\sigma((\mathfrak{A}\hat{\otimes}\mathfrak{A})^*)^*$ is

called a \mathcal{C}_{σ}^{w} -diagonal for \mathfrak{A} if

Definition (VR, 2004)

 $a \cdot \mathbf{D} = \mathbf{D} \cdot a$ $(a \in \mathfrak{A})$

and

$$a\Delta_{\sigma}^{w}\mathbf{D}=a$$
 $(a\in\mathfrak{A}).$

Theorem (VR, 2004)

For a dual Banach algebra $\mathfrak{A},$ the following are equivalent:

1 \mathfrak{A} is Connes-amenable;

2 \mathfrak{A} has a \mathcal{C}^w_{σ} -diagonal.

From $C^*(G \times G)$ into $\mathcal{C}^w_{\sigma}(B(G) \hat{\otimes} B(G))^*)$...

Connesamenability of B(G)

Volker Runde

Amenability... ...for locally compact groups ...and for Banach algebras

Dual Banach algebras

Connesamenability

Diagonal-type elements

Normal, virtual diagonals C^{W}_{σ} -diagonals

The Fourier– Stieltjes algebra

Lemma

Let \mathfrak{A} be a dual Banach algebra. Then the canonical map from $\mathfrak{A}_* \check{\otimes} \mathfrak{A}_*$ into $(\mathfrak{A} \hat{\otimes} \mathfrak{A})^*$ is an isometric \mathfrak{A} -bimodule homomorphism with range in $\mathcal{C}^w_{\sigma}((\mathfrak{A} \hat{\otimes} \mathfrak{A})^*)$.

Corollary

Let G be a locally compact group. Then there is a canonical contractive B(G)-bimodule homomorphism from $C^*(G \times G)$ into $C^w_{\sigma}(B(G) \hat{\otimes} B(G))^*$).

...and from $\mathcal{C}^w_{\sigma}(B(G)\hat{\otimes}B(G))^*)^*$ into $B(G_d \times G_d)$

Connesamenability of B(G)

Volker Runde

Observation

Amenability... ...for locally compact groups ...and for Banach algebras

Dual Banacl algebras

Connesamenability

Diagonal-type elements

Normal, virtual diagonals C^{W}_{σ} -diagonals

The Fourier– Stieltjes algebra Let $\theta: C^*(G \times G) \to C^w_{\sigma}(B(G) \hat{\otimes} B(G))^*)$ be the canonical B(G)-bimodule homomorphism.

- There is a canonical B(G)-bimodule homomorphism $\pi: C^*(G_d \times G_d) \to W^*(G \times G).$
- Thus, (π ∘ θ^{**})^{*}: (C^w_σ(B(G) ⊗B(G))^{*}))^{***} → B(G_d × G_d) is a B(G)-bimodule homomorphism.

Let $\kappa : \mathcal{C}^w_{\sigma}(B(G) \hat{\otimes} B(G))^*)^* \to (\mathcal{C}^w_{\sigma}(B(G) \hat{\otimes} B(G))^*))^{***}$ be the canonical embedding, and set $\Theta := (\pi \circ \theta^{**})^* \circ \kappa$.

■ Then Θ : $\mathcal{C}^w_{\sigma}(B(G) \hat{\otimes} B(G))^*)^* \to B(G_d \times G_d)$ is a B(G) bimodule homomorphism.

B(G) with a \mathcal{C}_{σ}^{w} -diagonal, I

Connesamenability of B(G)

Volker Runde

Amenability... ...for locally compact groups ...and for Banach algebras

Dual Banach algebras

Connesamenability

Diagonal-type elements

Normal, virtual diagonals C^{W}_{σ} -diagonals

The Fourier– Stieltjes algebra

Proposition

Let G be a locally compact group such that B(G) is Connes-amenable, and let $\mathbf{D} \in C^w_{\sigma}((B(G) \hat{\otimes} B(G))^*)^*$ be a C^w_{σ} -diagonal for B(G). Then $\Theta(\mathbf{D}) \in B(G_d \times G_d)$ is the indicator function of the diagonal of $G \times G$, i.e., of

 $\{(x,x):x\in G\}.$

B(G) with a \mathcal{C}_{σ}^{w} -diagonal, II

Connesamenability of B(G)

Volker Runde

Amenability... ...for locally compact groups ...and for Banach algebras

Dual Banacl algebras

Connesamenability

Diagonal-type elements

Normal, virtual diagonals C_{σ}^{W} -diagonals

The Fourier– Stieltjes algebra

Theorem (VR & F. Uygul, 2013)

The following are equivalent for a locally compact group G:

1 B(G) is Connes-amenable;

2 B(G) has a C^w_{σ} -diagonal;

 $\exists B(G)$ has a normal, virtual diagonal;

G is almost abelian.

B(G) with a \mathcal{C}_{σ}^{w} -diagonal, III

Connesamenability of B(G)

Volker Runde

Amenability... ...for locally compact groups ...and for Banach algebras

Dual Banach algebras

Connesamenability

Diagonal-type elements

Normal, virtual diagonals C^{W}_{σ} -diagonals

The Fourier– Stieltjes algebra

We shall prove (ii)
$$\implies$$
 (iv).
For $f \in B(G)$, define $\check{f} \in B(G)$ by
 $\check{f}(x) := f(x^{-1}).$

Let

Proof.

$$: B(G) \to B(G), \quad f \mapsto \check{f}.$$

Easy:

 $(\mathsf{id} \otimes {}^{\vee})^* \colon (B(G) \hat{\otimes} B(G))^* \to (B(G) \hat{\otimes} B(G))^*$

maps $\mathcal{C}^w_{\sigma}((B(G)\hat{\otimes}B(G))^*)$ into itself.

V

B(G) with a \mathcal{C}_{σ}^{w} -diagonal, IV

Proof (continued).

Connesamenability of B(G)

Volker Runde

Amenability... ...for locally compact groups ...and for Banach algebras

Dual Banach algebras

Connesamenability

Diagonal-type elements

Normal, virtual diagonals C^{W}_{σ} -diagonals

The Fourier– Stieltjes algebra

Let $\mathbf{D} \in \mathcal{C}^w_{\sigma}((B(G) \hat{\otimes} B(G))^*)^*$ be a \mathcal{C}^w_{σ} -diagonal for B(G), and set

$$\chi := heta((\mathsf{id} \otimes \ ^{ee})^{**}(\mathsf{D})) \in B(\mathit{G}_d imes \mathit{G}_d).$$

Then χ is the indicator function of the anti-diagonal of $G \times G$, i.e.,

$$\{(x, x^{-1}) : x \in G\}.$$

This means that $^{\vee}: B(G) \to B(G)$ is completely bounded, which is possible only if $C^*(G)$ is subhomogeneous, i.e., G is almost abelian.