Ideal-system equivariant embedding (I)

Eberhard Kirchberg

HU Berlin

Lecture 2, Toronto, 27/02/2014

Contents:

- Reminders:
 - Exact and strongly p.i. C*-algebras
 - KK-classes given by *-homomorphisms
- Generalized Weil-von-Neumann theorem
- Universal Hilbert bi-modules
- Realization and Reconstruction

Notations

- Considered C*-algebras A, B, ... are separable, ...
- ... except multiplier algebras $\mathcal{M}(B)$, and ideals of corona algebras $Q(B) := \mathcal{M}(B)/B$, ... as e.g., $Q(\mathbb{R}_+, B) := C_b(\mathbb{R}_+, B)/C_0(\mathbb{R}_+, B) \subset Q(SB)$.
- T_0 spaces X, Y, \dots are second countable.
- $\mathcal{I}(A)$ means the lattice of closed ideals of A.
- CP(A, B) is the cone of completely positive maps $V: A \rightarrow B$.

The C^* -algebra A is **exact**, if the functor $B \mapsto A \otimes^{\min} B$ is exact.

Since $C^*(F_\infty) \otimes^{\max} \mathcal{L}(H) = C^*(F_\infty) \otimes^{\min} \mathcal{L}(H)$, this is equivalent to the property that each completely positive map of A into a weakly injective (=WEP) C^* -algebra E is automatically nuclear. In particular, exact A is sub-nuclear in the sense of D. Voiculescu.

The C^* -algebra A is **strongly purely infinite** if for every $a_1, a_2 \in A_+$ and $\varepsilon > 0$ there exists $d_1, d_2 \in A$ such that, for j = 1, 2,

$$\| \textit{d}_{j}^{*}\textit{a}_{j}^{2}\textit{d}_{j} - \textit{a}_{j}^{2} \| < \varepsilon \quad \text{and} \quad \| \textit{d}_{1}^{*}\textit{a}_{1}\textit{a}_{2}\textit{d}_{2} \| < \varepsilon \,.$$

The A is "only" *purely infinite*, i.e., each non-zero element of A is properly infinite, if this holds with $a_1 = a_2$. It is not known if "purely infinite" always implies "strongly purely infinite". If Prim(A) is Hausdorff or if $\mathcal{I}(A)$ is linearly ordered "p.i." implies "s.p.i."

Theorem (Representing KK-classes by morphisms)

Suppose that A and B are stable and separable, and that $\mathcal{C}_1 \subset \mathsf{CP}(A,B)$ is an m.o.c.c., and that there exists a non-degenerate *-monomorphism $h_1:A\to B$ such that h_1 generates the m.o.c. cone \mathcal{C}_1 and that $h_1\oplus h_1$ is unitarily equivalent to h_1 . Then:

- (i) the natural semi-group morphism from the semi-group of unitary equivalence classes $[\operatorname{Hom}(A,B)\cap\mathcal{C}_1]_u$ into $\operatorname{KK}(\mathcal{C}_1;A,B)$ induced by $\varphi\mapsto [(B,\varphi,0)]$ is surjective, and
- (ii) $[\psi] = [\varphi]$ holds in KK(\mathcal{C}_1 ; A, B) if and only if $\psi \oplus h$ and $\varphi \oplus h$ are unitarily homotopic (i.e. if there exists a norm-continuous map $t \in [0, \infty) \mapsto u(t) \in \mathcal{U}(\mathcal{M}(B))$ with u(0) = 1 and $\lim_{t \to \infty} u(t)^*(\varphi(a) \oplus h(a))u(t) = \psi(a) \oplus h(a)$ for $a \in A$).

Corollary (C-classification)

If, in addition to the assumptions of the last theorem, $\mathcal{C}_2 \subset \mathsf{CP}(B,A)$ is an m.o.c.c. such that there is non-degenerate *-morphism $h_2 \colon B \to A$ that generates \mathcal{C}_2 and is unitarily equivalent to $h_2 \oplus h_2$, then: There is an isomorphism φ from A onto B with $\varphi \in \mathcal{C}_1$ and $\varphi^{-1} \in \mathcal{C}_2$, if and only if

- (i) $id_A \in \mathcal{C}_2 \circ \mathcal{C}_1$,
- (ii) $id_B \in C_1 \circ C_2$, and
- (iii) there are $z_1 \in \mathsf{KK}(\mathcal{C}_1\,;\,A,B)$ and $z_2 \in \mathsf{KK}(\mathcal{C}_2\,;\,B,A)$ with $z_1 \otimes_A z_2 = [\mathsf{id}_B]$ in $\mathsf{KK}(\mathcal{C}_1 \circ \mathcal{C}_2;B,B)$ and $z_2 \otimes_B z_1 = [\mathsf{id}_A]$ in $\mathsf{KK}(\mathcal{C}_2 \circ \mathcal{C}_1;A,A)$.

If C_1 and C_2 satisfy the assumptions (i)-(iii) of the Corollary on C-classification, then the isomorphism φ can be found such that $[\varphi] = z_1$ in addition. The φ is unique up to unitary homotopy.

We have seen that the existence of a suitable *-monomorphism $h_0: A \to B$ that represents the zero element of $KK(\mathcal{C}; A, B)$ plays an important role for the ideal-equivariant classification. The following partial result will be discussed in lectures 2-4:

Theorem (Existence of h_0 : The embedding Theorem.)

Suppose that A and B are stable, A is exact and B is strongly purely infinite, and that $\Psi \colon \mathbb{O}(\mathsf{Prim}(B)) \to \mathcal{I}(A)$ is a non-degenerate action of $\mathsf{Prim}(B)$ on A lower s.c. and monotone upper s.c.

Then there is a non-degenerate nuclear monomorphism $h_0: A \to B$ such that $h_0 \oplus h_0$ is unitarily equivalent to h_0 , and $\mathcal{C}(h_0) = \mathsf{CP}_{\mathsf{rn}}(\mathsf{Prim}(B); A, B) = \mathsf{CP}_{\mathsf{nuc}}(A, B) \cap \mathsf{CP}(\Psi; A, B).$

Thus $[\mathsf{Hom}_{\mathsf{nuc}}(\mathsf{Prim}(B); A, B) \oplus h_0]_{u(t)} \cong \mathsf{KK}(\mathsf{Prim}(B); A, B).$

Notice that a C^* -algebra B is stable, i.e., $B \cong B \otimes \mathbb{K}$ if and only if there exists a sequence of isometries $s_n \in \mathcal{M}(B)$ with the property $\sum_n s_n s_n^* = 1$ (with strict convergence).

Then the **infinite repeat** $\delta_{\infty} \colon \mathcal{M}(B) \to \mathcal{M}(B)$ defined by $\delta_{\infty}(a) := \sum s_n a s_n^*$ is a stricty continuous endomorphism of $\mathcal{M}(B)$ that is up to unitary equivalence uniquely defined by an arbitrary sequence of isometries $s_1, s_2, \ldots \in \mathcal{M}(B)$ with $\sum s_n s_n^*$, because $u := \sum t_n s_n^*$ is a unitary in $\mathcal{M}(B)$ if $\sum_n t_n t_n^* = 1 = t_n^* t_n$.

The commutant $\delta_{\infty}(\mathcal{M}(B))' \cap \mathcal{M}(B)$ contains a copy $C^*(s,t)$ of the Cuntz algebra \mathcal{O}_2 unitally.

A generalized W.-vN. Theorem:

Let B a σ -unital C^* -algebra, C a separable C^* -subalgebra of $\mathcal{M}(B)$, and $V \colon C \to \mathcal{M}(B)$ is a completely positive contraction that satisfies the following conditions (α) and (β) :

- (α) There exists $h \in C_+$ with V(h) = 0 and $h^{1/n}d \to d$ if $n \to \infty$ for every $d \in B$.
- (β) For every $a \in B_+$, every finite subset $X \subset C_+$ and every $\varepsilon > 0$ there exists $d \in \mathcal{M}(B)$ with $||d^*cd aV(c)a|| < \varepsilon$ for $c \in X$.

One can show that the element $d \in \mathcal{M}(B)$ in (β) can be chosen such that ||d|| < ||a||. There are contractions $e_n \in C^*(e)_+$, for a strictly positive contraction $e \in B$, such that (e_n) is an approximate unit of Bthat commutes sufficiently fast with the elements of a filtration $X_1 \subset X_2 \subset \cdots$ of C by finite-dimensional subspaces $X_n \subset C$, and satisfies $e_{n+1}e_n = e_n$. Find a sequence h_n of contractions in $C^*(h)_+$ such that $h_{n+1}h_n = h_n$ and that $\max_{m \le n} \|e_m - h_n e_m\|$ sufficiently fast converges to zero. Build elements $t_n \in B$ from d_n with $\sup_{x \in X_n} \|d_n^*(1 - h_{n+2})x(1 - h_{n+2})d_n - e_{n+3}xe_{n+3}\|$ converging to zero as products of the form $t_n := (h_{n+1} - h_n)d_n e_{n+2}$. Then a suitable selection leads to strictly convergent series of the kind $S_m := t_{2m}e_m^{1/2} + \sum_{n > m} t_{2n}(e_n - e_{n-1})^{1/2}$, that satisfy part (i) of the following theorem. The other parts follow by passage to $C_b(\mathbb{R}_+, \mathcal{M}(B))/C_0(\mathbb{R}_+, B).$

Proposition (Generalized W.-vN. Theorem)

The above assumptions (α) and (β) imply:

- (i) There exist contractions $S_n \in \mathcal{M}(B)$ such that $S_n^*cS_n V(c) \in B$ and $\lim_n \|S_n^*cS_n V(c)\| = 0$ for $c \in C$ and k > 0.
- (ii) If B is stable and $T: C \to \mathcal{M}(B)$ is a completely positive contraction such that $V:=\delta_\infty\circ T$ satisfies (α) and (β) , then there is a norm-continuous map $t\in\mathbb{R}_+\mapsto S(t)\in\mathcal{M}(B)$ into the contractions of $\mathcal{M}(B)$ such that $S(t)^*cS(t)-T(c)\in B$ for $t\geq 0$ and $\lim_{t\to\infty}\|T(c)-S(t)^*cS(t)\|=0$ for all $c\in C$.
- (iii) If, in addition to (ii), T is a *-homomorphism and T(C)B is dense in B, then id_C asymptotically absorbs T, i.e., $id_C \oplus T \colon C \to \mathcal{M}(B)$ and id_C are unitarily homotopic (cf. following Definition).
- (iv) The S_n in (i) (resp. S(t) in (ii)) can be chosen as isometries if $1_{\mathcal{M}(B)} \in C$ and V (resp. T in (ii)) is unital.

Definition (Unitary homotopy)

Let $h_j \colon A \to \mathcal{M}(B)$, j=1,2, *-homomorphisms, and let V a completely positive contraction from A into the multiplier algebra $\mathcal{M}(B)$ of B. We call h_1 and h_2 unitarily homotopic if there is a *norm-continuous* map $t \mapsto U(t)$ from the non-negative real numbers \mathbb{R}_+ into the unitaries in $\mathcal{M}(B)$, such that,

- (i) $U(t)^*h_1(a)U(t)-h_2(a)\in B$ for $t\in\mathbb{R}_+$ and $a\in A$, and
- (ii) $\lim_{t\to\infty} \|h_2(a) U(t)^*h_1(a)U(t)\|$ for all $a\in A$.

If $\mathcal{M}(B)$ contains a copy of $C^*(s,t)$ of \mathcal{O}_2 unitally, then we can define Cuntz addition $h_1 \oplus h_2 := sh_1(\cdot)s^* + th_2(\cdot)t^*$ on $\text{Hom}(A,\mathcal{M}(B))$, and then (by definition) h_1 asymptotically absorbs h_2 if h_1 and $h_1 \oplus h_2$ are unitarily homotopic. Unitary *equivalence* implies unitary homotopy, but not necessarily point-norm homotopy of h_1 and h_2 .

We say that h_1 **asymptotically dominates** a completely positive contraction $V: A \to \mathcal{M}(B)$ if there is a *norm-continuous* map $t \mapsto S(t)$ from the non-negative real numbers \mathbb{R}_+ into the *isometries* in $\mathcal{M}(B)$, such that,

- (i) $S(t)^*h_1(a)S(t) V(a) \in B$ for $t \in \mathbb{R}_+$ and $a \in A$, and
- (ii) $\lim_{t\to\infty} \|V(a) S(t)^* h_1(a) S(t)\|$ for all $a \in A$.

Note that h_1 and h_2 are unitarily homotopic (respectively h_1 asymptotically dominates V), if and only if, h_1 and h_2 are unitarily equivalent (respectively h_1 dominates V) in $C_b(\mathbb{R}_+, \mathcal{M}(B))/C_0(\mathbb{R}_+, B) \supset \mathcal{M}(B)$.

 $\mathsf{C}_\mathsf{b}(\mathbb{R}_+\,,\mathcal{M}(B))/\,\mathsf{C}_\mathsf{0}(\mathbb{R}_+,B)\supset\mathcal{M}(B).$ This implies e.g. that h_c asymptotical

This implies e.g. that h_1 asymptotically absorbs h_2 if $h_2 \oplus h_2$ is unitarily homotopic to h_2 and h_1 asymptotically dominates $h_1 \oplus h_2$ in $C_b(\mathbb{R}_+, \mathcal{M}(B))/C_0(\mathbb{R}_+, B) \supset \mathcal{M}(B)$ - an algebraic calculation.

A unitary homotopy implies homotopy – in $\text{Hom}(A, \mathcal{M}(B))$ with point-norm topology – if the unitary group $\mathcal{U}(\mathcal{M}(B))$ of $\mathcal{M}(B)$ is connected in norm-topology (e.g. if B is stable).

Thus $h_1 \otimes \operatorname{id}_{\mathbb{K}}$ and $h_2 \otimes \operatorname{id}_{\mathbb{K}}$ are homotopic in $\operatorname{Hom}(A \otimes \mathbb{K}, J \otimes \mathbb{K})$, if h_1 and h_2 are unitarily homotopic and if J is an *ideal* of $\mathcal{M}(B)$ that contains $h_1(A)$.

It is usual not always possible to find the map $t \mapsto U(t)$ with U(0) = 1 in the definition of unitary homotopy.

Let $C \subset CP(A, B)$ a non-degenerate countably generated m.o.c. cone, where A is separable, B is σ -unital, and both of A and B are stable.

There exists a *-homomorphism $H_0: A \to \mathcal{M}(B)$ with following properties

- (i) H_0 is faithful non-degenerate,
- (ii) $\delta_{\infty} \circ H_0$ is unitarily equivalent to H_0 ,
- (iii) $V_b := b^* H_0(\cdot) b \in \mathcal{C}$ for each $b \in B$, and
- (iv) each $V \in \mathcal{C}$ can be approximated in point-norm topology by a sequence (V_{b_n}) .

Corollary (Uniqueness of the universal bi-module for C)

If $H_1: A \to \mathcal{M}(B)$ is a *-homomorphism that satisfies the conditions (i)–(iv) (in place of H_0), then H_1 and H_0 are unitarily homotopic. Each countably generated \mathcal{C} -compatible Hilbert A-B-bimodule (E, ϕ) is isomorphic to a sub-module of (B, H_0) .

The Hilbert B-module $\mathcal{H}_B \cong B$ is a "universal" Hilbert B-module (with trivial grading) and $H_0: A \to \mathcal{L}(\mathcal{H}_B)$ the "universal" *-monomorphism that corresponds to the given cone \mathcal{C} .

Definition of regular subalgebras:

Let $C \subset A$ a C^* -subalgebra. C is regular for A if

- (i) *C* separates the ideals *J* of *A*: $J_1 \cap C = J_2 \cap C$ implies $J_1 = J_2$.
- (ii) $C \cap (J_1 + J_2) = (C \cap J_1) + (C \cap J_2)$ for all $J_1, J_2 \in \mathcal{I}(A)$.

Theorem (Realization of Ψ, H.H., E.K.)

Suppose that B is separable and stable. Let $\Psi \colon \mathcal{I}(B) \to \mathcal{I}(A)$ a non-degenerate lower s.c. action of $\mathsf{Prim}(B)$ on A.

If $B \otimes \mathcal{O}_2$ contains a regular abelian C^* -subalgebra C then $\Psi = \Psi_{\mathcal{C}}$ for

 $\mathcal{C}:=\mathcal{C}_{\Psi}.$ In particular, Ψ comes from a non-degenerate

*-monomorphism $h \colon A \otimes \mathbb{K} \to \mathcal{M}(B)$, that is unique up to unitary homotopy of its infinite repeats.

Corollary (Reconstruction Theorem, H.H.,E.K.)

Suppose that A is a nuclear and stable, that Ω is a sup–inf closed sub-lattice of $\mathcal{I}(A)\cong \mathbb{O}(\mathsf{Prim}(A))$ with $\mathsf{Prim}(A),\emptyset\in \Omega$. Then there is a non-degenerate *-monomorphism $H_0\colon A\to \mathcal{M}(A)$ with following properties:

- (i) The infinite repeat $\delta_{\infty} \circ H_0$ is unitarily equivalent to H_0 .
- (ii) For every $U \in \mathbb{O}(\text{Prim}(A))$ holds $H_0(J(V)) = H_0(A) \cap \mathcal{M}(A, J(U))$ where $V \in \Omega$ is given by $V = \bigcup \{W \in \Omega : W \subset U\}$.

The H_0 is uniquely determined up to unitary homotopy.

Corollary (Continuation of Reconstruction Theorem)

The Cuntz-Pimsner algebra $\mathcal{O}_{\mathcal{H}}$ of the Hilbert A-A-module $\mathcal{H}:=(A,H_0)$ is stable and strongly purely infinite; and it is the same as the C*-Fock algebra $\mathcal{F}(\mathcal{H})$ of \mathcal{H} .

The natural embedding of A into $\mathcal{O}_{\mathcal{H}}$ defines a lattice isomorphism from Ω onto $\mathbb{O}(\mathsf{Prim}(\mathcal{O}_{\mathcal{H}}))$ and is a $\mathsf{KK}(X;\cdot,\cdot)$ -equivalence for $X:=\mathsf{prime}(\Omega)\cong\mathsf{Prim}(\mathcal{O}_{\mathcal{H}})$.

Theorem (On Prim(A), H.H.,E.K.,M.Rørdam)

Let X a point-complete T_0 -space. TFAE:

- (i) $X \cong Prim(E)$ for some exact C^* -algebra E.
- (ii) The lattice of open sets $\mathbb{O}(X)$ is isomorphic to an sup–inf invariant sub-lattice of $\mathbb{O}(Y)$ for some l.c. Polish space Y.
- (iii) There is an l.c. Polish space Y and a pseudo-open and pseudo-surjective continuous map $\pi: Y \to X$.

Theorem (On Prim(A), continuation)

If X satisfies (i)–(iii), then there is a stable nuclear C^* -algebra A with $A \cong A \otimes \mathcal{O}_2$, and a homeomorphism $\psi \colon X \to \mathsf{Prim}(A)$, such that,

for every nuclear stable B with $B \otimes \mathcal{O}_2 \cong B$ and every homeomorphism $\phi \colon X \to \mathsf{Prim}(B)$.

there is an isomorphism $\alpha \colon A \to B$ with $\alpha(\psi(x)) = \phi(x)$ for $x \in X$.

The α is unique up to unitary homotopy.