Cauchy-Stieltjes kernel families

Włodek Bryc

Fields Institute, July 23, 2013
NEF versus CSK families

The talk will switch between two examples of kernel families

\[\mathcal{K}(\mu) = \{ P_\theta(dx) : \theta \in \Theta \} \]
NEF versus CSK families
The talk will switch between two examples of kernel families

\[\mathcal{K}(\mu) = \{ P_\theta(dx) : \theta \in \Theta \} \]

▶ Natural exponential families (NEF):

\[P_\theta(dx) = \frac{1}{L(\theta)} e^{\theta x} \mu(dx) \]

\(\mu \) is a \(\sigma \)-finite measure, \(\Theta = (\theta_-, \theta_+) \).
NEF versus CSK families

The talk will switch between two examples of kernel families

\[\mathcal{K}(\mu) = \{ P_\theta(dx) : \theta \in \Theta \} \]

- Natural exponential families (NEF):
 \[P_\theta(dx) = \frac{1}{L(\theta)} e^{\theta x} \mu(dx) \]
 \(\mu \) is a \(\sigma \)-finite measure, \(\Theta = (\theta_-, \theta_+) \).

- Cauchy-Stieltjes kernel families (CSK):
 \[P_\theta(dx) = \frac{1}{L(\theta)} \frac{1}{1 - \theta x} \mu(dx) \]
 \(\mu \) is a probability measure with support bounded from above.
 The "generic choice" for \(\Theta \) is \(\Theta = (0, \theta_+) \).
A specific example of CSK
Noncanonical parameterizations

Let $\mu = \frac{1}{2} \delta_0 + \frac{1}{2} \delta_1$ be the Bernoulli measure
> ”Noncanonical” parametrization:

$P_\theta = 1 - \theta^2 - \theta \delta_0 + \frac{1}{2} - \theta \delta_1$, $\theta \in (-\infty, 1)$

$Q_p = \frac{1}{2} - p^2 - p \delta_0 + p \delta_1$, $p \in (0, 1)$

Bernoulli family parameterized by probability of success p.

$p = \int_x Q_p (dx)$ (parametrization by the mean)
A specific example of CSK
Noncanonical parameterizations

Let $\mu = \frac{1}{2} \delta_0 + \frac{1}{2} \delta_1$ be the Bernoulli measure

▶ ”Noncanonical” parametrization:

▶ $P_{\theta} = \frac{1-\theta}{2-\theta} \delta_0 + \frac{1}{2-\theta} \delta_1$, $\theta \in (-\infty, 1)$.

▶ Bernoulli family parameterized by probability of success p.

▶ $p = \int x Q_p (dx)$ (parametrization by the mean).
A specific example of CSK
Noncanonical parameterizations

Let $\mu = \frac{1}{2} \delta_0 + \frac{1}{2} \delta_1$ be the Bernoulli measure

- ”Noncanonical” parametrization:
 - $P_\theta = \frac{1-\theta}{2-\theta} \delta_0 + \frac{1}{2-\theta} \delta_1$, $\theta \in (-\infty, 1)$.

- ”Canonical” parametrization: $p = \frac{1}{2-\theta}$

- $Q_p := P_{2-\frac{1}{p}} = (1 - p) \delta_0 + p \delta_1$, $p \in (0, 1)$
A specific example of CSK
Noncanonical parameterizations

Let $\mu = \frac{1}{2}\delta_0 + \frac{1}{2}\delta_1$ be the Bernoulli measure

- "Noncanonical" parametrization:
 $$P_\theta = \frac{1 - \theta}{2 - \theta}\delta_0 + \frac{1}{2 - \theta}\delta_1, \quad \theta \in (-\infty, 1).$$

- "Canonical" parametrization: $p = \frac{1}{2 - \theta}$
 $$Q_p := P_{\frac{1}{2 - \theta}} = (1 - p)\delta_0 + p\delta_1, \quad p \in (0, 1)$$

- Bernoulli family parameterized by probability of success p.
 $$p = \int xQ_p(dx) \text{ (parametrization by the mean)}$$

Parametrization by the mean

\[m(\theta) = \int xP_\theta(dx) = \begin{cases}
\frac{L'(\theta)}{L(\theta)} & \text{NEF} \\
\frac{L(\theta)-1}{\theta L(\theta)} & \text{CSK}
\end{cases} \]

- For non-degenerate measure \(\mu \), function \(\theta \mapsto m(\theta) \) is strictly increasing and has inverse \(\theta = \psi(m) \).
Parametrization by the mean

\[m(\theta) = \int x P_\theta(dx) = \begin{cases} \frac{L'(\theta)}{L(\theta)} & \text{NEF} \\ \frac{L(\theta) - 1}{\theta L(\theta)} & \text{CSK} \end{cases} \]

- For non-degenerate measure \(\mu \), function \(\theta \mapsto m(\theta) \) is strictly increasing and has inverse \(\theta = \psi(m) \).
- \(\theta \mapsto m(\theta) \) maps \((0, \theta_+) \) onto \((m_0, m_+) \), "the domain of means".
Parametrization by the mean

\[m(\theta) = \int xP_\theta(dx) = \begin{cases} \frac{L'(\theta)}{L(\theta)} & \text{NEF} \\ \frac{L(\theta)-1}{\theta L(\theta)} & \text{CSK} \end{cases} \]

- For non-degenerate measure \(\mu \), function \(\theta \mapsto m(\theta) \) is strictly increasing and has inverse \(\theta = \psi(m) \).
- \(\theta \mapsto m(\theta) \) maps \((0, \theta_+\) onto \((m_0, m_+)\), ”the domain of means”.
- Parameterizations by the mean:

\[\mathcal{K}(\mu) = \{ Q_m(dx) : m \in (m_0, m_+) \} \]

where \(Q_m(dx) = P_{\psi(m)}(dx) \)
Variance function

\[V(m) = \int (x - m)^2 Q_m(dx) \]

- Variance function always exists for NEF.
Variance function

\[V(m) = \int (x - m)^2 Q_m(dx) \]

- Variance function always exists for NEF.
- Variance function exists for CSK when \(\mu(dx) \) has the first moment.
Variance function

\[V(m) = \int (x - m)^2 Q_m(dx) \]

- Variance function always exists for NEF.
- Variance function exists for CSK when \(\mu(dx) \) has the first moment.
- Variance function \(V(m) \) (together with the domain of means \(m \in (m_-, m_+) \)) determines NEF uniquely (Morris (1982)).
Variance function

\[V(m) = \int (x - m)^2 Q_m(dx) \]

- Variance function always exists for NEF.
- Variance function exists for CSK when \(\mu(dx) \) has the first moment.
- Variance function \(V(m) \) (together with the domain of means \(m \in (m_-, m_+) \)) determines NEF uniquely (Morris (1982)).
- Variance function \(V(m) \) (together with \(m_0 = m(0) \in \mathbb{R} \), the mean of \(\mu \)) determines measure \(\mu \) uniquely (hence determines CSK uniquely).
Example: a CSK with quadratic variance function

- Bernoulli measures $Q_m = (1 - m)\delta_0 + m\delta_1$ are parameterized by the mean, with the "domain of means" $m \in (0, 1)$.
Example: a CSK with quadratic variance function

- Bernoulli measures \(Q_m = (1 - m)\delta_0 + m\delta_1 \) are parameterized by the mean, with the "domain of means" \(m \in (0, 1) \).
- The variance function is \(V(m) = m(1 - m) \).
Example: a CSK with quadratic variance function

- Bernoulli measures $Q_m = (1 - m)\delta_0 + m\delta_1$ are parameterized by the mean, with the "domain of means" $m \in (0, 1)$.
- The variance function is $V(m) = m(1 - m)$
- The generating measure $\mu = \frac{1}{2}\delta_0 + \frac{1}{2}\delta_1$ is determined uniquely once we specify its mean $m_0 = 1/2$.

That is, there is no other μ that would have mean 1/2 and generate CSK with variance function $V(m)$ that would equal to $m(1 - m)$ for all $m \in (1/2 - \delta, 1/2 + \delta)$
All NEF with quadratic variance functions are known
Morris class. Meixner laws

- The NEF with the variance function $V(m) = 1 + am + bm^2$
 was described by Morris (1982), Ismail-May (1978)
All NEF with quadratic variance functions are known
Morris class. Meixner laws

- The NEF with the variance function $V(m) = 1 + am + bm^2$
 was described by Morris (1982), Ismail-May (1978)
- Letac-Mora (1990): cubic $V(m)$
All NEF with quadratic variance functions are known
Morris class. Meixner laws

- The NEF with the variance function $V(m) = 1 + am + bm^2$
 was described by Morris (1982), Ismail-May (1978)
- Letac-Mora (1990): cubic $V(m)$
- Various other classes Kokonendji, Letac, ...
All CSK with quadratic variance functions are known

Suppose $m_0 = 0$, $V(0) = 1$.

Theorem (WB.-Ismail (2005))

1. μ is the Wigner's semicircle (free Gaussian) law iff $V(m) = 1$
2. μ is the Marchenko-Pastur (free Poisson) type laws
3. μ is the “free Gamma” type law iff $V(m) = (1 + bm)^2$
4. μ is the free binomial type law (Kesten law, McKay law) iff $V(m) = 1 + am + bm^2$ with $-1 \leq b < 0$
All CSK with quadratic variance functions are known

Suppose \(m_0 = 0, \ V(0) = 1. \)

Theorem (WB.-Ismail (2005))

1. \(\mu \) is the Wigner’s semicircle (free Gaussian) law iff \(V(m) = 1 \)

End now
All CSK with quadratic variance functions are known

Suppose $m_0 = 0$, $V(0) = 1$.

Theorem (WB.-Ismail (2005))

1. μ is the Wigner’s semicircle (free Gaussian) law iff $V(m) = 1$

 $K(\mu)$ are the (atomless) Marchenko-Pastur (free Poisson) type laws
All CSK with quadratic variance functions are known

Suppose $m_0 = 0$, $V(0) = 1$.

Theorem (WB.-Ismail (2005))

1. μ is the Wigner’s semicircle (free Gaussian) law iff $V(m) = 1$
 $K(\mu)$ are the (atomless) Marchenko-Pastur (free Poisson) type laws
2. μ is the Marchenko-Pastur (free Poisson) type law iff $V(m) = 1 + am$ with $a \neq 0$
3. μ is the “free Gamma” type law iff $V(m) = (1 + bm)^2$ with $b > 0$

End now
All CSK with quadratic variance functions are known

Suppose $m_0 = 0$, $V(0) = 1$.

Theorem (WB.-Ismail (2005))

1. μ is the Wigner’s semicircle (free Gaussian) law iff $V(m) = 1$

 $K(\mu)$ are the (atomless) Marchenko-Pastur (free Poisson) type laws

2. μ is the Marchenko-Pastur (free Poisson) type law iff $V(m) = 1 + am$ with $a \neq 0$

3. μ is the “free Gamma” type law iff $V(m) = (1 + bm)^2$ with $b > 0$

4. μ is the free binomial type law (Kesten law, McKay law) iff $V(m) = 1 + am + bm^2$ with $-1 \leq b < 0$
Reproductive properties of NEF and CSK

Theorem (NEF: Jörgensen (1997))

If \(\mu \) is a probability measure in NEF with variance function \(V(m) \), then for \(r \in \mathbb{N} \) the \(r \)-fold convolution \(\mu_r := \mu^*r \), is in NEF with variance function \(rV(m/r) \).

Note

▶ If \(rV(m/r) \) is a variance function for all \(r \in (0, 1) \) then \(\mu \) is infinitely divisible.
▶ The domains of means behave differently.
▶ The ranges of admissible \(r \geq 1 \) are different.
Reproductive properties of NEF and CSK

Theorem (NEF: Jörgensen (1997))
If μ is a probability measure in NEF with variance function $V(m)$, then for $r \in \mathbb{N}$ the r-fold convolution $\mu_r := \mu^\ast r$, is in NEF with variance function $rV(m/r)$.

Theorem (CSK: WB-Ismail (2005), WB-Hassairi (2011))
If a probability measure μ generates CSK with variance function $V_{\mu}(m)$, then the free additive convolution power $\mu_r := \mu \boxplus r$ generates the CKS family with variance function $rV_{\mu}(m/r)$.

Note

▶ If $rV(m/r)$ is a variance function for all $r \in (0, 1)$ then μ is infinitely divisible.
▶ The domains of means behave differently.
▶ The ranges of admissible $r \geq 1$ are different.
Reproductive properties of NEF and CSK

Theorem (NEF: Jörgensen (1997))

If μ is a probability measure in NEF with variance function $V(m)$, then for $r \in \mathbb{N}$ the r-fold convolution $\mu_r := \mu^\ast r$, is in NEF with variance function $rV(m/r)$.

Theorem (CSK: WB-Ismail (2005), WB-Hassairi (2011))

If a probability measure μ generates CSK with variance function $V_\mu(m)$, then the free additive convolution power $\mu_r := \mu \boxplus r$ generates the CKS family with variance function $rV_\mu(m/r)$.

Note

- If $rV(m/r)$ is a variance function for all $r \in (0, 1)$ then μ is infinitely divisible.
Reproductive properties of NEF and CSK

Theorem (NEF: Jörgensen (1997))
If μ is a probability measure in NEF with variance function $V(m)$, then for $r \in \mathbb{N}$ the r-fold convolution $\mu_r := \mu^* r$, is in NEF with variance function $rV(m/r)$.

Theorem (CSK: WB-Ismail (2005), WB-Hassairi (2011))
If a probability measure μ generates CSK with variance function $V_\mu(m)$, then the free additive convolution power $\mu_r := \mu \boxplus r$ generates the CKS family with variance function $rV_\mu(m/r)$.

Note
- If $rV(m/r)$ is a variance function for all $r \in (0, 1)$ then μ is infinitely divisible.
- The domains of means behave differently.
Reproductive properties of NEF and CSK

Theorem (NEF: Jørgensen (1997))

If μ is a probability measure in NEF with variance function $V(m)$, then for $r \in \mathbb{N}$ the r-fold convolution $\mu_r := \mu^* r$, is in NEF with variance function $rV(m/r)$.

Theorem (CSK: WB-Ismail (2005), WB-Hassairi (2011))

If a probability measure μ generates CSK with variance function $V_\mu(m)$, then the free additive convolution power $\mu_r := \mu \boxplus r$ generates the CKS family with variance function $rV_\mu(m/r)$.

Note

- If $rV(m/r)$ is a variance function for all $r \in (0, 1)$ then μ is infinitely divisible.
- The domains of means behave differently.
- The ranges of admissible $r \geq 1$ are different.
Pseudo-Variance function for CSK

- The variance

\[V(m) = \frac{1}{L(\psi(m))} \int \frac{(x - m)^2}{1 - \psi(m)x} \mu(dx) \]

is undefined if \(m_0 = \int x \mu(dx) = -\infty \). (This issue does not arise for NEF)
Pseudo-Variance function for CSK

- The variance

\[V(m) = \frac{1}{L(\psi(m))} \int \frac{(x - m)^2}{1 - \psi(m)x} \mu(dx) \]

is undefined if \(m_0 = \int x \mu(dx) = -\infty \). (This issue does not arise for NEF)

- When \(V(m) \) exists, consider

\[\nabla(m) = \frac{m}{m - m_0} V(m) \]
Pseudo-Variance function for CSK

- The variance

\[
V(m) = \frac{1}{L(\psi(m))} \int \frac{(x - m)^2}{1 - \psi(m)x} \mu(dx)
\]

is undefined if \(m_0 = \int x\mu(dx) = -\infty \). (This issue does not arise for NEF)

- When \(V(m) \) exists, consider

\[
\nabla(m) = \frac{m}{m - m_0} V(m)
\]

- It turns out that

\[
\nabla(m) = m \left(\frac{1}{\psi(m)} - m \right)
\]

(1)

where \(\psi(\cdot) \) is the inverse of \(\theta \mapsto m(\theta) = \int xP_\theta(dx) \) on \((0, \theta_+)\).
Pseudo-Variance function for CSK

The variance

\[V(m) = \frac{1}{L(\psi(m))} \int \frac{(x - m)^2}{1 - \psi(m)x} \mu(dx) \]

is undefined if \(m_0 = \int x \mu(dx) = -\infty \). (This issue does not arise for NEF)

When \(V(m) \) exists, consider

\[\nabla(m) = \frac{m}{m - m_0} V(m) \]

It turns out that

\[\nabla(m) = m \left(\frac{1}{\psi(m)} - m \right) \tag{1} \]

where \(\psi(\cdot) \) is the inverse of \(\theta \mapsto m(\theta) = \int x P_\theta(dx) \) on \((0, \theta_+)\).

Expression (1) defines a ”pseudo-variance” function \(\nabla(m) \) that is well defined for all non-degenerate probability measures \(\mu \) with support bounded from above.
Properties of pseudo-variance function

- Uniqueness: measure $\mu(dx)$ is determined uniquely by ∇

Explicit formula for the CSK family:

$$Q_m(dx) = L(\psi(m))(1 - \psi(m)x)\mu(dx) = V(m) + m(m - x)\mu(dx)$$

Reproductive property still holds

Theorem (WB-Hassairi (2011))

Let V_μ be a pseudo-variance function of the CSK family generated by a probability measure μ with support bounded from above and mean $-\infty \leq m_0 < \infty$. Then for $m > r m_0$ close enough to $r m_0$,$$V_\mu \boxplus r(m) = r V_\mu(m/r).$$ (2)
Properties of pseudo-variance function

- Uniqueness: measure $\mu(dx)$ is determined uniquely by ∇
- Explicit formula for the CSK family:

\[
Q_m(dx) = \frac{1}{L(\psi(m))(1 - \psi(m)x)} \mu(dx)
\]

\[
= \frac{\nabla(m)}{\nabla(m) + m(m-x)} \mu(dx)
\]
Properties of pseudo-variance function

- Uniqueness: measure $\mu(dx)$ is determined uniquely by ∇
- Explicit formula for the CSK family:

$$Q_m(dx) = \frac{1}{L(\psi(m))(1 - \psi(m)x)}\mu(dx)$$

$$= \frac{\nabla(m)}{\nabla(m) + m(m - x)}\mu(dx)$$

- Reproductive property still holds
Properties of pseudo-variance function

- Uniqueness: measure \(\mu(dx) \) is determined uniquely by \(\nabla \).
- Explicit formula for the CSK family:

\[
Q_m(dx) = \frac{1}{L(\psi(m))(1 - \psi(m)x)} \mu(dx)
\]

\[
= \frac{\nabla(m)}{\nabla(m) + m(m - x)} \mu(dx)
\]

- Reproductive property still holds

Theorem (WB-Hassairi (2011))

Let \(\nabla_\mu \) be a pseudo-variance function of the CSK family generated by a probability measure \(\mu \) with support bounded from above and mean \(-\infty \leq m_0 < \infty\). Then for \(m > rm_0 \) close enough to \(rm_0 \),

\[
\nabla_\mu \boxtimes r(m) = r \nabla_\mu(m/r).
\]
Example: CKS family with cubic pseudo-variance function

Measure μ generating CSK with $\nabla (m) = m^3$ has density

$$f(x) = \frac{\sqrt{-1 - 4x}}{2\pi x^2} 1(-\infty, -1/4)(x)$$ \hspace{1cm} (3)

From reproductive property it follows that μ is $1/2$-stable with respect to \boxplus, a fact already noted before: [Bercovici and Pata, 1999, page 1054], [Pérez-Abreu and Sakuma, 2008]

$$Q_m(dx) = \frac{m^2 \sqrt{-1 - 4x}}{2\pi (m^2 + m - x)x^2} 1(-\infty, -1/4)(x) dx : m \in (-\infty, m_+)$$

What is m_+?

End now
Domain of means: $\{ Q_m : m \in (m_0, m_+) \}$

For $\nabla(m) = m^3$ the domain of means is $(-\infty, m_+)$, where:

1. $\theta \mapsto m(\theta)$ is increasing, so $m_+ = \lim_{\theta \uparrow \theta_{\text{max}}} m(\theta)$. This gives $m_+ = -1$
Domain of means: \(\{ Q_m : m \in (m_0, m_+) \} \)

For \(V(m) = m^3 \) the domain of means is \((-\infty, m_+)\), where:

1. \(\theta \mapsto m(\theta) \) is increasing, so \(m_+ = \lim_{\theta \to \theta_{\text{max}}} m(\theta) \). This gives \(m_+ = -1 \)

2. \(\frac{1}{1-\theta x} 1_{(-\infty,-1/4)}(x) \) is positive for \(\theta \in (0, \infty) \cup (-\infty, -4) \). The domain of means can be extended to \(m_+ = \lim_{\theta \to -4} m(\theta) \). This extends the domain of means up to \(m_+ = -1/2 \)

End now
Domain of means: \(\{ Q_m : m \in (m_0, m_+) \} \)

For \(V(m) = m^3 \) the domain of means is \((-\infty, m_+)\), where:

1. \(\theta \mapsto m(\theta) \) is increasing, so \(m_+ = \lim_{\theta \to \theta_{\max}} m(\theta) \). This gives \(m_+ = -1 \)

2. \(\frac{1}{1-\theta x} 1_{(-\infty,-1/4)}(x) \) is positive for \(\theta \in (0, \infty) \cup (-\infty, -4) \).
 The domain of means can be extended to \(m_+ = \lim_{\theta \to -4} m(\theta) \). This extends the domain of means up to \(m_+ = -1/2 \)

3. \(\frac{m^2}{m^2 + m - x} 1_{(-\infty,-1/4)}(x) \) is positive for \(m \neq -1/2 \).
Domain of means: \(\{ Q_m : m \in (m_0, m_+) \} \)

For \(V(m) = m^3 \) the domain of means is \((-\infty, m_+) \), where:

1. \(\theta \mapsto m(\theta) \) is increasing, so \(m_+ = \lim_{\theta \to \theta_{\text{max}}} m(\theta) \). This gives \(m_+ = -1 \)

2. \(\frac{1}{1-\theta x} 1_{(-\infty,-1/4)}(x) \) is positive for \(\theta \in (0, \infty) \cup (-\infty, -4) \).
 The domain of means can be extended to \(m_+ = \lim_{\theta \to -4} m(\theta) \). This extends the domain of means up to \(m_+ = -1/2 \)

3. \(\frac{m^2}{m^2 + m-x} 1_{(-\infty,-1/4)}(x) \) is positive for \(m \neq -1/2 \).

 ▶ But \(\int Q_m(dx) < 1 \) for \(m > 1/2 \).
Domain of means: \(\{ Q_m : m \in (m_0, m_+) \} \)

For \(\forall (m) = m^3 \) the domain of means is \((-\infty, m_+) \), where:

1. \(\theta \mapsto m(\theta) \) is increasing, so \(m_+ = \lim_{\theta \to \theta_{\max}} m(\theta) \). This gives \(m_+ = -1 \)

2. \(\frac{1}{1-\theta_{\max}} 1_{(-\infty, -1/4)}(x) \) is positive for \(\theta \in (0, \infty) \cup (-\infty, -4) \).

The domain of means can be extended to \(m_+ = \lim_{\theta \to -4} m(\theta) \). This extends the domain of means up to \(m_+ = -1/2 \)

3. \(\frac{m^2}{m^2 + m - x} 1_{(-\infty, -1/4)}(x) \) is positive for \(m \neq -1/2 \).

- But \(\int Q_m(dx) < 1 \) for \(m > 1/2 \).
- \(Q_m(dx) = \frac{m^2}{(m^2 + m - x)} \mu(dx) + \frac{(1+2m)^2}{(m+1)^2} \delta_{m+m^2} \) is well defined and parameterized by the mean for all \(m \in (-\infty, \infty) \).
Summary

Kernels $e^{\theta x}$ and $1/(1 - \theta x)$ generate NEF and CSK families

Similarities

- Parameterizations by the mean
- Quadratic variance functions determine interesting laws
- Convolution affects variance function for NEF in a similar way as the additive free convolution affects the variance function for CSK

Differences

- The generating measure of a NEF is not unique.
- A CSK family in parameterizations by the mean may be well-defined beyond the "domain of means"
- For CSK family, the variance function may be undefined. Instead of the variance function [Bryc and Hassairi, 2011] look at the "pseudo-variance" function $m \mapsto mV(m)/(m - m_0)$ which is well defined for more measures μ.
Summary

Kernels $e^{\theta x}$ and $1/(1 - \theta x)$ generate NEF and CSK families

Similarities

▶ parameterizations by the mean
Summary
Kernels $e^{\theta x}$ and $1/(1 - \theta x)$ generate NEF and CSK families

Similarities
- parameterizations by the mean
- Quadratic variance functions determine interesting laws
Summary

Kernels $e^{\theta x}$ and $1/(1 - \theta x)$ generate NEF and CSK families

Similarities

- parameterizations by the mean
- Quadratic variance functions determine interesting laws
- Convolution affects variance function for NEF in a similar way as the additive free convolution affects the variance function for CSK

Differences

- The generating measure of a NEF is not unique.
- A CSK family in parameterizations by the mean may be well defined beyond the “domain of means”
- For CSK family, the variance function may be undefined. Instead of the variance function [Bryc and Hassairi, 2011] look at the “pseudo-variance” function $m \mapsto mV(m)/(m - m_0)$ which is well defined for more measures μ.
Summary

Kernels $e^{\theta x}$ and $1/(1 - \theta x)$ generate NEF and CSK families

Similarities

- parameterizations by the mean
- Quadratic variance functions determine interesting laws
- Convolution affects variance function for NEF in a similar way as the additive free convolution affects the variance function for CSK

Differences

- The generating measure of a NEF is not unique.
- A CSK family in parameterizations by the mean may be well defined beyond the "domain of means".
- For CSK family, the variance function may be undefined. Instead of the variance function [Bryc and Hassairi, 2011] look at the "pseudo-variance" function $m \mapsto m V(m)/(m - m_0)$ which is well defined for more measures μ.
Summary

Kernels $e^{\theta x}$ and $1/(1 - \theta x)$ generate NEF and CSK families

Similarities

- parameterizations by the mean
- Quadratic variance functions determine interesting laws
- Convolution affects variance function for NEF in a similar way as the additive free convolution affects the variance function for CSK

Differences

- The generating measure of a NEF is not unique.
Summary

Kernels $e^{\theta x}$ and $1/(1 - \theta x)$ generate NEF and CSK families

Similarities

- parameterizations by the mean
- Quadratic variance functions determine interesting laws
- Convolution affects variance function for NEF in a similar way as the additive free convolution affects the variance function for CSK

Differences

- The generating measure of a NEF is not unique.
- A CSK family in parameterizations by the mean may be well defined beyond the “domain of means”
Summary

Kernels $e^{\theta x}$ and $1/(1 - \theta x)$ generate NEF and CSK families

Similarities

- parameterizations by the mean
- Quadratic variance functions determine interesting laws
- Convolution affects variance function for NEF in a similar way as the additive free convolution affects the variance function for CSK

Differences

- The generating measure of a NEF is not unique.
- A CSK family in parameterizations by the mean may be well defined beyond the “domain of means”
- For CSK family, the variance function may be undefined. Instead of the variance function [Bryc and Hassairi, 2011] look at the "pseudo-variance" function $m \mapsto mV(m)/(m - m_0)$ which is well defined for more measures μ.
Thank you
Thank you
Stable laws and domains of attraction in free probability theory.
With an appendix by Philippe Biane.
Stable laws and domains of attraction in free probability theory.
With an appendix by Philippe Biane.

Free exponential families as kernel families.

One-sided Cauchy-Stieltjes kernel families.
arxiv.org/abs/0906.4073.

Free generalized gamma convolutions.
References

Stable laws and domains of attraction in free probability theory.
With an appendix by Philippe Biane.

Free exponential families as kernel families.

One-sided Cauchy-Stieltjes kernel families.
arxiv.org/abs/0906.4073.

Free generalized gamma convolutions.
References

Stable laws and domains of attraction in free probability theory.
With an appendix by Philippe Biane.

Free exponential families as kernel families.

One-sided Cauchy-Stieltjes kernel families.
arxiv.org/abs/0906.4073.

Approximation operators, exponential, and q-exponential families.
References

Stable laws and domains of attraction in free probability theory.
With an appendix by Philippe Biane.

Free exponential families as kernel families.

One-sided Cauchy-Stieltjes kernel families.
arxiv.org/abs/0906.4073.

Approximation operators, exponential, and \(q\)-exponential families.

Free generalized gamma convolutions.