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Introduction

I Cournot game framework: Producers choose quantities
of energy to produce and receive profit based on a single
market price determined through aggregate supply. In the
Cournot game, the strategic variable is quantity.

I Dynamic game framework: Producers choose quantities
of energy instantaneously to maximize profit over a infinite
time horizon.

I Ludkovski and Sircar (2011) studied the stochastic effect of
resource exploration in dynamic Cournot Model of
exhaustible resources, such as oil.

I We extend the dynamic Cournot model by considering
stochastic demand that switches between high and low
demand regimes. We study the producers’ strategies
under stochastic demand.
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The model settings
Exhaustible producer: produce exhaustible resources, such
as oil, free of production cost, but undertake costly exploration
to replenish his diminishing reserves.
I Reserve Process: dXt = −q(Xt )1{Xt>0}dt + δdNt ,X0 = x,

I Nt = number of discoveries ∼ Poisson process with
controlled intensity atλ.

I qt = q(Xt ) is instantaneous production rate.
I Exploration cost function: C(at ) = κat + aβt /β,

at = exploration effort.
I Instantaneous net return: qtpt − C(at ).

Stochastic demand: price (inverse demand) function:

pt = p(qt ,Mt ) = H1{Mt=H} + L1{Mt=L } − qt ,

I Mt ∈ {L ,H}: market demand regime (continuous-time
Markov chain), L = low regime, H = high regime.

I Exponential holding rates on the two regimes are λ0 and
λ1 respectively.



Monopoly Production and Exploration

Value functions of reserves of exhaustible resources in low and
high regimes respectively:

•vL (x) = sup
q,a

E

[∫
∞

0
e−rt (qtp(qt ,Mt ) − C(at )) dt |X0 = x ,M0 = L

]

•vH(x) = sup
q,a

E

[∫
∞

0
e−rt (qtp(qt ,Mt ) − C(at )) dt |X0 = x ,M0 = H

]

I The exhaustible producer chooses optimal production
rates qt := q(Xt ) and exploration efforts at := a(Xt )
instantaneously at each t ∈ [0,+∞] to optimize the overall
discounted net profit on infinite time horizon.



HJB Equations
The Hamilton-Jacobi-Bellman equations for the value functions
v0 and v1(x)

0 = sup
qL

[
qL (L − qL ) − qLv′L

]
+ sup

aL

[aLλ∆vL − C(aL )]

+ λ0vH − (λ0 + r)vL ,

0 = sup
qH

[
qH (H − qH) − qHv′H

]
+ sup

aH

[aHλ∆vH − C(aH)]

+ λ1vL − (λ1 + r)vH ,

where ∆vi(x) := vi(x + δ) − vi(x), i = L ,H.
I Production rates control:

qL (x) = 1
2

(
L − v′L (x)

)+
, qH(x) = 1

2

(
H − v′H(x)

)+
.

I Exploration efforts control:

aL (x) = [(λ∆vL (x) − κ)+]γ−1,aH(x) = [(λ∆vH(x) − κ)+]γ−1,

γ =
β

β − 1
.



Boundary conditions of the HJB equations

vL (x) = sup
aL≥0

vH(x)λ0 + vL (x + δ)λaL − C(aL )

r + λ0 + λaL
,

vH(x) = sup
aH≥0

vL (x)λ1 + vH(x + δ)λaH − C(aH)

r + λ1 + λaH
.

We obtain the boundary condition by taking x = 0:

vL (0) = sup
aL≥0

vH(0)λ0 + vL (δ)λaL − C(aL )

r + λ0 + λaL
,

vH(0) = sup
aH≥0

vL (0)λ1 + vH(δ)λaH − C(aH)

r + λ1 + λaH
.



Computational Results
• Use the numerical scheme in Ludkovski and Sircar(2011).

Figure : Optimal production rates qL (x), qH(x) (increasing) and
optimal exploration rates aL (x), aH(x) (decreasing) under stochastic
demand p(x ,M0) = 11{M0=H} + 1

21{M0=L } − q(x). The parameters are
δ = 1, λ0 = 1/3, λ1 = 1/5, C(a) = 0.1a + a2/2.



Interpretation of q(x) and a(x)

• Optimal production rates
I In both the two regimes, production rates q(x) increase in

reserves level x.
I The marginal increment of q(x) is monotonically

decreasing, and qL (x)→ L
2 , qH(x)→ H

2 as x goes to large
enough.

• Optimal exploration efforts
I aL (x) and aH(x) decrease in reserve level x, more

remaining reserves needs less exploration efforts.
I Low regime efforts aL (x) is less than high regime efforts

aH(x), since in low regime production is less than high
regime, thus less exploration efforts are needed.



Limit behavior of the model

• As λ0, λ1 →∞, mean holding time in each regime gets small,
the frequency of regime-switching increases, the market gets
more volatile:
I Production rates: Production moves down in low regime

and moves up in high regime. Producer holds reserves in
low regime for expanding production in high regime to
make more profit. Less mean holding time in low regime
ensures that the discounted extra profit in high regime can
cover the loss in low regime due to reduced production.

I Exploration efforts: Exploration efforts move up in low
regime and down in high regime. Since producer holds
reserves in low regime for production in high regime,
exploration efforts in high regime is not needed that much.
In low regime more efforts are made to explore resources
for production in high regime.



Limit behavior of the model

Figure : Top panel: production rate qL (x) shifts to the right, qH(x)
shifts to the left. Bottom panel:exploration rates aL (x) shifts to the
right, aH(x) shifts to the left. λ0 = m/3, λ1 = m/5, m = 1,5,10,15,20.



Duopoly with a green producer

We consider the duopoly with a green producer:
I Exhaustible resources producer (player 1): produces

exhaustible resource with zero cost, but needs exploration
cost. Instantaneous net return

q1
t pt − C(at )

I Green producer (player 2): produces inexhaustible
resources,e.g. solar power, but need positive fixed
marginal production costs c > 0. Instantaneous net return

q2
t pt − cq2

t

Price (inverse demand) function :
pt = p(qt ,Mt ) = H1{Mt=H} + L1{Mt=L } − q1

t − q2
t , Mt ∈ {L ,H}.



Duopoly with a green producer
• vL (x), vH(x): value functions of the exhaustible producer in
low and high regimes;

vL (x) = sup
q1,a

E
[∫

∞

0
e−rt (q1

t p(q1
t , (q

2
t )∗,Mt ) − C(at )) dt |X0 = x ,M0 = L

]

vH(x) = sup
q1,a

E
[∫

∞

0
e−rt (q1

t p(q1
t , (q

2
t )∗,Mt ) − C(at )) dt |X0 = x ,M0 = H

]
• gL (x),gH(x): value functions of the green producer in low and
high regimes.

1L (x) = sup
q2

E
[∫

∞

0
e−rt (q2

t (p((q1
t )∗,q2

t ,Mt ) − c)) dt |X0 = x ,M0 = L
]

1H(x) = sup
q2

E
[∫

∞

0
e−rt (q2

t (p((q1
t )∗,q2

t ,Mt ) − c)) dt |X0 = x ,M0 = H
]



HJB equations of the value functions

• sup
q1

0

[
q1

0

(
L − q1

0 − (q2
0)∗

)
− v′0(x)q1

0

]
+ sup

a0

[a0λ∆v0(x) − C(a0)]

+ λ0v1(x) − (λ0 + r)v0(x) = 0,

• sup
q1

1

[
q1

1

(
H − q1

1 − (q2
1)∗

)
− v′1(x)q1

1

]
+ sup

a1

[a1λ∆v1(x) − C(a1)]

+ λ1v0(x) − (λ1 + r)v1(x) = 0,

• sup
q2

0

[
q2

0

(
L − (q1

0)∗ − q2
0 − c

)]
− 1′0(x)(q1

0)∗ + a0λ∆10(x)

+ λ011(x) − (r + λ0)10(x) = 0,

• sup
q2

1

[
q2

1

(
H − (q1

1)∗ − q2
1 − c

)]
− 1′1(x)(q1

1)∗ + a1λ∆11(x)

+ λ110(x) − (r + λ1)11(x) = 0.



Nash equilibrium of the two players’ strategies

•Optimal production rates:
I (qoil

L (x))∗ = 1
2 max

(
L − (qgreen

L (x))∗ − v′L (x),0
)
,

I (qgreen
L (x))∗ = 1

2 max
(
L − (qoil

L (x))∗ − c,0
)

;

I (qoil
H (x))∗ = 1

2 max
(
H − (qgreen

H (x))∗ − v′H(x),0
)
,

I (qgreen
H (x))∗ = 1

2 max
(
H − (qoil

H (x))∗ − c,0
)
.

•Optimal exploration efforts:
I aL (x) = [(λ∆vL (x) − κ)+]γ−1,

I aH(x) = [(λ∆vH(x) − κ)+]γ−1, γ =
β
β−1 ,C(a) = κa + aβ

β



Computational results
The exhaustible producer
• The production rate is increasing in x, and increasing in c,
since green production is disencouraged as c increases.

Figure : Exhaustible producer’s optimal production rate qoil
L (x) and

qoil
H (x) for c = 0.55,0.60,0.65, and L = 0.75,H = 1.



Computational results
The green producer
• Green production rate is decreasing in reserves level x.
• Green production decreases as cost c increases in both high
and low regimes.

Figure : Green producer’s optimal production rate qgreen
L (x) and

qgreen
H (x) for c = 0.55,0.60,0.65, and L = 0.75,H = 1.



Saturation and Blockading

I Saturation of exhaustible resources exploration:
exploration efforts are made if reserves level x is small, and
stopped if reserves level x is large. We are interested in
the critical reserve level x > 0 where exploration is closed.

I xsat := sup
{
x > 0 : a(x) > 0

}
.

I Blockading of green production: exhaustible production
increases in x, green production decreases in x. We are
interested in critical reserves level x > 0 where the green
production is blockaded.

I xb := sup
{
x > 0 : qgreen(x) > 0

}
.



Saturation and Blockading
as a function of green production cost c.

Consider xsat and xb as functions of green production cost c:
I xsat :

I when c is small (c < 0.55 in the figure), green producer is
the leader, exhaustible producer is disencouraged and
lowers exploration.

I As c increases moderately, the exhaustible producer begins
to lead the market, and therefore increase exploration
efforts.

I When c is large (c > 0.6 in the figure), green production is
highly discouraged or even blockaded, the exhaustible
producer becomes effective leader of the market, thus
exploration efforts no longer increases with c.

I xb : increase in c discourages green production and thus
lower the blockading level xb .



Saturation and Blockading
as a function of green production cost c.

Figure : The higher curves are for high regime, the lower curves are
for low regime. We take L = 0.75,H = 1.



Saturation and Blockading
as a function of start-up exploration cost κ.

Consider xsat and xb as a function of start-up exploration cost
κ.
I Recall that the cost function of exploration efforts is

C(a) = κa + aβ/β
I Exhaustible producer: As κ increases, exploration gets

more costly, exploration efforts a decreases. Thus xsat
decreases in κ in both regimes.

I Green producer: As κ increases, exploration efforts of
exhaustible resources decreases, and thus less reserves
can be used for production. The exhaustible production
decreases, and the green production increases. Therefore
xb increases in κ.



Saturation and Blockading
as a function of start-up exploration cost κ.

Figure : xsat and xb as a function of start-up exploration cost κ. The
higher curves are for high-demand regime, the lower curves are for
low-demand regime. We take L = 0.75,H = 1, and c = 0.6.



Exhaustible production shut-down

I Since the high regime is more profitable than the low
regime, the exhaustible producer may shut down
production and hold reserves in low regime and restart
production after switch to the high regime to gain more
profit.

I When the difference between the two regimes, i.e. the
difference between H and L , are large, the profitability in
high regime is much larger than the low regime, and
therefore the producer may shut down production and hold
until switches to the high regime to gain more profit.

I Notation: xstart := inf
{
x > 0 : qoil

L (x) > 0
}
.



Exhaustible production shut-down

• xstart as a function of H

Figure : xstart as a function of H. We take L = 0.75, c = 0.6.



Exhaustible production shut-down
xstart as a function of low regime holding rate λ0

As λ0 increases, the mean holding time in the low regime
dcreases. The green producer chooses to reduce the
production and restart after switch to the high regime to gain
more profit. Therefore xstart is a increasing function in low
demand holding rate λ0.

Figure : xstart as a function of low regime holding rate λ0. L = 0.5,
H = 1, c = 0.3.



Exhaustible production shut-down

• xstart as a function of green production cost c
I When c is small (c << L ), green production is not

blockaded in both low and high regimes, green producer
leads the market in both the two regimes. So there is no
reason to shut down exhaustible production in low regime,
unless there are some other reasons (e.g. H >> L ).

I When c is large (c → H), green production is highly
blockaded in high regime and totally blockaded in low
regime. Green production cost c plays little role in affecting
xstart .

I When c is moderate (around L ), the effect of c on xstart is
ambiguous, since as c increases in this region, both high
and low regimes are in favor of exhaustible producer.

Note: please see the next slide for illustration.



Exhaustible production shut-down
• xstart as a function of green production cost c.
I The effect of c on xstart is ambiguous.

Figure : xstart as a function of green production cost c. We take
L = 0.5,H = 1.


