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Portfolio Liquidation



Portfolio Liquidation

• Traditional financial market models assume that investors can
buy sell arbitrary amounts at given prices

• This neglects market impact: large transactions (1%-3% of
ADV, or more) move prices in an unfavorable direction



Portfolio Liquidation

• Economists have long studied models of optimal block trading
• Their focus is often on informational asymmetries
• Stealth trading: split large blocks into a series of smaller ones

• Mathematicians identified this topic only more recently
• Their focus is often on ‘structural models’ (algorithmic trading)
• Models of optimal portfolio liquidation give rise to novel

stochastic control problems:
• (‘Liquidation’) constraint on the terminal state
• Value functions with singular terminal value
• PDEs, BSDEs, BSPDEs, .... with singular terminal values



Portfolio Liquidation

• Almost all trading nowadays takes place in limit order
markets.

• Limit order book: list of prices and available liquidity
• Limited liquidity available at each price level

• There are (essentially) two types of orders one can submit:
• active orders submitted for immediate execution
• passive orders submitted for future execution

• We allow active and passive orders; price sensitive impact
• Markovian model: PDE with singular terminal condition
• non-Markovian model: BSPDE with singular terminal condition



Liquidation with active orders

Consider an order to sell X > 0 shares by time T > 0:

• ξt rate of trading (control)

• Xt = X −
∫ t

0
ξs ds remaining position (controlled state)

• St market/benchmark price (uncontrolled state)

The optimal liquidation problem is of the form

min
(ξt)

E
[∫ T

0
f (ξt ,St ,Xt) dt

]
s.t. XT− = 0

The liquidation constraint results in a singularity of the value
function:

lim
t→T−

V (t, S ,X ) =

{
+∞ for X 6= 0

0 for X = 0



Benchmark: linear temporary impact

For some martingale (St), the transaction price is given by

S̃t = St − ηξt (η = market impact factor).

The liquidity costs are then defined as

C = book value− revenue

= S0X −
∫ T

0
S̃tξt dt = −

∫ T

0
Xt dSt +

∫ T

0
ηξ2

t dt

and the expected liquidity costs are

E[C ] =

∫ T

0
ηξ2

t dt.

Usually, one minimizes expected liquidation + risk costs.



Literature review

• Almgren & Chriss (2000): mean-variance, St BM∫ T

0
ηξ2

t + λσ2X 2
t dt −→ min

• Gatheral & Schied (2011): time-averaged VaR, St GBM

E
[∫ T

0
ηξ2

t + λStXt dt

]
−→ min

• Ankirchner & Kruse (2012): similar but dSt = σ(St)dWt

E
[∫ T

0
ηξ2

t + λ(St)X 2
t dt

]
−→ min

• and many others ....



Markovian Models



Liquidation with active and passive orders

Modeling the impact of active orders is comparably simple; the
impact of passive orders is harder to model:

• how does the market react to passive order placement?

• using active and passive orders simultaneously may lead to
market manipulation

• ....

To overcome this problem, we assume that passive orders are
placed in a dark pool:

• passive orders are not openly displayed

• executed only when matching liquidity becomes available

• if executed, then at prices coming from some primary venue

Dark trading: reduced trading costs vs. execution uncertainty.



Liquidation with active and passive orders

We allow for active and passive orders:

• active order placements: (ξt)t∈[0,T )

• passive order placements: (νt)t∈[0,T )

For X0 = X the portfolio dynamics is given by

dXt = −ξt dt − νt dπt with XT− = 0 a.s.

Our value function is given by

V (T ,S ,X )

= inf
(ξ,ν)∈A (T ,X )

E
[∫ T

0
η(St)|ξt |p + γ(St)|νt |p + λ(St)|Xt |p dt

]
where the coefficients η, σ, γ, λ are nice enough and p > 1.



Remark (Power-structure of cost function)

Kratz (2012) and H & Naujokat (2013) consider the cost function

E
[∫ T

0
η|ξt |2 + γ|νt |1 + λ|Xt |2 dt

]
.

In this case, no passive orders are used after first execution. This
property does not carry over to price-sensitive impact factors. We
thus consider

E
[∫ T

0
η(St)|ξt |p + γ(St)|νt |p + λ(St)|Xt |p dt

]
.



Theorem (Structure of the Value Function)

The value function is of the form (‘power-utility’)

V (T ,S ,X ) = v(T ,S)|X |p

and the optimal controls are:

ξ∗t =
v(T − t,St)

β

η(St)β
Xt , ν∗t =

v(T − t,St)
β

γ(St)β + v(T − t,St)β
Xt ,

where β := 1
p−1 > 0 and the “inflator” v solves the PDE

vT =
1

2
σ2(S)vSS + λ(S)− 1

βη(S)β
vβ+1 − θ

(
v − γ(S)v

(γ(S)β + vβ)1/β

)
︸ ︷︷ ︸

F (S,v)

.



Boundary condition for v

The final position when following ξ∗ and ν∗ is

X exp

(
−
∫ T

0

v(T − t,St)
β

η(St)β
dt

)
∆πt 6=0∏
0≤t<T

(
1− v(T − t,St)

β

γ(St)β + v(T − t,St)β

)
.

• To ensure X ∗T− = 0 one needs

v(T − t,S)β

η(S)β
−→∞ as t → T (uniformly in S).

• Through a-priori estimates one shows that

v(T ,S) ∼ η(S)

T
1
β

as T → 0 uniformly in S .

If η ≡ const, no passive orders, then this holds automatically.



Theorem (PDE for v)

After a change of variables, the inflator v is the unique classical
solution of

vt = 1
2 ∆v − 1

2σ
′(x)∇v + F (x , v)

such that
v(t, x)→ 0 as t → 0 uniformly in x.

This solution satisfies:

v(t, x) ∼ η(x)

t
1
β

as t → 0 uniformly in x.



Remark

• The operator A = 1
2 ∆− 1

2σ
′(x)∇ generates an analytic (yet

not strongly continuous) semigroup etA in C (R) and a priori
bounds give that any short-time solution extends to a global
solution.

• For the short-time solution, we express the asymptotics in
terms of an equation:

v(t, x) =
η(x)

t
1
β

+ ‘correction’



Existence of a short-time solution
Our ansatz is to additively separate the “leading singular term”:

v(t, x) =
η(x)

t
1
β

+
u(t, x)

t
1
β

+1
, u(t, x) ∈ O(t2) as t → 0 uniformly in x

Results in an evolution equation in C (R) for the correction term:

u′(t) = Au + f (t, u(t)), u(0) ≡ 0,

with the singular nonlinearity of the form:

f (t, u(t)) = . . .

∞∑
k=2

. . .

(
u(t)

tη

)k

. . . .

Remark

We move the singularity from the terminal condition into the
non-linearity in such a way that it causes no harm.



Existence of a short-time solution

The contraction argument giving a short-time solution by a fixed
point of the operator

Γ(u)(t) =

∫ t

0
e(t−s)Af (s, u(s)) ds

is then carried out in the space

E = {u ∈ C ([0, δ]; C (R)) : ‖u‖E <∞}

where
‖u‖E = sup

t∈(0,δ]
‖t−2u(t)}

Theorem (Existence of solutions)

The operator Γ has a fixed point for all sufficiently small t ∈ [0,T ].



Lemma

It is enough to consider only strategies that yield monotone
portfolio processes. For such strategies

E
[
v(T − t,St)|X ξ,ν

t |p
]
−→ 0 as t → T .

Theorem (Value Function)

The value function for our control problem is

V (T ,S ,X ) = v(T ,X )|X |p.



Non-Markovian Models



Probability space

Consider a probability space (Ω, F̄ , {F̄t}t≥0,P) with {F̄t}t≥0

being generated by three mutually independent processes:

• m-dimensional Brownian motion W ;

• m-dimensional Brownian motion B;

• stationary Poisson point process J on Z ⊂ Rl with
• finite characteristic measure : µ(dz);
• counting measure π(dt, dz) on R+ ×Z ; and
• {π̃([0, t]× A)}t≥0 a martingale where

π̃([0, t]× A := π([0, t]× A)− tµ(A).

• The filtration generated by W is denoted F .



The control problem

• The controlled process is

xt = x −
∫ t

0

ξs ds −
∫ t

0

∫
Z

ρs(z)π(dz , ds); xT− = 0

the set of admissible strategies is the set of all pairs

(ξ, ρ) ∈ L 2
F̄ (0,T )×L 4

F̄ (0,T ; L2(Z )) with xT− = 0 a.s.

• The uncontrolled factors follow the dynamics

yt = y +

∫ t

0

bs(ys , ω) ds +

∫ t

0

σ̄s(ys , ω) dBs +

∫ t

0

σs(ys , ω) dWs

where the processes b(y , ·), σ(y ; ·), σ̄(y , ·) are F -adapted.



The value function

Just as above, the objective is to minimize the cost functional

Jt(xt , yt ; ξ, ρ) =:E

[∫ T

0

(
ηs(ys , ω)|ξs |2 + λs(ys , ω)|xs |2

)
ds

+

∫
[0,T ]×Z

γs(ys , z , ω)|ρs(z)|2 µ(dz)ds

]

The resulting value function is

Vt(x , y) =: ess inf
ξ,ρ

Jt(xt , yt ; ξ, ρ)
∣∣
xt=x ,yt=y



Hamilton-Jacobi-Bellman Equation

We expect the value function Vt(x , y) to satisfy the BSPDE:

− dVt(x , y)

=

[
tr

(
1

2

(
σtσ

T
t + σ̄t σ̄

T
t

)
∂2
yyVt(x , y) + ∂yΨt(x , y)σT

t (y)

)
+ bT

t ∂yVt(x , y) + ess inf
ξ,ρ

{
ηt |ξ|2 + λt |x |2 − ξ∂xVt(x , y)

+

∫
Z

(
Vt(x − ρ, y)− Vt(x , y) + γt(y , z)|ρ|2

)
µ(dz)

}]
dt

−Ψt(x , y) dWt , (t, x , y) ∈ [0,T )× R× Rd ;

VT (x , y) = (+∞) 1x 6=0, (x , y) ∈ R× Rd .

A solution is a pair of adapted processes (V ,Ψ) s.t. (i) ... (ii) ....



Hamilton-Jacobi-Bellman Equation

Making the same ansatz as before:

Vt(x , y) = ut(y)x2 and Ψt(x , y) = ψt(y)x2,

we now obtain a BSPDE for the inflator. It is of the form:

(E )



−dut(y) =

[
tr
(
at∂

2
yyut(y) + ∂yψt(y)σT

t

)
+ bT

t ∂yut(y)

−
∫

Z

|ut(y)|2

γ(t, y , z) + ut(y)
µ(dz)− |ut(y)|2

ηt(y)
+ λt(y)

]
dt

− ψt(y) dWt , (t, y) ∈ [0,T ]× Rd ;

uT (y) = +∞, y ∈ Rd .



Theorem (Verification Theorem)

Suppose (u, ψ) is a solution to BSPDE (E ) such that ... and a.s.

c0

T − t
≤ ut(y) ≤ c1

T − t
.

Then

V (t, y , x) := ut(y)x2, (t, x , y) ∈ [0,T ]× R× Rd ,

coincides with the value function for almost every y ∈ Rd , and the
optimal (feedback) control is given by

(ξ∗t , ρ
∗
t (z)) =

(
ut(yt)xt
ηt(yt)

,
ut(yt)xt−

γt(z , yt) + ut(yt)

)
.



Theorem (Existence of solutions )

Our BSPDE (E ) admits a unique solution (u, ψ) such that ... and

c0

T − t
≤ ut(y) ≤ c1

T − t
, P⊗ dt ⊗ dy − a.e. (1)

Under suitable stronger conditions on σ we have that

V (t, y , x) := ut(y)x2, (t, x , y) ∈ [0,T ]× R× Rd , (2)

coincides with the value function for every y ∈ Rd .



Remark

The proof is based on the penalization method; consider BSPDEs

−duN
t (y) =

[
tr
(
at∂

2
yyuN

t (y) + ∂yψ
N
t (y)σT

t

)
+ bT

t ∂yuN
t (y)

−
∫

Z

|uN
t (y)|2

γ(t, y , z) + uN
t (y)

µ(dz)− |u
N
t (y)|2

ηNt (y)
+ λNt (y)

]
dt

− ψN
t (y) dWt , (t, y) ∈ [0,T ]× Rd ;

uN
T (y) = N, y ∈ Rd .

and establish their convergence. Converge has to be fast enough.
This is the hard part which our method in the Markovian case
bypassed.



Conclusion

• We studied control problems with singular terminal conditions
arising in models of optimal portfolio liquidation

• In the Markovian framework we showed that the HJB PDE
has a strong solution, and ...

• ... obtained detailed information about the degree of the
singularity at the terminal time.

• In the non-Markovian framework we solved a BSPDE with
singular terminal condition by means of penalization, and ...

• ... also obtained detailed information about the degree of the
singularity at the terminal time.

• Open problem: permanent market impact

• Major open problem: different powers for active and passive
orders (possible for non-price dependent impact functions).
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