Weather markets Mode		Weather futures pricing	LSS processes		Conclusions 0000
----------------------	--	-------------------------	---------------	--	---------------------

Lecture III: Stationary stochastic models

Fred Espen Benth

Centre of Mathematics for Applications (CMA) University of Oslo, Norway

Fields Institute, 19-23 August 2013

Empirical analysis

Weather futures pricing

LSS processes

ward pricing C 00000000 0

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Conclusions 0000

Overview of the lecture

1. Examples of weather markets

- Temperature
- Wind

2. Continuous-time ARMA models

- ...with seasonal volatility
- Empirical analysis of temperature and wind data

3. Pricing of weather futures

- CAT and wind index futures prices
- The modified Samuelson effect

4. General Lévy semistationary (LSS) models

- Applications to electricity
- Futures pricing and relationship to spot

Weather	markets	Mode
00000		0000

Empirical analysis

Weather futures pricing

LSS processes

orward pricing

Conclusions 0000

The temperature market

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへぐ

The temperature market

- Chicago Mercantile Exchange (CME) organizes trade in temperature derivatives:
 - Futures contracts on weekly, monthly and seasonal temperatures
 - European call and put options on these futures
- Contracts on several US, Canadian, Japanese and European cities
 - Calgary, Edmonton, Montreal, Toronto, Vancouver, Winnipeg

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

HDD, CDD and CAT

• HDD (heating-degree days) over a period $[au_1, au_2]$

```
\int_{\tau_1}^{\tau_2} \max(18 - T(u), 0) \, du
```

- HDD is the accumulated degrees when temperature T(u) is below $18^{\circ}C$
- CDD (cooling-degree days) is correspondingly the accumulated degrees when temperature T(u) is above 18°C
- CAT = cumulative average temperature
 - Average temperature here meaning the *daily* average

$$\int_{\tau_1}^{\tau_2} T(u) \, du$$

At the CME...

- Futures written on HDD, CDD, and CAT as index
 - HDD and CDD is the index for US temperature futures
 - CAT index for European temperature futures, along with HDD and CDD
- Discrete (daily) measurement of HDD, CDD, and CAT
- All futures are cash settled
 - 1 trade unit=20 Currency (trade unit being HDD, CDD or CAT)
 - Currency equal to USD for US futures and GBP for European

• Call and put options written on the different futures

The wind market

- The US Futures Exchange launched wind futures and options summer 2007
 - ... exchange closed before market started, though...
- Futures on a wind speed index (Nordix) in two wind farm areas
 - Texas and New York
 - Texas divided into 2 subareas, New York into 3
- The Nordix index aggregates the daily *deviation* from a 20 year mean over a specified period

- Benchmarked at 100
- Futures are settled against this index
 - · European calls and puts written on these futures

Weather markets	Models	Empirical analysis	Weather futures pricing	LSS processes	Forward pricing	Conclusions
00000	00000	000000000000000000000000000000000000000	000000000000	000000	0000000000	0000

• Formal definition of the index:

$$N(\tau_1, \tau_2) = 100 + \sum_{s=\tau_1}^{\tau_2} W(s) - w_{20}(s)$$

- W(s) is the wind speed on day s
 - Daily average wind speed
 - Typically measured at specific hours during a day
- $w_{20}(s)$ is the 20-year average wind speed for day s
- $[au_1, au_2]$ measurement period, typically a month or a season

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Empirical analysis

Models

Weather futures pricing

LSS processes

rward pricing C

Conclusions 0000

Stochastic models for temperature and wind

▲□ > ▲圖 > ▲ 国 > ▲ 国 > → 国 → の < @

00000

Models

A continuous-time ARMA(p, q)-process

• Define the Ornstein-Uhlenbeck process $X(t) \in \mathbb{R}^{p}$

 $d\mathbf{X}(t) = A\mathbf{X}(t) dt + \mathbf{e}_{p}\sigma(t) dB(t),$

- \mathbf{e}_k : k'th unit vector in \mathbb{R}^p , $\sigma(t)$ "volatility"
- A: $p \times p$ -matrix

$$A = \begin{bmatrix} \mathbf{0} & \mathbf{I} \\ -\alpha_p & \cdots & -\alpha_1 \end{bmatrix}$$

• Explicit solution of X(s), given X(t), $s \ge t \ge 0$:

$$\mathbf{X}(s) = \exp\left(A(s-t)\right)\mathbf{X}(t) + \int_{t}^{s} \exp\left(A(s-u)\right)\mathbf{e}_{p}\sigma(u) \, dB(u) \, ,$$

- Proof goes by applying the multidimensional Ito Formula on
 - Note: Only one Brownian motion B, and not a multidimensional one

$$f(s, \mathbf{X}(s)) = \exp(As)\mathbf{X}(s)$$

Matrix exponential defined as:

$$\exp(At) = \sum_{n=1}^{\infty} \frac{t^n}{n!} A^n$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Models

Empirical analysis

Veather futures pricing

LSS processes

orward pricing Conc 000000000 000

Conclusions 0000

- Define a continuous-time $\mathsf{ARMA}(p,q)$ -process for $p>q\geq 0$
 - Named CARMA(p,q)

 $Y(t) = \mathbf{b}' \mathbf{X}(t)$

• Vector $\mathbf{b} \in \mathbb{R}^{p}$ given as

$$\mathbf{b}' = (b_0, b_1, \dots, b_{q-1}, 1, 0, \dots)$$

• Special case q = 0, $\mathbf{b} = \mathbf{e}_1$: CAR(p)-model

 $X_1(t) = \mathbf{e}_1' \mathbf{X}(t)$

• Y is stationary if and only if A has eigenvalues with negative real part

Why is X_1 a CAR(p) process?

- Consider p = 3
- Do an Euler approximation of the X(t)-dynamics with time step 1
 - Substitute iteratively in $X_1(t)$ -dynamics
 - Use $B(t+1) B(t) = \epsilon(t)$
- Resulting discrete-time dynamics

 $\begin{aligned} X_1(t+3) &\approx (3-\alpha_1) X_1(t+2) + (2\alpha_1 - \alpha_2 - 1) X_1(t+1) \\ &+ (\alpha_2 - 1 + (\alpha_1 + \alpha_3)) X_1(t) + \sigma(t) \epsilon(t) \,. \end{aligned}$

Weather markets	Models	Empirical analysis	Weather futures pricing	LSS processes	Forward pricing	Conclusions
00000	0000●	000000000000000000000000000000000000000	000000000000	000000	0000000000	0000

- Empirical analysis suggests the following models for temperature and wind:
- Temperature dynamics T(t) defined as

 $T(t) = \Lambda(t) + X_1(t)$

• Wind dynamics W(t) defined as

 $W(t) = \exp(\Lambda(t) + X_1(t))$

Λ(t) some deterministic seasonality function

 Weather futures pricing

LSS processes

Forward pricing C

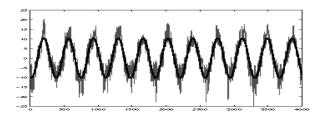
Conclusions 0000

Empirical analysis of temperature and wind data

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

Empirical study of Stockholm temperature data

- Daily average temperatures from 1 Jan 1961 till 25 May 2006
 - 29 February removed in every leap year
 - 16,570 recordings
- Last 11 years snapshot with seasonal function



Empirical analysis

Weather futures pricing

LSS processes

orward pricing (

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Conclusions 0000

- Fitting of model goes stepwise:
 - 1. Fit seasonal function $\Lambda(t)$ with least squares
 - 2. Fit AR(p)-model on deseasonalized temperatures
 - 3. Fit seasonal volatility $\sigma(t)$ to residuals

Empirical analysis

Weather futures pricing 0000000000000 LSS processes

rward pricing C

Conclusions

1. Seasonal function

• Suppose seasonal function with trend

 $\Lambda(t) = a_0 + a_1 t + a_2 \cos(2\pi(t - a_3)/365)$

- Use least squares to fit parameters
 - May use higher order truncated Fourier series
- Estimates: $a_0 = 6.4, a_1 = 0.0001, a_2 = 10.4, a_3 = -166$
 - Average temperature increases over sample period by 1.6°C

Empirical analysis

Weather futures pricing

LSS processes

rward pricing (000000000 (

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Conclusions 0000

2. Fitting an auto-regressive model

Remove the effect of Λ(t) from the data

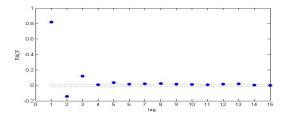
 $Y_i := T(i) - \Lambda(i), i = 0, 1, \dots$

• Claim that AR(3) is a good model for Y_i :

 $Y_{i+3} = \beta_1 Y_{i+2} + \beta_2 Y_{i+1} + \beta_3 Y_i + \sigma_i \epsilon_i ,$

Weather markets	Models	Empirical analysis	Weather futures pricing	LSS processes	Forward pricing	Conclusions
00000	00000	000000000000000000000000000000000000000	000000000000	000000	0000000000	0000

• The partial autocorrelation function for the data suggests AR(3)



• Estimates $\beta_1 = 0.957, \beta_2 = -0.253, \beta_3 = 0.119$ (significant at 1% level)

• R^2 is 94.1% (higher-order AR-models did not increase R^2 significantly)

Empirical analysis

Weather futures pricing

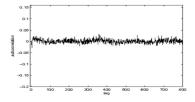
LSS processes

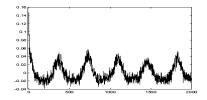
rward pricing (000000000 (

Conclusions 0000

3. Seasonal volatility

- Consider the residuals from the AR(3) model
- Close to zero ACF for residuals
- Highly seasonal ACF for squared residuals





・ロト・西ト・ヨト・ヨー シタぐ

Weather markets	Models	Empirical analysis	Weather futures pricing	LSS processes	Forward pricing	Conclusions
00000	00000	000000000000000000000000000000000000000	0000000000000	000000	0000000000	0000

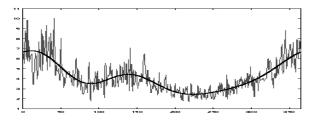
• Suppose the volatility is a truncated Fourier series

$$\sigma^{2}(t) = c + \sum_{i=1}^{4} c_{i} \sin(2i\pi t/365) + \sum_{j=1}^{4} d_{j} \cos(2j\pi t/365)$$

- This is calibrated to the daily variances
 - 45 years of daily residuals
 - Line up each year next to each other
 - Calculate the variance for each day in the year

Weather markets	Models	Empirical analysis	Weather futures pricing	LSS processes	Forward pricing	Conclusions
00000	00000	000000000000000000000000000000000000000	000000000000	000000	000000000	0000

- A plot of the daily empirical variance with the fitted squared volatility function
- · High variance in winter, and early summer
- Low variance in spring and late summer/autumn



(日)、

Weather markets	Models	Empirical analysis	Weather futures pricing	LSS processes
00000	00000	000000000000000000000000000000000000000	000000000000	0000000

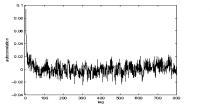
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

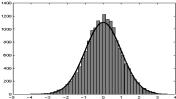
Similar observations in other studies

- Several cities in Norway and Lithuania
- Calgary and Toronto: Swishchuk and Cui (2013)
- German and Asian cities: Benth, Härdle and Lopez-Cabrera (2011, 2012)
- Seasonality in ACF for squared residuals observed in Campbell and Diebold (2005) for several US cities

Weather markets	Models	Empirical analysis	Weather futures pricing	LSS processes	Forward pricing	Conclusions
00000	00000	00000000000000000000000000000000000000	0000000000000	000000	0000000000	0000

- Dividing out the seasonal volatility from the regression residuals
- ACF for squared residuals non-seasonal
 - ACF for residuals unchanged
 - Residuals become (close to) normally distributed





・ロト・西ト・西ト・日・ 日・ シック

Weather markets	Models	Empirical analysis	Weather futures pricing	LSS processes	Forward pricing	Conclusions
00000	00000	00000000000000000000000000000000000000	000000000000	000000	0000000000	0000

- Conclusion: fitted an AR(3)-model with seasonal variance to deseasonalized daily temperatures
- Apply the link between CAR(3) and AR(3) to derive the continuous-time parameters α_1, α_2 and α_3

 $\alpha_1 = 2.043, \alpha_2 = 1.339, \alpha_3 = 0.177$

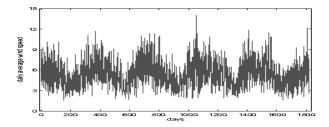
- Seasonality Λ and variance σ given
- The fitted CAR(3)-model is stationary (to a normal distribution)
 - Eigenvalues of A have negative real parts

Empirical analysis Weather futures pricing

Commercial break

Empirical study of New York wind speed data

- Daily average wind speed data from New York wind farm region 1 from Jan 1 1987 till Sept 7 2007.
- 7,550 daily recordings, after leap year data were removed
- Figure shows 5 years from 1987



Weather markets	Models	Empirical analysis	Weather futures pricing	LSS processes	Forward pricing	Conclusions
00000	00000	000000000000000000000000000000000000000	0000000000000	000000	000000000	0000

• Fitting wind speed model to data follows (almost) the same scheme as temperature

- 1. Logarithmic transformation of data to symmetrize
- 2. Fit seasonal function
- 3. Find AR(p)-model to deseasonalized data
- 4. Find volatility structure of residuals

Weather markets Mo 00000 00 Empirical analysis

Weather futures pricing

LSS processes

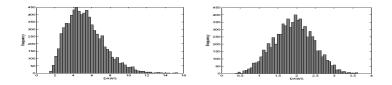
orward pricing

(日)、

ъ

Conclusions 0000

1. Symmetrization of data



• Wind speed histogram (left), logarithmic transformed speeds (right)

2. Seasonal function

• Seasonality function with annual and biannual periodicity

$$\Lambda(t) = a_0 + a_1 \cos(2\pi t/365) + a_2 \sin(2\pi t/365) + a_3 \cos(4\pi t/365) + a_4 \sin(4\pi t/365)$$

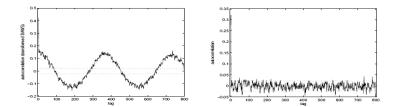
Nonlinear least squares (using matlab) on transformed data gives

$$a_0 = 1.91, a_1 = 0.26, a_2 = 0.08, a_3 = -0.04, a_4 = -0.07$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Weather markets	Models	Empirical analysis	Weather futures pricing	LSS processes	Forward pricing	Conclusions
00000	00000	000000000000000000000000000000000000000	000000000000	0000000	0000000000	0000

- Consider the ACF *before* and *after* estimated seasonality has been removed
- We see (right plot) that the ACF of deseasonalized data does not show any periodic pattern



・ロト ・聞ト ・ヨト ・ヨト

ъ

Empirical analysis

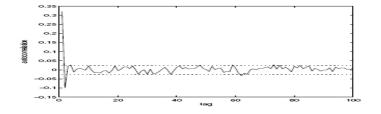
Weather futures pricing

LSS processes

rward pricing (

Conclusions 0000

3. Fitting an AR(p)-model



 Partial ACF for deseasonalized data suggests a higher-order AR(MA) structure

- AR(4) best according to Akaike's Information Criterion
- ... best among ARMA($p \le 5, q \le 5$)

Weather markets	Models	Empirical analysis	Weather futures pricing	LSS processes	Forward pricing	Conclusions
00000	00000	000000000000000000000000000000000000000	000000000000	000000	000000000	0000

• Estimated regression parameters in the AR(4) model

$$z_t = \beta_1 z_{t-1} + \beta_2 z_{t-2} + \beta_3 z_{t-3} + \beta_4 z_{t-4}$$

 $\beta_1 = 0.355, \beta_2 = -0.104, \beta_3 = 0.010, \beta_4 = 0.027$

(日) (日) (日) (日) (日) (日) (日) (日)

• All except β_3 are found to be significant

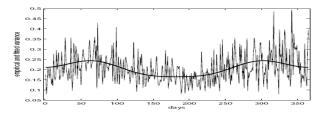
Empirical analysis

LSS processes

rward pricing

Conclusions 0000

4. Volatility structure



- Estimated daily empirical variance, and fitted a truncated Fourier series
 - ...as for temperature

$$\sigma^{2}(t) = c_{0} + \sum_{k=1}^{3} c_{k} \cos(2\pi kt/365)$$

• Estimated parameters (nonlinear least squares)

 $c_0 = 0.208, c_1 = 0.033, c_2 = -0.019, c_3 = -0.010$

Empirical analysis

Weather futures pricing

LSS processes

ward pricing Con

Conclusions 0000

Relation to CAR(4)-model $X_1(t)$

• Using Euler approximation on dynamics of $X_1(t)$

$$\begin{split} X_1(t) &\approx (4-\alpha_1)X_1(t-1) + (3\alpha_1-\alpha_2-6)X_1(t-2) \\ &\quad + (4+2\alpha_2-\alpha_3-3\alpha_1)X_1(t-3) \\ &\quad + (\alpha_3-\alpha_4-\alpha_2+\alpha_1-1)X_1(t-4) \end{split}$$

Knowing the β's yield

 $\alpha_1 = 3.645, \alpha_2 = 5.039, \alpha_3 = 3.133, \alpha_4 = 0.712$

• Eigenvalues of A have negative real part, thus stationary dynamics

Weather markets

Empirical analysi

Weather futures pricing

LSS processes

rward pricing (

Conclusions 0000

Weather futures pricing

|▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ | ≣ | のへ⊙

Weather futures pricing

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

CAT temperature futures

- CAT-futures price $F_{CAT}(t, \tau_1, \tau_2)$ at time $t \leq \tau_1$
 - No trade in settlement period

$$F_{\mathsf{CAT}}(t, au_1, au_2) = \mathbb{E}_Q \Big[\int_{ au_1}^{ au_2} T(u) \, du \, | \, \mathcal{F}_t \Big]$$

- Constant interest rate r, and settlement at the end of index period, τ_2
- Q is the pricing measure
 - Not unique since market is incomplete
 - Temperature is not tradeable!

arkets Models Em

al analysis Weathe

Weather futures pricing

LSS processes

orward pricing (

Conclusions 0000

A class of risk neutral probabilities

- Parametric sub-class of risk-neutral probabilities $Q^ heta$
- Defined by Girsanov transformation of B(t)

 $dB^{\theta}(t) = dB(t) - \theta(t) \, dt$

- $\theta(t)$ deterministic market price of risk
- Dynamics of $\mathbf{X}(t)$ under Q^{θ} :

 $d\mathbf{X}(t) = (A\mathbf{X}(t) + \mathbf{e}_{p}\sigma(t)\theta(t)) dt + \mathbf{e}_{p}\sigma(t) dB^{\theta}(t).$

Weather markets	Models	Empirical analysis	Weather futures pricing	LSS processes	Forward pricing	Conclusions
00000	00000	000000000000000000000000000000000000000	00000000000	0000000	0000000000	0000

- $X_1(s) = \mathbf{e}'_1 \mathbf{X}(s)$ conditioned on $\mathbf{X}(t) = \mathbf{x}, t \leq s$ is normally distributed under Q^{θ}
- Mean:

$$\mu_{\theta}(t, s, \mathbf{x}) = \mathbf{e}'_{1} \exp(A(s - t))\mathbf{x} + \int_{t}^{s} \mathbf{e}'_{1} \exp(A(s - u))\mathbf{e}_{p}\sigma(u)\theta(u) du$$

• Variance:

$$\Sigma^{2}(t,s) = \int_{t}^{s} \sigma^{2}(u) \{\mathbf{e}_{1}' \exp(A(s-u))\mathbf{e}_{p}\}^{2} du$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Weather markets	Models	Empirical analysis	Weather futures pricing	LSS processes	Forward pricing	Conclusions
00000	00000	000000000000000000000000000000000000000	000000000000	000000	0000000000	0000

• CAT-futures price

$$F_{CAT}(t,\tau_1,\tau_2) = \int_{\tau_1}^{\tau_2} \Lambda(u) \, du + \mathbf{a}(t,\tau_1,\tau_2) \mathbf{X}(t) + \int_t^{\tau_1} \theta(u) \sigma(u) \mathbf{a}(t,\tau_1,\tau_2) \mathbf{e}_p \, du + \int_{\tau_1}^{\tau_2} \theta(u) \sigma(u) \mathbf{e}'_1 A^{-1} \left(\exp\left(A(\tau_2 - u)\right) - I_p \right) \mathbf{e}_p \, du$$

with I_p being the $p \times p$ identity matrix and

 $\mathbf{a}(t,\tau_1,\tau_2) = \mathbf{e}_1' A^{-1} \left(\exp \left(A(\tau_2 - t) \right) - \exp \left(A(\tau_1 - t) \right) \right)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Weather markets	Models	Empirical analysis	Weather futures pricing	LSS processes	Forward pricing	Conclusions
00000	00000	000000000000000000000000000000000000000	000000000000	000000	0000000000	0000

• Time-dynamics of F_{CAT} (applying Ito's Formula)

 $dF_{CAT}(t,\tau_1,\tau_2) = \Sigma_{CAT}(t,\tau_1,\tau_2) dB^{\theta}(t)$

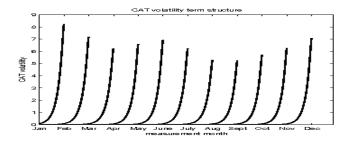
where

 $\Sigma_{\mathsf{CAT}}(t,\tau_1,\tau_2) = \sigma(t)\mathbf{e}_1'A^{-1}\left(\exp\left(A(\tau_2-t)\right) - \exp\left(A(\tau_1-t)\right)\right)\mathbf{e}_p$

• Σ_{CAT} is the CAT volatility term structure

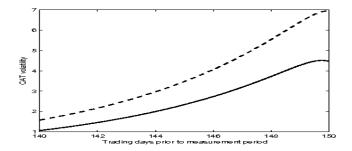
Weather markets	Models	Empirical analysis	Weather futures pricing	LSS processes	Forward pricing	Conclusions
00000	00000	000000000000000000000000000000000000000	00000000000000	000000	0000000000	0000

- Seasonal volatility, with maturity effect
- Plot of the volatility term structure as a function of *t* up to start of measurement period
 - Monthly contracts
 - Parameters taken from Stockholm for CAR(3)



Weather markets	Models	Empirical analysis	Weather futures pricing	LSS processes	Forward pricing	Conclusions
00000	00000	000000000000000000000000000000000000000	00000000000	0000000	000000000	0000

- The Samuelson effect
 - The volatility is decreasing with time to delivery
 - Typical in mean-reverting markets
- AR(3) has memory
 - Implies a modification of this effect
 - Plot shows volatility of CAT with monthly vs. weekly measurement period



◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

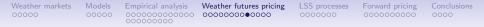
Weather markets	Models	Empirical analysis	Weather futures pricing	LSS processes	Forward pricing	Conclusions
00000	00000	000000000000000000000000000000000000000	0000000000000	000000	0000000000	0000

• Estimation of the market price of risk $\boldsymbol{\theta}$

- Necessary for option pricing
- Constant, or time-dependent?
- Calibrate theoretical futures curve to observed

$$\min_{\theta} \sum_{i} |F_{\mathsf{IND}}(0,\tau_1^i,\tau_2^i) - \widehat{F}_{\mathsf{IND}}^i|^2$$

- IND=HDD, CDD, CAT
- Empirical study for Berlin: see recent paper by Härdle and Lopez Cabrera (2012)



Wind futures pricing

• Recall the Nordix index for wind speed

$$N(\tau_1, \tau_2) = 100 + \sum_{s=\tau_1}^{\tau_2} W(s) - w_{20}(s)$$

Arbitrage-free pricing dynamics (analogous to temperature futures)

$$egin{aligned} \mathcal{F}(t, au_1, au_2) &= \mathbb{E}_Q\left[\mathcal{N}(au_1, au_2) \,|\, \mathcal{F}_t
ight] \ &= 100 + \sum_{s= au_1}^{ au_2} \mathbb{E}_Q\left[\mathcal{W}(s) \,|\, \mathbf{X}(t)
ight] - w_{20}(s) \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• Choose $Q = Q^{\theta}$ as for temperature futures

Weather markets	Models	Empirical analysis	Weather futures pricing	LSS processes	Forward pricing	Conclusions
00000	00000	000000000000000000000000000000000000000	00000000000000	000000	000000000	0000

• Calculation of futures price:

f

$$egin{aligned} \mathcal{F}(t,s) &\triangleq \mathbb{E}_{\mathcal{Q}^{ heta}}\left[W(s) \,|\, \mathcal{F}_t
ight] \ &= \exp\left(\Lambda(s) + \mu_{ heta}(t,s,\mathbf{X}(t)) + rac{1}{2}\Sigma^2(t,s)
ight) \end{aligned}$$

- Recalling μ_{θ} and $\Sigma(t,s)$ from the temperature calculations
- Dynamics of f(t, s) (using Ito's Formula again)

$$\frac{df(t,s)}{f(t,s)} = \sigma(t) \left\{ \mathbf{e}'_1 \exp(A(s-t))\mathbf{e}_p \right\} \ dB^{\theta}(t)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Weather markets	Models	Empirical analysis	Weather futures pricing	LSS processes	Forward pricing	Conclusions
00000	00000	000000000000000000000000000000000000000	000000000000000	000000	0000000000	0000

- The term $v^2(t,s) = \mathbf{e}'_1 \exp(A(s-t))\mathbf{e}_p$ models the *modified* Samuelson effect
- Consider p = 1, i.e., AR(1)-model

 $v^{2}(t,s) = \mathbf{e}_{1}' \exp(A(s-t))\mathbf{e}_{1} = \exp(-\alpha_{1}(s-t))$

• When
$$s \downarrow t$$
, $v^2(s,t) \rightarrow 1$

• $v^2(s, t)$ increases to 1 when "time-to-maturity" s - t goes to zero

- Samuelson effect again...
- $v^2(s, t)$ is the scaling of volatility, which goes to 1 in the AR(1)-case

Weather markets	Models	Empirical analysis	Weather futures pricing	LSS processes	Forward pricing	Conclusions
00000	00000	000000000000000000000000000000000000000	0000000000000000	000000	0000000000	0000

• Consider p > 1

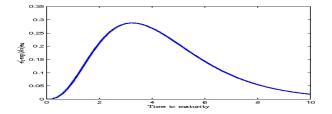
$$\lim_{s\downarrow t} v^2(s,t) = \mathbf{e}_1' \mathbf{l} \mathbf{e}_p = 0$$

- Volatility of *f* is scaled to zero when "time-to-maturity" goes to zero
- The uncertainty of the futures price f(t, s) goes to zero close to maturity!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- ...and not at its maximum as for AR(1)-models
- ...which has the Samuelson effect

Weather markets	Models	Empirical analysis	Weather futures pricing	LSS processes	Forward pricing	Conclusions
00000	00000	000000000000000000000000000000000000000	00000000000	000000	0000000000	0000



- AR(4) means that wind speed has a memory up to 4 days
- Close to maturity we can predict the wind speed at maturity very good

• ...which obviously reduces the uncertainty

Weather	markets
00000	

LSS processes

orward pricing

Conclusions 0000

Weather markets	Models	Empirical analysis	Weather futures pricing	LSS processes	Forward pricing	Conclusions
00000	00000	000000000000000000000000000000000000000	000000000000	000000	0000000000	0000

Definition of LSS process

$$Y(t) = \int_{-\infty}^{t} g(t-s)\sigma(s) \, dL(s)$$

- L a (two-sided) Lévy process (with finite variance)
- σ a stochastic volatility process
- g kernel function defined on \mathbb{R}_+
- Integration in semimartingale (Ito) sense
 - σ typically assumed to be independent of *L*, with finite variance and stationary

- usually σ is again an LSS process....
- g square-integrable on \mathbb{R}_+
- Y is stationary whenever σ is

Weather markets 00000 Empirical analysis

Weather futures pricing

LSS processes F

vard pricing Conclus

Models of temperatures and wind in stationarity

• Temperature model

$$T(t) = \Lambda(t) + \int_{-\infty}^{t} g(t-s)\sigma(s) \, dB(s)$$

• σ deterministic seasonal volatility, Λ seasonal mean function, *B* Brownian motion, and

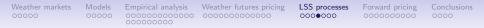
$$g(u) = \mathbf{e}_1' \mathrm{e}^{\mathcal{A} u} \mathbf{e}_3$$

• Stochastic model for New York daily averaged wind speeds

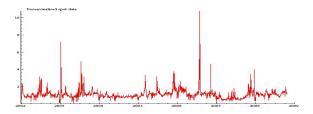
$$W(t) = \exp\left(\Lambda(t) + \int_{-\infty}^{t} g(t-s)\sigma(s) \, dB(s)\right)$$

• g is a CAR(4)-kernel

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへぐ



Electricity spot



• Electricity spot given by an arithmetic two-factor model (B., Kluppelberg, Müller and Vos, 2011)

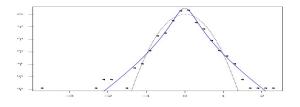
$$S(t) = \Lambda(t) + X(t) + \int_{-\infty}^{t} g(t-s) \, dL(s)$$

- g(u) = (b₀, 1)e^{Au}e₂, CARMA(2,1)-kernel, L a stable Lévy process
- X long-term factor modelled as a NIG Lévy process

- - Recent paper by Barndorff-Nielsen, B., and Veraart (2013):

$$\ln S(t) = \Lambda(t) + \int_{-\infty}^{t} g(t-s)\sigma(s) \, dB(s)$$

- EEX: $Y(t) := \ln S(t) \Lambda(t)$:
 - is stationary with p-value smaller than 0.01 (augmented Dickey-Fuller unit root text)
- Deseasonalized data has a normal inverse Gaussian (NIG) stationary distribution (generalized hyperbolic)



イロト 不得 トイヨト イヨト

Weather markets	Models	Empirical analysis	Weather futures pricing	LSS processes	Forward pricing	Conclusions
00000	00000	000000000000000000000000000000000000000	000000000000	0000000	0000000000	0000

- Question: How to choose σ and g such that $Y \sim GH$?
- Assume a "gamma"-kernel g: For $\lambda > 0$ and $\frac{1}{2} < \nu < 1$,

$$g(u) \sim u^{\nu-1} \exp\left(-\lambda u\right)$$

•
$$\sigma^2(t)$$
 chosen as LSS process again

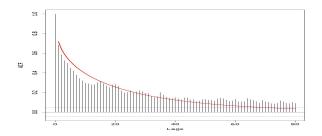
$$\sigma^{2}(t) = \int_{-\infty}^{t} h(t-s) dU(s), h(t) \sim t^{1-2\nu} e^{-\lambda t}$$

- U a subordinator process
 - specificied so that $\sigma^2(t)$ has generalized inverse Gaussian stationary distribution
- Idea in construction:
 - Separately model stationary distribution and ACF structure (and stochastic volatility)

Weather markets	Models	Empirical analysis	Weather futures pricing	LSS processes	Forward pricing	Conclusions
00000	00000	000000000000000000000000000000000000000	000000000000	000000	0000000000	0000

• Fitted ACF function vs. empirical

• EEX deseasonalized log-spot price data



・ロト ・聞ト ・ヨト ・ヨト

э

Weather markets 00000 Empirical analys

Weather futures pricing

LSS processes

Forward pricing

Conclusions 0000

Forward pricing under LSS models

Weather markets 00000	Models 00000		Weather futures pricing	LSS processes	Forward pricing o●oooooooo	Conclusions 0000
--------------------------	-----------------	--	-------------------------	---------------	-------------------------------	---------------------

- Focus on the case of power
- Forward price of a contract delivering electricity spot S(t) over the time interval [τ₁, τ₂]

$$egin{aligned} \mathcal{F}(t, au_1, au_2) &= \mathbb{E}_Q\left[rac{1}{ au_2- au_1}\int_{ au_1}^{ au_2} \mathcal{S}(au)\,d au\Big|\mathcal{F}_t
ight] \ &= rac{1}{ au_2- au_1}\int_{ au_1}^{ au_2} f(t, au)\,d au \end{aligned}$$

• Weather: In case of PRIM index, $S(\tau)$ is temperature at time au

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

Weather markets 00000	Models 00000	 Weather futures pricing	LSS processes	Forward pricing	Conclusions 0000

- *Q* chosen via the Esscher transform (or Girsanov for Brownian models)
 - Measure change only for positive times, $t \ge 0$
 - Preserves independent increment property (and Lévy property for constant θ)

$$\frac{dQ}{dP}\Big|_{\mathcal{F}_t} = \exp\left(\int_0^t \theta(s) \, dL(s) - \int_0^t \phi_L(\theta(s)) \, ds\right)$$

- ϕ_L log-moment generating function of L
 - supposed to exist
- θ market price of risk
 - to be estimated/calibrated
- Similar change of measure for the stochastic volatility σ

Weather markets Models Empirical analysis Weather futures pricing LSS processes Forward pricin 00000 00000000000 000000000000000000000000000000000000	,
---	---

Theorem The forward price is

• Geometric LSS case

$$f(t,\tau) = \Lambda(\tau) \mathbb{E}_Q \left[\exp\left(\int_t^\tau \phi_L^Q(g(\tau - u)\sigma(u)) \, du \right) \mid \mathcal{F}_t \right] \\ \times \exp\left(\int_{-\infty}^t g(\tau - u)\sigma(u) \, dL(u) \right)$$

• Arithmetic LSS case

$$egin{aligned} f(t, au) &= \Lambda(au) + \int_{-\infty}^t g(au-u) \sigma(u) \, dL(u) \ &+ \mathbb{E}_Q[L(1)] \int_t^ au g(au-u) \mathbb{E}_Q[\sigma(u) \,|\, \mathcal{F}_t] \, du \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Weather markets Models Empirical analysis Weather futures pricing LSS processes Forward pricing Conclusions 00000 00000000000 0000000000 000000000000000000000000000000000000	
---	--

Proof(outline) Split into

$$\int_{-\infty}^{\tau} g(\tau - u)\sigma(u) \, dL(u) = \int_{-\infty}^{t} g(\tau - u)\sigma(u) \, dL(u) + \int_{t}^{\tau} g(\tau - u)\sigma(u) \, dL(u)$$

1. Apply \mathcal{F}_t -measurability on the first integral on the RHS.

- 2. Condition on σ using independence
- 3. Apply the tower property of conditional expectation.

Weather markets	Models	Empirical analysis	Weather futures pricing	LSS processes	Forward pricing	Conclusions
00000	00000	000000000000000000000000000000000000000	000000000000	0000000	0000000000	0000

• Note: Spot and forward...

$$(\ln)S(t) \sim \int_{-\infty}^{t} g(t-u)\sigma(u) \, dL(u) = Y(t)$$
$$\ln(t,T) \sim \int_{-\infty}^{t} g(\tau-u)\sigma(u) \, dL(u) := Y(t,T-t)$$

Analyse the spot-forward connection by Laplace transform

- Let $x = \tau t$, time-to-maturity
- Suppose integral from zero

$$\int_0^\infty \int_0^t g(x+t-s)\sigma(s) \, dL(s) e^{-\theta t} \, dt$$
$$= \mathcal{L}(g(\cdot+x))(\theta) \int_0^\infty e^{-\theta s} \sigma(s) \, dL(s)$$

	Weather markets 00000	Models 00000		Weather futures pricing	LSS processes		Conclusions 0000
--	--------------------------	-----------------	--	-------------------------	---------------	--	---------------------

• Suppose there exists some "nice" h(t, x) such that

 $\mathcal{L}(g(\cdot + x))(\theta) = \mathcal{L}(h(\cdot, x))(\theta)\mathcal{L}(g)(\theta)$

• Forward price becomes a *weighted average of past* spot prices

$$Y(t,x) = \int_0^t h(t-s,x)Y(s) \, ds$$

• LSS processes Y have a memory (moving-average process)

• Forward prices depends on past and present spot prices....

• ...and not only the present spot price!

Case I: CARMA(p,0)-kernel

• Recall $g(u) = \mathbf{e}_1 e^{Au} \mathbf{e}_p$

$$Y(t,x) = \sum_{i=1}^{p} f_i(x) Y^{(i-1)}(t)$$

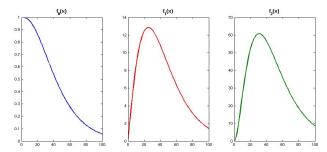
- Y^(k) kth derivative
 - LSS with CAR(p)-kernel has p 1-times continuously differentiable paths
 - Implied by g being differentiable of all orders, g^(k)(0) = 0 for k ≤ p − 1 and semimartingale representation of Y(t).

Weather markets	Models	Empirical analysis	Weather futures pricing	LSS processes	Forward pricing	Conclusions
00000	00000	000000000000000000000000000000000000000	000000000000	0000000	000000000	0000

• Forward curve shapes $f_i(x)$, i = 0, 1, ..., p-1

$$f_i(x) = \mathbf{e}_1' \mathbf{e}^{A_X} \mathbf{e}_{i+1}$$

• Plot of the three first



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Case II: gamma kernel

• Recall $g(u) \sim u^{
u-1} \exp(-\lambda u)$, 0.5 <
u < 1

We obtain

$$Y(t,x) = \int_0^t h(t-s,x)Y(s)\,ds$$

for

$$h(t,x) \sim \left(\frac{x}{t}\right)^{\nu} \frac{1}{x+t} e^{-\lambda(t+x)}$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Forward price is a weighted average of past spot prices

Conclusions

- CAR(*p*) model for the daily temperature and wind speed dynamics
 - Auto-regressive process, with
 - Seasonal mean
 - seasonal volatility
- Allows for analytical futures prices
 - HDD/CDD, and CAT temperature futures
 - Nordix wind futures
 - Futures contracts with "delivery" over months or seasons
 - Seasonal volatility with a modified Samuelson effect: volatility may even decrease close to maturity

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• Problem: understand the market price of weather risk

	0000 00		Weather futures pricing			Conclusions ○●○○
--	---------	--	-------------------------	--	--	---------------------

• General stationary models: LSS processes

- Includes CARMA processes
- Extends to more general mean-reversion dynamics

• Forward pricing under LSS

- Forward expressable as an average of past spot prices
- CARMA: factor shapes associated to the spot and its derivatives

Weather markets

Empirical analysis

Weather futures pricing

LSS processes

orward pricing

イロト 不得 トイヨト イヨト

æ

Conclusions

Coordinates

- fredb@math.uio.no
- folk.uio.no/fredb
- www.cma.uio.no

Weather markets

Weather futures pricing

LSS processes

vard pricing Co

Conclusions

References

- Barndorff-Nielsen, Benth and Veraart. Modelling energy spot prices by volatility modulated Levy-driven Volterra processes. *Bernoulli* 19(3), 803-845, 2013
- Benth and Saltyte-Benth. Stochastic modelling of temperature variations with a view towards weather derivatives. Appl. Math. Finance, 12, 2005
- Benth and Saltyte-Benth. The volatility of temperature and pricing of weather derivatives. Quantit. Finance, 7, 2007
- Benth, Saltyte-Benth and Koekebakker. Putting a price on temperature. Scand. J. Statist., 34, 2007
- Benth, Kluppelberg, Muller and Vos. Forward pricing in electricity markets based on stable CARMA spot models. Submitted,available at http://arxiv.org/abs/1201.1151, 2011
- Benth and Saltyte Benth. Dynamic pricing of wind futures. Energy Econ., 31, 2009
- Benth and Saltyte Benth. Analysing and modeling of wind speed in New York. J. Appl. Stat., 37(6), pp. 893909, 2010
- Benth, Härdle and Lopez Cabrera. Pricing of Asian temperature risk. In Statistical Tools for Finance and Insurance, Cizek, Härdle, Weron (eds.), Springer Verlag, 2011.
- Härdle and Lopez Cabrera. The implied market price of weather risk. Applied Math. Finance, 19, 2012.
- Saltyte Benth, Benth and Jalinskas. A spatial-temporal model for temperature with seasonal variance. J. Appl. Statist., 34, 2007
- Campbell and Diebold. Weather forecasting for weather derivatives. J. Amer. Stat. Assoc., 100, 2005
- Dornier and Querel. Caution to the wind. Energy Power Risk Manag., August, 2000
- Swishchuk and Cui. Weather derivatives with applications to Canadian data. J. Math. Finance, 3, 2013

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへ⊙