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Overview of the lecture

1. Examples of weather markets
• Temperature
• Wind

2. Continuous-time ARMA models
• ...with seasonal volatility
• Empirical analysis of temperature and wind data

3. Pricing of weather futures

• CAT and wind index futures prices
• The modified Samuelson effect

4. General Lévy semistationary (LSS) models
• Applications to electricity
• Futures pricing and relationship to spot
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The temperature market
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The temperature market

• Chicago Mercantile Exchange (CME) organizes trade in
temperature derivatives:

• Futures contracts on weekly, monthly and seasonal
temperatures

• European call and put options on these futures

• Contracts on several US, Canadian, Japanese and European
cities

• Calgary, Edmonton, Montreal, Toronto, Vancouver, Winnipeg
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HDD, CDD and CAT

• HDD (heating-degree days) over a period [τ1, τ2]∫ τ2

τ1

max (18− T (u), 0) du

• HDD is the accumulated degrees when temperature T (u) is
below 18◦C

• CDD (cooling-degree days) is correspondingly the
accumulated degrees when temperature T (u) is above 18◦C

• CAT = cumulative average temperature
• Average temperature here meaning the daily average∫ τ2

τ1

T (u) du
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At the CME...

• Futures written on HDD, CDD, and CAT as index

• HDD and CDD is the index for US temperature futures
• CAT index for European temperature futures, along with HDD

and CDD

• Discrete (daily) measurement of HDD, CDD, and CAT

• All futures are cash settled

• 1 trade unit=20 Currency (trade unit being HDD, CDD or
CAT)

• Currency equal to USD for US futures and GBP for European

• Call and put options written on the different futures
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The wind market

• The US Futures Exchange launched wind futures and options
summer 2007

• ... exchange closed before market started, though...

• Futures on a wind speed index (Nordix) in two wind farm
areas

• Texas and New York
• Texas divided into 2 subareas, New York into 3

• The Nordix index aggregates the daily deviation from a 20
year mean over a specified period

• Benchmarked at 100

• Futures are settled against this index
• European calls and puts written on these futures
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• Formal definition of the index:

N(τ1, τ2) = 100 +

τ2∑
s=τ1

W (s)− w20(s)

• W (s) is the wind speed on day s
• Daily average wind speed
• Typically measured at specific hours during a day

• w20(s) is the 20-year average wind speed for day s

• [τ1, τ2] measurement period, typically a month or a season
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Stochastic models for temperature and wind
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A continuous-time ARMA(p, q)-process

• Define the Ornstein-Uhlenbeck process X(t) ∈ Rp

dX(t) = AX(t) dt + epσ(t) dB(t) ,

• ek : k ’th unit vector in Rp, σ(t) “volatility”

• A: p × p-matrix

A =

[
0 I
−αp · · · −α1

]
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• Explicit solution of X(s), given X(t), s ≥ t ≥ 0:

X(s) = exp (A(s − t))X(t)+

∫ s

t
exp (A(s − u)) epσ(u) dB(u) ,

• Proof goes by applying the multidimensional Ito Formula on
• Note: Only one Brownian motion B, and not a

multidimensional one

f (s,X(s)) = exp(As)X(s)

• Matrix exponential defined as:

exp(At) =
∞∑
n=1

tn

n!
An
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• Define a continuous-time ARMA(p, q)-process for p > q ≥ 0
• Named CARMA(p, q)

Y (t) = b′X(t)

• Vector b ∈ Rp given as

b′ = (b0, b1, . . . , bq−1, 1, 0, . . .)

• Special case q = 0, b = e1: CAR(p)-model

X1(t) = e′1X(t)

• Y is stationary if and only if A has eigenvalues with negative
real part
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Why is X1 a CAR(p) process?

• Consider p = 3

• Do an Euler approximation of the X(t)-dynamics with time
step 1

• Substitute iteratively in X1(t)-dynamics
• Use B(t + 1)− B(t) = ε(t)

• Resulting discrete-time dynamics

X1(t + 3) ≈ (3− α1)X1(t + 2) + (2α1 − α2 − 1)X1(t + 1)

+ (α2 − 1 + (α1 + α3))X1(t) + σ(t)ε(t) .
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• Empirical analysis suggests the following models for
temperature and wind:

• Temperature dynamics T (t) defined as

T (t) = Λ(t) + X1(t)

• Wind dynamics W (t) defined as

W (t) = exp (Λ(t) + X1(t))

• Λ(t) some deterministic seasonality function
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Empirical analysis of temperature and wind data
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Empirical study of Stockholm temperature data

• Daily average temperatures from 1 Jan 1961 till 25 May 2006
• 29 February removed in every leap year
• 16,570 recordings

• Last 11 years snapshot with seasonal function
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• Fitting of model goes stepwise:

1. Fit seasonal function Λ(t) with least squares
2. Fit AR(p)-model on deseasonalized temperatures
3. Fit seasonal volatility σ(t) to residuals
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1. Seasonal function

• Suppose seasonal function with trend

Λ(t) = a0 + a1 t + a2 cos (2π(t − a3)/365)

• Use least squares to fit parameters
• May use higher order truncated Fourier series

• Estimates: a0 = 6.4, a1 = 0.0001, a2 = 10.4, a3 = −166
• Average temperature increases over sample period by 1.6◦C
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2. Fitting an auto-regressive model

• Remove the effect of Λ(t) from the data

Yi := T (i)− Λ(i) , i = 0, 1, . . .

• Claim that AR(3) is a good model for Yi :

Yi+3 = β1Yi+2 + β2Yi+1 + β3Yi + σiεi ,
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• The partial autocorrelation function for the data suggests
AR(3)

• Estimates β1 = 0.957, β2 = −0.253, β3 = 0.119 (significant at
1% level)

• R2 is 94.1% (higher-order AR-models did not increase R2

significantly)
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3. Seasonal volatility

• Consider the residuals from the AR(3) model

• Close to zero ACF for residuals

• Highly seasonal ACF for squared residuals
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• Suppose the volatility is a truncated Fourier series

σ2(t) = c +
4∑

i=1

ci sin(2iπt/365) +
4∑

j=1

dj cos(2jπt/365)

• This is calibrated to the daily variances
• 45 years of daily residuals
• Line up each year next to each other
• Calculate the variance for each day in the year
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• A plot of the daily empirical variance with the fitted squared
volatility function

• High variance in winter, and early summer

• Low variance in spring and late summer/autumn
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• Similar observations in other studies
• Several cities in Norway and Lithuania
• Calgary and Toronto: Swishchuk and Cui (2013)
• German and Asian cities: Benth, Härdle and Lopez-Cabrera

(2011,2012)
• Seasonality in ACF for squared residuals observed in Campbell

and Diebold (2005) for several US cities
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• Dividing out the seasonal volatility from the regression
residuals

• ACF for squared residuals non-seasonal
• ACF for residuals unchanged
• Residuals become (close to) normally distributed
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• Conclusion: fitted an AR(3)-model with seasonal variance to
deseasonalized daily temperatures

• Apply the link between CAR(3) and AR(3) to derive the
continuous-time parameters α1, α2 and α3

α1 = 2.043, α2 = 1.339, α3 = 0.177

• Seasonality Λ and variance σ given

• The fitted CAR(3)-model is stationary (to a normal
distribution)

• Eigenvalues of A have negative real parts
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Commercial break
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Empirical study of New York wind speed data

• Daily average wind speed data from New York wind farm
region 1 from Jan 1 1987 till Sept 7 2007.

• 7,550 daily recordings, after leap year data were removed

• Figure shows 5 years from 1987
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• Fitting wind speed model to data follows (almost) the same
scheme as temperature

1. Logarithmic transformation of data to symmetrize
2. Fit seasonal function
3. Find AR(p)-model to deseasonalized data
4. Find volatility structure of residuals
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1. Symmetrization of data

• Wind speed histogram (left), logarithmic transformed speeds
(right)
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2. Seasonal function

• Seasonality function with annual and biannual periodicity

Λ(t) = a0 + a1 cos(2πt/365) + a2 sin(2πt/365) + a3 cos(4πt/365)

+ a4 sin(4πt/365)

• Nonlinear least squares (using matlab) on transformed data
gives

a0 = 1.91, a1 = 0.26, a2 = 0.08, a3 = −0.04, a4 = −0.07
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• Consider the ACF before and after estimated seasonality has
been removed

• We see (right plot) that the ACF of deseasonalized data does
not show any periodic pattern
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3. Fitting an AR(p)-model

• Partial ACF for deseasonalized data suggests a higher-order
AR(MA) structure

• AR(4) best according to Akaike’s Information Criterion
• ...best among ARMA(p ≤ 5, q ≤ 5)
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• Estimated regression parameters in the AR(4) model

zt = β1zt−1 + β2zt−2 + β3zt−3 + β4zt−4

β1 = 0.355, β2 = −0.104, β3 = 0.010, β4 = 0.027

• All except β3 are found to be significant



Weather markets Models Empirical analysis Weather futures pricing LSS processes Forward pricing Conclusions

4. Volatility structure

• Estimated daily empirical variance, and fitted a truncated
Fourier series

• ...as for temperature

σ2(t) = c0 +
3∑

k=1

ck cos(2πkt/365)

• Estimated parameters (nonlinear least squares)

c0 = 0.208, c1 = 0.033, c2 = −0.019, c3 = −0.010
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Relation to CAR(4)-model X1(t)

• Using Euler approximation on dynamics of X1(t)

X1(t) ≈ (4− α1)X1(t − 1) + (3α1 − α2 − 6)X1(t − 2)

+ (4 + 2α2 − α3 − 3α1)X1(t − 3)

+ (α3 − α4 − α2 + α1 − 1)X1(t − 4)

• Knowing the β’s yield

α1 = 3.645, α2 = 5.039, α3 = 3.133, α4 = 0.712

• Eigenvalues of A have negative real part, thus stationary
dynamics
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Weather futures pricing
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CAT temperature futures

• CAT-futures price FCAT(t, τ1, τ2) at time t ≤ τ1

• No trade in settlement period

FCAT(t, τ1, τ2) = EQ

[∫ τ2

τ1

T (u) du | Ft

]
• Constant interest rate r , and settlement at the end of index

period, τ2

• Q is the pricing measure
• Not unique since market is incomplete
• Temperature is not tradeable!
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A class of risk neutral probabilities

• Parametric sub-class of risk-neutral probabilities Qθ

• Defined by Girsanov transformation of B(t)

dBθ(t) = dB(t)− θ(t) dt

• θ(t) deterministic market price of risk

• Dynamics of X(t) under Qθ:

dX(t) = (AX(t) + epσ(t)θ(t)) dt + epσ(t) dBθ(t) .
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• X1(s) = e′1X(s) conditioned on X(t) = x, t ≤ s is normally
distributed under Qθ

• Mean:

µθ(t, s, x) = e′1 exp(A(s − t))x

+

∫ s

t
e′1 exp(A(s − u))epσ(u)θ(u) du

• Variance:

Σ2(t, s) =

∫ s

t
σ2(u){e′1 exp(A(s − u))ep}2 du
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• CAT-futures price

FCAT(t, τ1, τ2) =

∫ τ2

τ1

Λ(u) du + a(t, τ1, τ2)X(t)

+

∫ τ1

t
θ(u)σ(u)a(t, τ1, τ2)ep du

+

∫ τ2

τ1

θ(u)σ(u)e′1A−1 (exp (A(τ2 − u))− Ip) ep du

with Ip being the p × p identity matrix and

a(t, τ1, τ2) = e′1A−1 (exp (A(τ2 − t))− exp (A(τ1 − t)))
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• Time-dynamics of FCAT (applying Ito’s Formula)

dFCAT(t, τ1, τ2) = ΣCAT(t, τ1, τ2) dBθ(t)

where

ΣCAT(t, τ1, τ2) = σ(t)e′1A−1 (exp (A(τ2 − t))− exp (A(τ1 − t))) ep

• ΣCAT is the CAT volatility term structure
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• Seasonal volatility, with maturity effect

• Plot of the volatility term structure as a function of t up to
start of measurement period

• Monthly contracts
• Parameters taken from Stockholm for CAR(3)
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• The Samuelson effect
• The volatility is decreasing with time to delivery
• Typical in mean-reverting markets

• AR(3) has memory
• Implies a modification of this effect
• Plot shows volatility of CAT with monthly vs. weekly

measurement period
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• Estimation of the market price of risk θ
• Necessary for option pricing
• Constant, or time-dependent?

• Calibrate theoretical futures curve to observed

min
θ

∑
i

|FIND(0, τ i1, τ
i
2)− F̂ i

IND|2

• IND=HDD, CDD, CAT

• Empirical study for Berlin: see recent paper by Härdle and
Lopez Cabrera (2012)
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Wind futures pricing

• Recall the Nordix index for wind speed

N(τ1, τ2) = 100 +

τ2∑
s=τ1

W (s)− w20(s)

• Arbitrage-free pricing dynamics (analogous to temperature
futures)

F (t, τ1, τ2) = EQ [N(τ1, τ2) | Ft ]

= 100 +

τ2∑
s=τ1

EQ [W (s) |X(t)]− w20(s)

• Choose Q = Qθ as for temperature futures
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• Calculation of futures price:

f (t, s) , EQθ [W (s) | Ft ]

= exp

(
Λ(s) + µθ(t, s,X(t)) +

1

2
Σ2(t, s)

)

• Recalling µθ and Σ(t, s) from the temperature calculations

• Dynamics of f (t, s) (using Ito’s Formula again)

df (t, s)

f (t, s)
= σ(t)

{
e′1 exp(A(s − t))ep

}
dBθ(t)
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• The term v 2(t, s) = e′1 exp(A(s − t))ep models the modified
Samuelson effect

• Consider p = 1, i.e., AR(1)-model

v 2(t, s) = e′1 exp(A(s − t))e1 = exp(−α1(s − t))

• When s ↓ t, v 2(s, t)→ 1
• v 2(s, t) increases to 1 when “time-to-maturity” s − t goes to

zero
• Samuelson effect again...

• v 2(s, t) is the scaling of volatility, which goes to 1 in the
AR(1)-case
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• Consider p > 1

lim
s↓t

v 2(s, t) = e′1Iep = 0

• Volatility of f is scaled to zero when “time-to-maturity” goes
to zero

• The uncertainty of the futures price f (t, s) goes to zero close
to maturity!

• ...and not at its maximum as for AR(1)-models
• ...which has the Samuelson effect
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• AR(4) means that wind speed has a memory up to 4 days

• Close to maturity we can predict the wind speed at maturity
very good

• ...which obviously reduces the uncertainty



Weather markets Models Empirical analysis Weather futures pricing LSS processes Forward pricing Conclusions

LSS processes
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Definition of LSS process

Y (t) =

∫ t

−∞
g(t − s)σ(s) dL(s)

• L a (two-sided) Lévy process (with finite variance)

• σ a stochastic volatility process

• g kernel function defined on R+

• Integration in semimartingale (Ito) sense
• σ typically assumed to be independent of L, with finite

variance and stationary
• usually σ is again an LSS process....
• g square-integrable on R+

• Y is stationary whenever σ is
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Models of temperatures and wind in stationarity

• Temperature model

T (t) = Λ(t) +

∫ t

−∞
g(t − s)σ(s) dB(s)

• σ deterministic seasonal volatility, Λ seasonal mean function,
B Brownian motion, and

g(u) = e′1eAue3

• Stochastic model for New York daily averaged wind speeds

W (t) = exp

(
Λ(t) +

∫ t

−∞
g(t − s)σ(s) dB(s)

)
• g is a CAR(4)-kernel



Weather markets Models Empirical analysis Weather futures pricing LSS processes Forward pricing Conclusions

Electricity spot

• Electricity spot given by an arithmetic two-factor model (B.,
Kluppelberg, Müller and Vos, 2011)

S(t) = Λ(t) + X (t) +

∫ t

−∞
g(t − s) dL(s)

• g(u) = (b0, 1)eAue2, CARMA(2,1)-kernel, L a stable Lévy
process

• X long-term factor modelled as a NIG Lévy process
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• Recent paper by Barndorff-Nielsen, B., and Veraart (2013):

ln S(t) = Λ(t) +

∫ t

−∞
g(t − s)σ(s) dB(s)

• EEX: Y (t) := ln S(t)− Λ(t):

• is stationary with p-value smaller than 0.01 (augmented
Dickey-Fuller unit root text)

• Deseasonalized data has a normal inverse Gaussian (NIG)
stationary distribution (generalized hyperbolic)
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• Question: How to choose σ and g such that Y ∼GH?

• Assume a ”gamma”-kernel g : For λ > 0 and 1
2 < ν < 1,

g(u) ∼ uν−1 exp (−λu)

• σ2(t) chosen as LSS process again

σ2(t) =

∫ t

−∞
h(t − s) dU(s) , h(t) ∼ t1−2νe−λt

• U a subordinator process
• specificied so that σ2(t) has generalized inverse Gaussian

stationary distribution

• Idea in construction:
• Separately model stationary distribution and ACF structure

(and stochastic volatility)
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• Fitted ACF function vs. empirical
• EEX deseasonalized log-spot price data
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Forward pricing under LSS models
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• Focus on the case of power

• Forward price of a contract delivering electricity spot S(t)
over the time interval [τ1, τ2]

F (t, τ1, τ2) = EQ

[
1

τ2 − τ1

∫ τ2

τ1

S(τ) dτ
∣∣∣Ft

]
=

1

τ2 − τ1

∫ τ2

τ1

f (t, τ) dτ

• Weather: In case of PRIM index, S(τ) is temperature at time τ
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• Q chosen via the Esscher transform (or Girsanov for Brownian
models)

• Measure change only for positive times, t ≥ 0
• Preserves independent increment property (and Lévy property

for constant θ)

dQ

dP

∣∣∣
Ft

= exp

(∫ t

0
θ(s) dL(s)−

∫ t

0
φL(θ(s)) ds

)
• φL log-moment generating function of L

• supposed to exist

• θ market price of risk
• to be estimated/calibrated

• Similar change of measure for the stochastic volatility σ
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Theorem
The forward price is

• Geometric LSS case

f (t, τ) = Λ(τ)EQ

[
exp

(∫ τ

t
φQL (g(τ − u)σ(u)) du

)
| Ft

]
× exp

(∫ t

−∞
g(τ − u)σ(u) dL(u)

)

• Arithmetic LSS case

f (t, τ) = Λ(τ) +

∫ t

−∞
g(τ − u)σ(u) dL(u)

+ EQ [L(1)]

∫ τ

t
g(τ − u)EQ [σ(u) | Ft ] du
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Proof(outline) Split into∫ τ

−∞
g(τ − u)σ(u) dL(u) =

∫ t

−∞
g(τ − u)σ(u) dL(u)

+

∫ τ

t
g(τ − u)σ(u) dL(u)

1. Apply Ft-measurability on the first integral on the RHS.

2. Condition on σ using independence

3. Apply the tower property of conditional expectation.
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• Note: Spot and forward...

(ln)S(t) ∼
∫ t

−∞
g(t − u)σ(u) dL(u) = Y (t)

(ln)f (t,T ) ∼
∫ t

−∞
g(τ − u)σ(u) dL(u) := Y (t,T − t)

• Analyse the spot-forward connection by Laplace transform
• Let x = τ − t, time-to-maturity
• Suppose integral from zero∫ ∞

0

∫ t

0
g(x + t − s)σ(s) dL(s)e−θt dt

= L(g(·+ x))(θ)

∫ ∞
0

e−θsσ(s) dL(s)
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• Suppose there exists some “nice” h(t, x) such that

L(g(·+ x))(θ) = L(h(·, x))(θ)L(g)(θ)

• Forward price becomes a weighted average of past spot prices

Y (t, x) =

∫ t

0
h(t − s, x)Y (s) ds

• LSS processes Y have a memory (moving-average process)
• Forward prices depends on past and present spot prices....
• ...and not only the present spot price!
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Case I: CARMA(p,0)-kernel

• Recall g(u) = e1eAuep

Y (t, x) =

p∑
i=1

fi (x)Y (i−1)(t)

• Y (k) kth derivative
• LSS with CAR(p)-kernel has p − 1-times continuously

differentiable paths
• Implied by g being differentiable of all orders, g (k)(0) = 0 for

k ≤ p − 1 and semimartingale representation of Y (t).
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• Forward curve shapes fi (x), i = 0, 1, . . . , p − 1

fi (x) = e′1eAxei+1

• Plot of the three first
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Case II: gamma kernel

• Recall g(u) ∼ uν−1 exp(−λu), 0.5 < ν < 1

• We obtain

Y (t, x) =

∫ t

0
h(t − s, x)Y (s) ds

for

h(t, x) ∼
(x

t

)ν 1

x + t
e−λ(t+x)

• Forward price is a weighted average of past spot prices
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Conclusions

• CAR(p) model for the daily temperature and wind speed
dynamics

• Auto-regressive process, with
• Seasonal mean
• seasonal volatility

• Allows for analytical futures prices
• HDD/CDD, and CAT temperature futures
• Nordix wind futures
• Futures contracts with ”delivery” over months or seasons
• Seasonal volatility with a modified Samuelson effect: volatility

may even decrease close to maturity

• Problem: understand the market price of weather risk
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• General stationary models: LSS processes
• Includes CARMA processes
• Extends to more general mean-reversion dynamics

• Forward pricing under LSS
• Forward expressable as an average of past spot prices
• CARMA: factor shapes associated to the spot and its

derivatives
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Coordinates

• fredb@math.uio.no

• folk.uio.no/fredb

• www.cma.uio.no



Weather markets Models Empirical analysis Weather futures pricing LSS processes Forward pricing Conclusions

References

• Barndorff-Nielsen, Benth and Veraart. Modelling energy spot prices by volatility modulated Levy-driven
Volterra processes. Bernoulli 19(3), 803-845, 2013

• Benth and Saltyte-Benth. Stochastic modelling of temperature variations with a view towards weather
derivatives. Appl. Math. Finance, 12, 2005

• Benth and Saltyte-Benth. The volatility of temperature and pricing of weather derivatives. Quantit.
Finance, 7, 2007

• Benth, Saltyte-Benth and Koekebakker. Putting a price on temperature. Scand. J. Statist., 34, 2007

• Benth, Kluppelberg, Muller and Vos. Forward pricing in electricity markets based on stable CARMA spot
models. Submitted,available at http://arxiv.org/abs/1201.1151, 2011

• Benth and Saltyte Benth. Dynamic pricing of wind futures. Energy Econ., 31, 2009

• Benth and Saltyte Benth. Analysing and modeling of wind speed in New York. J. Appl. Stat., 37(6), pp.
893909, 2010
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