Boundaries of reduced C*-algebras of discrete groups

Matthew Kennedy
(joint work with Mehrdad Kalantar)

Carleton University, Ottawa, Canada

June 23, 2014
A discrete group G is *amenable* if there is a left-invariant mean

$$\lambda : \ell^\infty(G) \to \mathbb{C},$$

i.e. a unital positive G-invariant linear map.
Definition

A discrete group G is *amenable* if there is a left-invariant mean

$$\lambda : \ell^\infty(G) \to \mathbb{C},$$

i.e. a unital positive G-invariant linear map.

In this case, λ is a unital positive G-equivariant projection.
Reframed Definition

A discrete group G is *amenable* if there is a unital positive G-equivariant projection

$$\lambda : \ell^\infty(G) \to \mathbb{C}.$$
Reframed Definition

A discrete group G is *amenable* if there is a unital positive G-equivariant projection

$$\lambda : \ell^\infty(G) \to \mathbb{C}.$$

Therefore, G is non-amenable if \mathbb{C} is “too small” to be the range of a unital positive G-equivariant projection on $\ell^\infty(G)$.
Idea

Consider the minimal C*-subalgebra A_G of $\ell^\infty(G)$ such that there is a unital positive G-equivariant projection

$$P : \ell^\infty(G) \to A_G.$$
Consider the minimal C*-subalgebra A_G of $\ell^\infty(G)$ such that there is a unital positive G-equivariant projection

$$P : \ell^\infty(G) \to A_G.$$

The size of A_G should somehow “measure” the non-amenability of G.
Theorem (Kalantar-K 2014)

There is a unique minimal C*-algebra \mathcal{A}_G arising as the range of a unital positive G-equivariant projection

$$P : \ell^\infty(G) \rightarrow \mathcal{A}_G.$$

The algebra \mathcal{A}_G is isomorphic to the algebra $C(\partial_F G)$ of continuous functions on the Furstenberg boundary $\partial_F G$ of G.
Motivation
Kirchberg proved that every exact C*-algebra can be embedded into a nuclear C*-algebra.
Kirchberg proved that every exact C*-algebra can be embedded into a nuclear C*-algebra.

In the separable case, Kirchberg and Phillips proved the nuclear C*-algebra can be taken to be the Cuntz algebra on two generators.
Ozawa conjectured the existence of what he calls a “tight” nuclear embedding.

Conjecture (Ozawa 2007)

Let \mathcal{A} be an exact C*-algebra. There is a canonical nuclear C*-algebra $N(\mathcal{A})$ such that

$$\mathcal{A} \subset N(\mathcal{A}) \subset I(\mathcal{A}),$$

where $I(\mathcal{A})$ denotes the injective envelope of \mathcal{A}.
Ozawa conjectured the existence of what he calls a “tight” nuclear embedding.

Conjecture (Ozawa 2007)

Let \mathcal{A} be an exact C^*-algebra. There is a canonical nuclear C^*-algebra $N(\mathcal{A})$ such that

$$\mathcal{A} \subseteq N(\mathcal{A}) \subseteq I(\mathcal{A}),$$

where $I(\mathcal{A})$ denotes the injective envelope of \mathcal{A}.

The algebra $N(\mathcal{A})$ will inherit many properties from \mathcal{A}, for example simplicity and primality.
Ozawa proved this conjecture for the reduced C*-algebra of the free group F_n on $n \geq 2$ generators.
Ozawa proved this conjecture for the reduced C*-algebra of the free group \mathbb{F}_n on $n \geq 2$ generators.

Theorem (Ozawa 2007)

Let $\mathcal{C}_r^*(\mathbb{F}_n)$ denote the reduced C*-algebra of \mathbb{F}_n for $n \geq 2$. There is a canonical nuclear C*-algebra $N(\mathcal{C}_r^*(\mathbb{F}_n))$ such that

$$\mathcal{C}_r^*(\mathbb{F}_n) \subset N(\mathcal{C}_r^*(\mathbb{F}_n)) \subset I(\mathcal{C}_r^*(\mathbb{F}_n)),$$

where $I(\mathcal{C}_r^*(\mathbb{F}_n))$ denotes the injective envelope of $\mathcal{C}_r^*(\mathbb{F}_n)$.
Ozawa proved this conjecture for the reduced C*-algebra of the free group \mathbb{F}_n on $n \geq 2$ generators.

Theorem (Ozawa 2007)

Let $C^*_r(\mathbb{F}_n)$ denote the reduced C*-algebra of \mathbb{F}_n for $n \geq 2$. There is a canonical nuclear C*-algebra $N(C^*_r(\mathbb{F}_n))$ such that

$$C^*_r(\mathbb{F}_n) \subset N(C^*_r(\mathbb{F}_n)) \subset I(C^*_r(\mathbb{F}_n)),$$

where $I(C^*_r(\mathbb{F}_n))$ denotes the injective envelope of $C^*_r(\mathbb{F}_n)$.

Note that $C^*_r(\mathbb{F}_n)$ is exact since \mathbb{F}_n is an exact group.
Ozawa takes $N(C^*_r(\mathbb{F}_n)) = C(\partial \mathbb{F}_n) \rtimes_r \mathbb{F}_n$, where $\partial \mathbb{F}_n$ denotes the hyperbolic boundary of \mathbb{F}_n.
Ozawa takes $\mathcal{N}(C^*_r(F_n)) = C(\partial F_n) \rtimes_r F_n$, where ∂F_n denotes the hyperbolic boundary of F_n.

Key Proposition (Ozawa 2007)

Let μ be a quasi-invariant doubly ergodic measure on ∂G. If

$$\varphi : C(\partial F_n) \to L^\infty(\partial G, \mu)$$

is a unital positive F_n-equivariant map, then $\varphi = \text{id}$.
Equivariant Injective Envelopes
An *operator system* is a unital self-adjoint subspace of a C*-algebra.
An operator system is a unital self-adjoint subspace of a C*-algebra.

A G-operator system is an operator system equipped with the action of a group G, i.e. a unital homomorphism from G into the group of order isomorphisms on S.
Let C be a category consisting of objects and morphisms. An object I is injective in C if, for every pair of objects $E \subset F$ and every morphism $\varphi : E \to I$, there is an extension $\tilde{\varphi} : F \to I$. When the objects are operator systems and the morphisms are unital completely positive maps, we get injectivity. When the objects are G-operator systems and the morphisms are G-equivariant unital completely positive maps, we get G-injectivity.
Let C be a category consisting of objects and morphisms. An object I is *injective* in C if, for every pair of objects $E \subset F$ and every morphism $\varphi : E \rightarrow I$, there is an extension $\tilde{\varphi} : F \rightarrow I$.

When the objects are operator systems and the morphisms are unital completely positive maps, we get *injectivity*. When the objects are G-operator systems and the morphisms are G-equivariant unital completely positive maps, we get *G-injectivity*.
Let \mathcal{C} be a category consisting of objects and morphisms. An object I is injective in \mathcal{C} if, for every pair of objects $E \subset F$ and and every morphism $\varphi : E \to I$, there is an extension $\tilde{\varphi} : F \to I$.

When the objects are operator systems and the morphisms are unital completely positive maps, we get injectivity.

When the objects are G-operator systems and the morphisms are G-equivariant unital completely positive maps, we get G-injectivity.
The *injective envelope* of an operator system S is the minimal injective operator system containing S.
The *injective envelope* of an operator system S is the minimal injective operator system containing S.

The *G-injective envelope* of a G-operator system S is the minimal G-injective operator system containing S.
Theorem (Hamana 1985)

If S is a G-operator system, then S has a unique G-injective envelope $I_G(S)$. Every unital completely isometric G-equivariant embedding

$$\varphi : S \rightarrow T,$$

extends to a unital completely isometric G-equivariant embedding

$$\tilde{\varphi} : I_G(S) \rightarrow T.$$
Theorem (Hamana 1985)

If S is a G-operator system, then S has a unique G-injective envelope $I_G(S)$. Every unital completely isometric G-equivariant embedding

$$\varphi : S \to \mathcal{T},$$

extends to a unital completely isometric G-equivariant embedding

$$\tilde{\varphi} : I_G(S) \to \mathcal{T}.$$

Since there is a unital completely isometric G-equivariant embedding of S into $\ell^\infty(G, S)$ there are unital completely isometric G-equivariant embeddings

$$S \subset I_G(S) \subset \ell^\infty(G, S).$$
If S is an operator system equipped with a G-action, then there are unital completely isometric G-equivariant embeddings

$$S \subset I_G(S) \subset \ell^\infty(G, S),$$

and a unital positive G-equivariant projection $P : \ell^\infty(G, S) \to I_G(S)$.
Upshot

If S is an operator system equipped with a G-action, then there are unital completely isometric G-equivariant embeddings

$$S \subset I_G(S) \subset \ell^\infty(G, S),$$

and a unital positive G-equivariant projection $P : \ell^\infty(G, S) \to I_G(S)$.

The G-injective envelope $I_G(S)$ has a natural C^*-algebra structure (induced by the Choi-Effros product).
Corollary

Let G be a discrete group acting trivially on \mathbb{C} and let $I_G(\mathbb{C})$ denote the G-injective envelope of \mathbb{C}. Then

$$\mathbb{C} \subset I_G(\mathbb{C}) \subset \ell^\infty(G),$$

and there is a unital positive G-equivariant projection

$$P : \ell^\infty(G) \rightarrow I_G(\mathbb{C}).$$
Corollary

Let G be a discrete group acting trivially on \mathbb{C} and let $I_G(\mathbb{C})$ denote the G-injective envelope of \mathbb{C}. Then

$$\mathbb{C} \subset I_G(\mathbb{C}) \subset \ell^\infty(G),$$

and there is a unital positive G-equivariant projection

$$P : \ell^\infty(G) \to I_G(\mathbb{C}).$$

The G-injective envelope $I_G(\mathbb{C})$ is a commutative C^*-algebra equipped with a G-action, so there is a compact G-space $\partial_H G$ such that $I_G(\mathbb{C}) \simeq C(\partial_H G)$.

We call $\partial_H G$ the **Hamana boundary of G**.
The Furstenberg Boundary
Definition

Let X be a compact G-space.

1. The G-action on X is *minimal* if the G-orbit

$$Gx = \{sx \mid s \in G\}$$

is dense in X for every $x \in X$.
Definition

Let X be a compact G-space.

1. The G-action on X is minimal if the G-orbit

$$Gx = \{sx \mid s \in G\}$$

is dense in X for every $x \in X$.

2. The G-action on X is strongly proximal if, for every probability measure ν on X, the weak*-closure of the G-orbit

$$G\nu = \{s\nu \mid s \in G\}$$

contains a point mass δ_x for some $x \in X$.
Definition (Furstenberg 1972)

A compact G-space X is a *boundary* if it is minimal and strongly proximal.
Definition (Furstenberg 1972)

A compact G-space X is a *boundary* if it is minimal and strongly proximal.

Key Property

If X is a boundary, then for every probability measure ν on X, the weak*-σ-closure of the G-orbit $G\nu$ contains all of X.

Here $x \in X$ is identified with the point mass δ_x on X.
The Hamana boundary $\partial_H G$ is a boundary in the sense of Furstenberg.
Theorem (Furstenberg 1972)

Every group G has a unique boundary $\partial_F G$ that is universal, in the sense that every boundary of G is a continuous G-equivariant image of $\partial_F G$. We refer to $\partial_F G$ as the Furstenberg boundary of G.
Theorem (Furstenberg 1972)

Every group G has a unique boundary $\partial_F G$ that is universal, in the sense that every boundary of G is a continuous G-equivariant image of $\partial_F G$.

We refer to $\partial_F G$ as the Furstenberg boundary of G.
Theorem (Furstenberg 1972)

Every group G has a unique boundary $\partial_F G$ that is universal, in the sense that every boundary of G is a continuous G-equivariant image of $\partial_F G$.

We refer to $\partial_F G$ as the *Furstenberg boundary of G*.

Theorem (Kalantar-K 2014)

*For a discrete group G, the Hamana boundary $\partial_H G$ can be identified with the Furstenberg boundary $\partial_F G$.***
Properties of injective envelopes (injectivity, rigidity and essentiality) imply corresponding results about the Furstenberg boundary.
Properties of injective envelopes (injectivity, rigidity and essentiality) imply corresponding results about the Furstenberg boundary.

Theorem (Kalantar-K 2014)

Let G be a discrete group and let $\partial_F G$ denote the Furstenberg boundary of G. Then the C^*-algebra $C(\partial_F G)$ is G-injective. Moreover, we have the following rigidity results:
Properties of injective envelopes (injectivity, rigidity and essentiality) imply corresponding results about the Furstenberg boundary.

Theorem (Kalantar-K 2014)

Let G be a discrete group and let $\partial_F G$ denote the Furstenberg boundary of G. Then the C*-algebra $C(\partial_F G)$ is G-injective. Moreover, we have the following rigidity results:

1. Every unital positive G-equivariant map from $C(\partial_F G)$ is completely isometric.
Properties of injective envelopes (injectivity, rigidity and essentiality) imply corresponding results about the Furstenberg boundary.

Theorem (Kalantar-K 2014)

Let G be a discrete group and let $\partial_F G$ denote the Furstenberg boundary of G. Then the C^*-algebra $C(\partial_F G)$ is G-injective. Moreover, we have the following rigidity results:

1. Every unital positive G-equivariant map from $C(\partial_F G)$ is completely isometric.

2. The only positive G-equivariant map from $C(\partial_F G)$ to itself is the identity map.
Properties of injective envelopes (injectivity, rigidity and essentiality) imply corresponding results about the Furstenberg boundary.

Theorem (Kalantar-K 2014)

Let G be a discrete group and let $\partial_F G$ denote the Furstenberg boundary of G. Then the C*-algebra $C(\partial_F G)$ is G-injective. Moreover, we have the following rigidity results:

1. Every unital positive G-equivariant map from $C(\partial_F G)$ is completely isometric.

2. The only positive G-equivariant map from $C(\partial_F G)$ to itself is the identity map.

3. If M is a minimal G-space, then there is at most one unital G-equivariant map from $C(\partial_F G)$ to $C(M)$, and if such a map exists, then it is a unital injective *-homomorphism.
Exactness and Nuclear Embeddings
Definition (Kirchberg-Wasserman 1999)
A discrete group G is exact if the reduced C*-algebra $C^*_r(G)$ is exact.
Ozawa proved that a discrete group G is exact if and only the G-action on its Stone-Cech compactification βG is amenable.
Ozawa proved that a discrete group G is exact if and only the G-action on its Stone-Cech compactification βG is amenable.

Theorem (Kalantar-K 2014)

Let G be a discrete group. Then G is exact if and only if the G-action on the Furstenberg boundary $\partial_{\mathcal{F}} G$ is amenable.
Ozawa proved that a discrete group G is exact if and only the G-action on its Stone-Čech compactification βG is amenable.

Theorem (Kalantar-K 2014)

Let G be a discrete group. Then G is exact if and only if the G-action on the Furstenberg boundary $\partial_F G$ is amenable.

Applying a result of Anantharaman-Delaroche gives the following corollary.
Ozawa proved that a discrete group G is exact if and only the G-action on its Stone-Cech compactification βG is amenable.

Theorem (Kalantar-K 2014)

Let G be a discrete group. Then G is exact if and only if the G-action on the Furstenberg boundary $\partial_F G$ is amenable.

Applying a result of Anantharaman-Delaroche gives the following corollary.

Corollary

If G is a discrete exact group, then the reduced crossed product $C(\partial_F G) \rtimes_r G$ is nuclear.
Theorem (Kalantar-K 2014)

Let G be a discrete exact group. Then there is a canonical nuclear C^*-algebra $N(C^*_r(G))$ such that

$$C^*_r(G) \subset N(C^*_r(G)) \subset I(C^*_r(G)),$$

where $I(C^*_r(G))$ denotes the injective envelope of $C^*_r(G)$.
Theorem (Kalantar-K 2014)

Let G be a discrete exact group. Then there is a canonical nuclear C^*-algebra $N(C^*_r(G))$ such that

$$C^*_r(G) \subset N(C^*_r(G)) \subset I(C^*_r(G)),$$

where $I(C^*_r(G))$ denotes the injective envelope of $C^*_r(G)$.

We take

$$N(C^*_r(G)) = C(\partial_F G) \rtimes_r G.$$
Theorem (Kalantar-K 2014)

Let G be a discrete exact group. Then there is a canonical nuclear C^*-algebra $N(C^*_r(G))$ such that

$$C^*_r(G) \subset N(C^*_r(G)) \subset I(C^*_r(G)),$$

where $I(C^*_r(G))$ denotes the injective envelope of $C^*_r(G)$.

We take

$$N(C^*_r(G)) = C(\partial_F G) \rtimes_r G.$$

Note: This is non-separable in general, but can be replaced by a separable nuclear C^*-algebra at the expense of no longer being canonical.
C*-Simplicity
Let G be a discrete group. When is G C*-simple, i.e. when is the reduced group C*-algebra $C^*_r(G)$ simple?
Open Problem

Let G be a discrete group. When is G C*-simple, i.e. when is the reduced group C*-algebra $C^*_r(G)$ simple?

Day showed in 1957 that every discrete group G has a largest amenable normal subgroup $R_a(G)$ called the amenable radical of G. If G is C*-simple, then $R_a(G)$ is necessarily trivial.
Open Problem

Let G be a discrete group. When is G C*-simple, i.e. when is the reduced group C*-algebra $C^*_r(G)$ simple?

Day showed in 1957 that every discrete group G has a largest amenable normal subgroup $R_a(G)$ called the *amenable radical of G. If G is C*-simple, then $R_a(G)$ is necessarily trivial.

Conjecture (de la Harpe, ?)

The reduced group C*-algebra $C^*_r(G)$ is simple if and only if the amenable radical $R_a(G)$ is trivial.
Let G be a discrete group with identity element e. The G-action on a compact G-space X is \textit{topologically free} if, for every $s \in G$, the set
\[
X \setminus X^s = \{ x \in X \mid sx \neq x \}
\]
is dense in X.
The property of the G-action on the Furstenberg boundary $\partial_F G$ being topologically free is an intermediate property between C*-simplicity and triviality of the amenable radical $R_a(G)$.

Theorem (Kalantar-K 2014)

1. If the G-action on $\partial_F G$ is topologically free, then $R_a(G)$ is trivial.
2. If G is exact, and the reduced C*-algebra $C^*_r(G)$ is simple, then the G-action on $\partial_F G$ is topologically simple.
The property of the G-action on the Furstenberg boundary $\partial_F G$ being topologically free is an intermediate property between C*-simplicity and triviality of the amenable radical $R_a(G)$.

Theorem (Kalantar-K 2014)

Let G be a discrete group.

1. If the G-action on $\partial_F G$ is topologically free, then $R_a(G)$ is trivial.
2. If G is exact, and the reduced C*-algebra $\mathbb{C}^*_r(G)$ is simple, then the G-action on $\partial_F G$ is topologically simple.
Figure: Implications for an arbitrary discrete group G.

- $C^*_r(G)$ simple
- $R_a(G)$ trivial
- $C(\partial_F G) \rtimes_r G$ simple
- $G \sim \partial_F G$ topologically free
Figure: Implications for a discrete exact group G.

The diagram illustrates the relationships between various algebraic structures associated with G, including $C^*_r(G)$ being simple, $R_a(G)$ being trivial, $C(\partial_F G) \rtimes_r G$ being simple, and $G \sim \partial_F G$ being topologically free.
A Tarski monster group is a finitely generated group with the property that every nontrivial subgroup is cyclic of order p, for some fixed prime p.

Theorem (Olshanskii 1982) Tarski monster groups exist for every prime $p > 10^{75}$: This answered a question of von Neumann about the existence of non-amenable groups which do not contain non-abelian free groups.
A Tarski monster group is a finitely generated group with the property that every nontrivial subgroup is cyclic of order p, for some fixed prime p.

Theorem (Olshanskii 1982)

Tarski monster groups exist for every prime $p > 10^{75}$.
A Tarski monster group is a finitely generated group with the property that every nontrivial subgroup is cyclic of order p, for some fixed prime p.

Theorem (Olshanskii 1982)

Tarski monster groups exist for every prime $p > 10^{75}$.

This answered a question of von Neumann about the existence of non-amenable groups which do not contain non-abelian free groups.
It is currently unknown whether Tarski monster groups are C*-simple.
It is currently unknown whether Tarski monster groups are C*-simple.

Theorem (Kalantar-K 2014)

If G is a Tarski monster group, then the G-action on the Furstenberg boundary $\partial_F G$ is topologically free.
Rigidity of Maps
Theorem (Kalantar-K 2014)

Let G be a non-amenable hyperbolic group, and let μ be an irreducible probability measure on G with finite first moment. Let ν be a μ-stationary probability measure on the hyperbolic boundary ∂G. If

$$\varphi : C(\partial G) \rightarrow L^{\infty}(\partial G, \nu)$$

is a unital positive G-equivariant map, then $\varphi = \text{id}$.

We apply Jaworski's theory of strongly approximately transitive measures, combined with a uniqueness result of Kaimanovich for stationary measures.
Theorem (Kalantar-K 2014)

Let G be a non-amenable hyperbolic group, and let μ be an irreducible probability measure on G with finite first moment. Let ν be a μ-stationary probability measure on the hyperbolic boundary ∂G. If

$$\varphi : C(\partial G) \to L^\infty(\partial G, \nu)$$

is a unital positive G-equivariant map, then $\varphi = \text{id}$.

We apply Jaworski’s theory of strongly approximately transitive measures, combined with a uniqueness result of Kaimanovich for stationary measures.
Corollary

Let G be as above, and let $\partial_F G$ denote the Furstenberg boundary of G. Then

$$I_G(C(\partial G)) = C(\partial_F G),$$

where $I_G(C(\partial G))$ denotes the G-injective envelope of $C(\partial G)$.

The Furstenberg boundary $\partial_F G$ can be thought of as a "projective cover" of the hyperbolic boundary ∂G.
Corollary

Let G be as above, and let $\partial_F G$ denote the Furstenberg boundary of G. Then

$$I_G(C(\partial G)) = C(\partial_F G),$$

where $I_G(C(\partial G))$ denotes the G-injective envelope of $C(\partial G)$.

The Furstenberg boundary $\partial_F G$ can be thought of as a “projective cover” of the hyperbolic boundary ∂G.
Quantum Groups
The operator-algebraic construction of the Furstenberg boundary generalizes to certain locally compact quantum groups.
The operator-algebraic construction of the Furstenberg boundary generalizes to certain locally compact quantum groups.

Suggests this provides an appropriate quantum-group-theoretic analogue of the Furstenberg boundary.
The operator-algebraic construction of the Furstenberg boundary generalizes to certain locally compact quantum groups.

Suggests this provides an appropriate quantum-group-theoretic analogue of the Furstenberg boundary.

Many of our results hold in this setting. We intend to pursue this further...
Thanks!