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■ Known as childhood infection
■ Examples – measles, mumps, rubella, chickenpox, smallpox
■ Vaccination resulted in eradication or control of these infections
■ One of the main features of directly transmitted infections – the risk of

infection depending on age
■ The infection is influenced by the contact among individuals
■ The contact between susceptible and infecctious individuals depends on

the age
■ In general, these infections result in lifelong immunity
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■ Availability of efficient and efficacy vaccine
■ Vaccination of early aged children
■ The goal is the eradication of infection
■ Paradigm – vaccination increases the average age of the infection
■ Rubella – avoiding Congenital Rubella Syndrome (CRS)
■ Rubella – incidence of CRS can increase with vaccination
■ Rubella – vaccine does not result in CRS (two doses of vaccine in order to

avoid CRS are not necessary)
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Variables (age-specific, a, at time t):

■ X(a, t) – susceptibles
■ H(a, t) – exposed
■ Y (a, t) – infectious
■ Z(a, t) – recovered
■ Notice – the number is the sum over all ages

Parameters (per-capita):

■ µ – natural mortality rate
■ σ – incubating rate
■ γ – infectious or recovery rate
■ ν (a) – vaccination rate
■ β (a, a′) – contact rate
■ λ (a, t) – incidence rate (force of infection)
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■ System of partial differential equations


































∂

∂t
X (a, t) +

∂

∂a
X (a, t) = − [λ (a, t) + ν (a) + µ]X (a, t)

∂

∂t
H (a, t) +

∂

∂a
H (a, t) = λ (a, t)X (a, t)− (µ+ σ)H (a, t)

∂

∂t
Y (a, t) +

∂

∂a
Y (a, t) = σH (a, t)− (µ+ γ)Y (a, t)

∂

∂t
Z (a, t) +

∂

∂a
Z (a, t) = ν (a)X (a, t) + γY (a, t)− µZ (a, t)

■ The force of infection

λ (a, t) =

L
∫

0

β
(

a, a′
)

Y
(

a′, t
)

da′

■ Recovered individuals are decoupled – Z(a, t)
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■ Initial conditions (t = 0): X(a, 0) = X0(a), H(a, 0) = H0(a) and
Y (a, 0) = Y0(a) are steady state solution before introduction of vaccine,
ν (a) = 0























d

da
X0(a) = − [λ0(a) + µ]X0(a)

d

da
H0(a) = λ0(a)X0(a)− (σ + µ)H0(a)

d

da
Y0(a) = σH0(a)− (γ + µ)Y0(a)

■ Boundary conditions (a = 0): X(0, t) = Xa, H(0, t) = 0 and Y (0, t) = 0
⊲ Xa is new born rate
⊲ neither maternal antibodies nor placent infection

■ Boundary conditions (a → ∞): age distributions satisfy these boundary
conditions – X(∞, t) = 0, H(∞, t) = 0 and Y (∞, t) = 0
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X∞(a) = Xbe
−[µa+Λ(a)+N(a)]

H∞(a) = Xbe
−(µ+σ)a

a
∫

0

eσζ−N(ζ)λ∞(ζ)e−Λ(ζ)dζ

Y∞(a) = Xbe
−(µ+γ)a

a
∫

0

σe(γ−σ)sds
s
∫

0

eσζ−N(ζ)λ∞(ζ)e−Λ(ζ)dζ

resulting for the force of infection

λ∞(a) =

L
∫

0

B(a, ζ)×M (ζ, λ∞ (ζ) , ν (ζ))× λ∞(ζ)dζ

where
Λ(ζ) =

∫ ζ

0 λ∞(s)ds,N(ζ) =
∫ ζ

0 ν(s)ds,M (ζ, λ (ζ) , ν (ζ)) = e−
∫ ζ

0
[λ(s)+ν(s)]ds

and B (a, ζ) = σXbe
−N(ζ)

L
∫

ζ

e−σ(s−ζ)eγs

[

L
∫

s

β (a, a′) e−(µ+γ)a′da′

]

ds
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Existence Theorem. The operator T : C [0, L] → C [0, L] described by the
equation

Tu (a) =

L
∫

0

B (a, ζ)M (ζ, u (ζ) , ν (ζ))u (ζ) dζ

is such that if the spectral radius r (T ′ (0)) ≤ 1, the only solution of equation

λ (a) =

L
∫

0

B (a, ζ)M (ζ, λ (ζ) , ν (ζ))λ (ζ) dζ

is the trivial solution; otherwise, if r (T ′ (0)) > 1, there is at least one
non-trivial positive solution for this equation

Proof: C. H. Dezotti and H. M. Yang, Proceedings of Biomat 2010, 106
(2011)
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Uniqueness Theorem. Let us consider the function
D (a, s) = e

γs
G (a, s), with G (a, s) =

∫ L

s
β (a, a′) e−(µ+γ)a′da′

decreasing in s for each a and the operator T : C [0, L] → C [0, L] defined in
the previous theorem. If r(T ′ (0)) > 1, then the equation

λ (a) =

L
∫

0

B (a, ζ) e−Λ(ζ)λ (ζ) dζ,

where Λ (ζ) =
∫ ζ

0 λ (s) ds, has a unique non-zero solution which can be
attained by successive approximations,

λn = Tλn−1, n = 1, 2, · · · ,

and is independent of the initial approximation λ0, λ0 6= 0

Proof: H. M. Yang and C. H. Dezotti, Proceedings of Biomat 2013,
submitted
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Lower and upper bounds for R0. Let us consider the linear operator on
Banach space C [0, L] with cone C [0, L]+ given by

T ′ (0)h (a) =

L
∫

0

B (a, ζ)h (ζ) dζ,

where B (a, ζ) was previously defined. Then

Rl
ν = inf

a∈[0,L]

L
∫

0

B (a, ζ) dζ ≤ r
(

T ′ (0)
)

≤ sup
a∈[0,L]

L
∫

0

B (a, ζ) dζ = Ru
ν ,

where r (T ′ (0)) = R0

Proof: H. M. Yang and C. H. Dezotti, Proceedings of Biomat 2013,
submitted
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Stability of the trivial solution. Let x (a, t), h (a, t) and y (a, t) be small
perturbations from the equilibrium (X∞(a) , H∞(a) and Y∞(a)







X (a, t) = X∞ (a) + x (a, t)
H (a, t) = H∞ (a) + h (a, t)
Y (a, t) = Y∞ (a) + y (a, t)

giving rise a small perturbation on the force of infection

λ (a, t) = λ∞ (a) + l (a, t)

Stability Theorem. If r (T ′ (0)) ≤ 1, then the trivial equilibrium is locally
stable. If r (T ′ (0)) > 1, then the trivial equilibrium is locally unstable

Proof: H. M. Yang and C. H. Dezotti, Proceedings of Biomat 2013,
submitted
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Example 1. Vaccination ν (a) and contact β (a, a′) rates given by

{

ν(a) = νθ (a− a1) θ (a2 − a)
β (a, a′) = βδ (a− a′)

where the Heaviside function is θ (x) = 1, if x ≥ 0, otherwise, 0; and the
Dirac delta function is δ (x) = ∞, if x = 0, otherwise, 0.
A non-linear homogeneous Volterra integral equation of second type arises

λ (a) =
∫ a

0 B (a, ζ) e−
∫ ζ

0
λ(s)dsλ (ζ) dζ, where the kernel is

B (a, ζ) =

{

βσXb

γ−σ
e−µa

[

e−σ(a−ζ) − e−γ(a−ζ)
]

, if ζ ≤ a

0, if a < ζ

There is a unique solution λ ≡ 0, showing that the ages of contact must be
relaxed to occur the transmission
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Example 2. Vaccination ν (a) and contact β (a, a′) rates given by

{

ν(a) = νθ (a− a1) θ (a2 − a)

β (a, a′) = βe−c1ae−c2a
′

resulting in Rl
ν = Ru

ν = Rν , with

Rν = R0

{

1−
νe−(µ+c1+c2)a1

µ+ ν + c1 + c2

[

1− e−(µ+ν+c1+c2)(a2−a1)
]

}

,

where the basic reproduction number R0 is

R0 =
βσXb

(µ+ c1 + c2) (µ+ γ + c2) (µ+ σ + c2)
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Example 3. Vaccination ν (a) and contact β (a, a′) rates given by

{

ν(a) = νθ (a− a1) θ (a2 − a)
β (a, a′) = β

a special case of example 2, with c1 = c2 = 0, resulting in

Rν = R0

{

1−
ν

µ+ ν
e−µa1

[

1− e−(µ+ν)(a2−a1)
]

}

,

where the basic reproduction number R0 is

R0 =
βσXb

µ (µ+ γ) (µ+ σ)

See: H. M. Yang, Appl. Math. Comput. 122 (1), 27 (2001)
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Example 4. Vaccination ν (a) and contact β (a, a′) rates given by







ν(a) = νθ (a− a1) θ (a2 − a)

β(a, a′) = β0 ×
b3

b2Γ(b1+1) ×

(

a
b2

)b1
e
−

a
b2

2−e−b3a
× e−b3|a−a′|

where Γ(x) is the gamma function, β0 (dimension of time) is the period of
exposure encompassing the infectivity of virus, b1 is the average number of
potentially infective contacts, b2 (dimension of time) is the togetherness
period, and b3 is the infective contact rate (dimension of time−1)

Note: β(a, a′) does not satisfy β (a, a′) > 0 for all a, a′ ∈ [0, L], except for
a = a′ = 0 where β (a, a′) = 0

Studied by numerical simulations

See: H. M. Yang, Math. Compt. Model. 29 (8), 39 (1999)
H. M. Yang, Math. Compt. Model. 29 (7), 11 (1999)
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■ Seroprevalence from city in Brazil
■ Estimation of the force of infection – λ (a)

■ λ (a) – estimation of β(a, a′)
■ Average age of infection – a0 = 7.41 years

■ Age-dependent simulations

■ λ (a) – calculation of mean value λm

■ λm – estimation of mean value βm
■ Average force of infection – λ0 = 0.097 years−1

■ Average age of infection – a0 = 8.77 years−1

■ Age-independent simulations

Steady state simulations
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The force of infection after vaccination varying proportion vaccinated. The
vaccinated intervals (fixing 1 age interval) are (curves from bottom to top):
[1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7], [7, 8], [8, 9], [9, 10], and [10, 11]
The last age interval does not eradicate infection
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The ratio between average age of infection after and before vaccination
varying proportion vaccinated. The vaccinated intervals (fixing 1 age interval)
are (curves from top to bottom): [1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7], [7, 8],
[8, 9], [9, 10], and [10, 11]
The average age of infection always increases with vaccination
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The estimated age-structured contact rate β(a, a′)
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The age-structured force of infection λ(a) when vaccinating 1 year age
interval [1, 2] for diffferent proportions of vaccination (%): 0, 5, 10, 15, 20,
25, 30, 35, 40, 45 and 50 (curves from top to bottom)
Three thin curves must be multiplied by 5× 10−8
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The age-structured force of infection λ(a) when vaccinating 1 year age
interval [14, 15] for diffferent proportions of vaccination (%):0, 110, 20, 30,
40, 50, 60, 70, 80, 90 and 100 (curves from top to bottom)
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The ratio between average age of infection after and before vaccination
varying proportion vaccinated. The vaccinated intervals are (curves from top
to bottom): [1, 2], [3, 4], [5, 6], [7, 8], [8, 9], [9, 10], and [11, 12]
The average age of infection increases for three first age intervals, while
decreases for last four intervals
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■ Basic reproduction number and spectral radius – R0 = r (T ′ (0))
■ R0 < 1 – Trivial equilibrium (eradication of disease) is stable
■ R0 > 1 – Trivial equilibrium (eradication of disease) is unstable, and a

unique non-trivial equilibrium (epidemics) arises
■ Age-structured vaccination rate ν(a) = νθ (a− a1) θ (a2 − a) – paradigm

is valid when earlier aged children are vaccinated. When higher aged
children are vaccinated, the average age of infection decreases with
vaccination

■ Constant contact rate β – The lower bound of age interval vaccinated is
around 10 years

■ Age-structured contact rate β(a, a′) – The lower bound of age interval
vaccinated is around 7 years
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Thank You

Visit http://www.cebiq.ime.unicamp.br
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