Discovering Hidden Repetitions

Florin Manea
Joint work with Paweł Gawrychowski, Robert Mercaș, Dirk Nowotka

aChristian-Albrechts-Universität zu Kiel
bMax-Planck-Institute für Informatik Saarbrücken
cOtto-von-Guericke-Universität Magdeburg

Toronto, April 2013
A word w is

- **repetition**: $w = t^n$, for some proper prefix t (called root)
 - **primitive word**: not a repetition.
- **f-repetition**: $w \in t\{t, f(t)\}^*$, for some proper prefix t (called root)
 - **f-primitive word**: not an f-repetition.
A word w is

- **repetition**: $w = t^n$, for some proper prefix t (called root)

 primitive word: not a repetition.

- **f-repetition**: $w \in t\{t, f(t)\}^*$, for some proper prefix t (called root)

 f-primitive word: not an f-repetition.

Example

$ACGTAC$

- **primitive** from the classical point of view
Pseudo-repetitions

A word w is

- **repetition**: $w = t^n$, for some proper prefix t (called root)
 - *primitive word*: not a repetition.

- **f-repetition**: $w \in t\{t, f(t)\}^*$, for some proper prefix t (called root)
 - *f-primitive word*: not an f-repetition.

Example

$ACGTAC$

- *primitive* from the classical point of view
- *f-primitive* for morphism f with $f(A) = T$, $f(C) = G$
Pseudo-repetitions

A word w is

- **repetition**: $w = t^n$, for some proper prefix t (called root)

 primitive word: not a repetition.

- **f-repetition**: $w \in t\{t, f(t)\}^*$, for some proper prefix t (called root)

 f-primitive word: not an f-repetition.

Example

ACGTAC

- **primitive** from the classical point of view
- **f-primitive** for morphism f with $f(A) = T$, $f(C) = G$
- **f-power** for antimorphism f with $f(A) = T$, $f(C) = G$:

 \[
 ACGTAC = AC \cdot f(AC) \cdot AC
 \]
Why Pseudo-repetitions?

Repetitions: central in combinatorics on words and applications!
Why Pseudo-repetitions?

Repetitions: central in combinatorics on words and applications!

[Czeizler, Kari, Seki. On a special class of primitive words. TCS, 2010.]

Originated from computational biology:
– Watson-Crick complement: an antimorphic involution
– a single-stranded DNA and its complement encode the same information.
Why Pseudo-repetitions?

Repetitions: central in combinatorics on words and applications!

[Czeizler, Kari, Seki. On a special class of primitive words. TCS, 2010.]

Originated from computational biology:
– Watson-Crick complement: an antimorphic involution
– a single-stranded DNA and its complement encode the same information.

Generally: strings with intrinsic (yet, hidden) repetitive structure.
Why Pseudo-repetitions?

Repetitions: central in combinatorics on words and applications!

[Czeizler, Kari, Seki. On a special class of primitive words. TCS, 2010.]

Originated from computational biology:
– Watson-Crick complement: an antimorphic involution
– a single-stranded DNA and its complement encode the same information.

Generally: strings with intrinsic (yet, hidden) repetitive structure.
Such structures appear also in music: ternary song form.
Why Pseudo-repetitions?

Repetitions: central in combinatorics on words and applications!

[Czeizler, Kari, Seki. On a special class of primitive words. TCS, 2010.]

Originated from computational biology:
– Watson-Crick complement: an antimorphic involution
– a single-stranded DNA and its complement encode the same information.

Generally: strings with intrinsic (yet, hidden) repetitive structure.
Such structures appear also in music: ternary song form.

[Blondin Massé, Gaboury, Hallé. Pseudoperiodic words. DLT 2012]
[M., Müller, Nowotka. The avoidability of cubes under permutations. DLT 2012.]
[M., Mercas, Nowotka. F & W theorem and pseudo-repetitions. MFCS 2012.]
Finding Pseudo-repetitions

Problem

Given $w \in V^*$ *and* f, *decide whether this word is an* f-*repetition.*
Finding Pseudo-repetitions

Problem

Given \(w \in V^* \) and \(f \), decide whether this word is an \(f \)-repetition.

Problem

Given \(w \in V^+ \), decide whether there exists an \(f : V^* \rightarrow V^* \) and a prefix \(t \) of \(w \) such that \(w \in t\{t, f(t)\}^+ \).
Finding Pseudo-repetitions

Problem

Given $w \in V^*$ and f, decide whether this word is an f-repetition.

Problem

Given $w \in V^+$, decide whether there exists an $f : V^* \to V^*$ and a prefix t of w such that $w \in t\{t, f(t)\}^+$.

Problem

Given a word $w \in V^*$ and f,
(1) Enumerate all (i, j, ℓ), $1 \leq i, j, \ell \leq |w|$, such that there exists t with $w[i..j] \in \{t, f(t)\}^\ell$.
(2) Given k, enumerate all (i, j), $1 \leq i, j \leq |w|$, so there exists t with $w[i..j] \in \{t, f(t)\}^k$.
Basic tools

Computational model: RAM with logarithmic word size.

A word u, with $|u| = n$, over $|V| \in \mathcal{O}(n^c)$.

Build in linear time:
- suffix array data structure for u;
- data structures allowing us to answer in $\mathcal{O}(1)$ queries:
 “How long is the longest common prefix of $u[i..n]$ and $u[j..n]$?”, denoted $\text{LCP}_{u}(i, j)$.
Basic tools

Computational model: RAM with logarithmic word size.

A word u, with $|u| = n$, over $|V| \in \mathcal{O}(n^c)$.

Build in linear time:
– suffix array data structure for u;
– data structures allowing us to answer in $\mathcal{O}(1)$ queries:
 “How long is the longest common prefix of $u[i..n]$ and $u[j..n]$?”, denoted $LCPref_u(i, j)$.

In our case:

- w is the input word,
- f a fixed anti-/morphism,
- $u = wf(w), \ |u| \in \mathcal{O}(|w|)$.
Basic tools

Computational model: RAM with logarithmic word size.

A word u, with $|u| = n$, over $|V| \in \mathcal{O}(n^c)$.

Build in linear time:
– suffix array data structure for u;
– data structures allowing us to answer in $\mathcal{O}(1)$ queries:
“How long is the longest common prefix of $u[i..n]$ and $u[j..n]$?”, denoted $\text{LCPref}_u(i, j)$.

In our case:

- w is the input word,
- f a fixed anti-/morphism,
- $u = w f(w), |u| \in \mathcal{O}(|w|)$.
- Constant time: does $w[i..j] / f(w[i..j])$ occur at position s in w?
Basic tool: Fine and Wilf Theorem

[Fine, Wilf: *Uniqueness theorem for periodic functions* (1965).]

Theorem

If \(\alpha \in u \{u, v\}^* \) and \(\beta \in v \{u, v\}^* \) have a common prefix of length at least \(|u| + |v| - \gcd(|u|, |v|) \), then \(u \) and \(v \) are powers of a common word.
Basic structure of pseudo-repetitions (used for $y = f(x)$).

Lemma (Uniqueness-1)

x, y words over V; x, y not powers of the same word, $w \in \{x, y\}^*$. There exists a unique decomposition of w in factors x, y.

\[\square\]
Basic tools

Basic structure of pseudo-repetitions (used for $y = f(x)$).

Lemma (Uniqueness-1)

x, y words over V; x, y not powers of the same word, $w \in \{x, y\}^*$.
There exists a unique decomposition of w in factors x, y.

Lemma (Uniqueness-2)

f non-erasing anti-/morphism, x, y, z words over V, $f(x) = f(z) = y$,
$\{x, y\}^*x\{x, y\}^* \cap \{z, y\}^*z\{z, y\}^* \neq \emptyset$.
Then $x = z$.
Basic tools

How to find the unique decomposition?
(Take y to be the longest of x and $f(x)$.)

Lemma (Shifts)

$x, y \in V^+, w \in \{x, y\}^* \setminus \{x\}^*, |x| \leq |y|, x, y$ not powers of some word.

$M = \max\{p \mid x^p$ is a prefix of $w\}$ and $N = \max\{p \mid x^p$ is a prefix of $y\}$.

We have:

- $M \geq N$.

Basic tools

How to find the unique decomposition?
(Take y to be the longest of x and $f(x)$.)

Lemma (Shifts)

$x, y \in V^+, w \in \{x, y\}^* \setminus \{x\}^*, |x| \leq |y|$, x, y not powers of some word. $M = \max\{p \mid x^p \text{ is a prefix of } w\}$ and $N = \max\{p \mid x^p \text{ is a prefix of } y\}$.

We have:

- $M \geq N$.
- If $M = N$ then $w \in y\{x, y\}^*$ holds.
Basic tools

How to find the unique decomposition?
(Take \(y \) to be the longest of \(x \) and \(f(x) \).)

Lemma (Shifts)

\(x, y \in V^+, w \in \{x, y\}^* \setminus \{x\}^*, |x| \leq |y|, x, y \text{ not powers of some word.} \)

\[M = \max \{p \mid x^p \text{ is a prefix of } w\} \text{ and } N = \max \{p \mid x^p \text{ is a prefix of } y\}. \]

We have:

- \(M \geq N \).
- **If** \(M = N \) **then** \(w \in y\{x, y\}^* \) **holds.**
- **If** \(M > N \) **then exactly one of the following holds:**
 - \(w \in x^{M-N}y\{x, y\}^* \setminus x^{M-N-1}yxV^* \),
 - \(w \in x^{M-N-1}y\{x, y\}^+ \setminus x^{M-N}yV^* \) **and** \(N > 0 \).
Deciding whether w is an f-repetition

1. Test whether there exists x such that $w = x^k$, with $k \geq 2$.
Deciding whether \(w \) is an \(f \)-repetition

1. Test whether there exists \(x \) such that \(w = x^k \), with \(k \geq 2 \).
2. For all \(t = w[1..i] \), \(|f(t)| \geq 1 \), \(t \), \(f(t) \) not powers of some \(x \in V^* \) do 3&4.
3. Let \(x \) be the shortest of \(t \) and \(f(t) \), and \(y \) the longest. Apply Shifts Lemma!
Deciding whether w is an f-repetition

1. Test whether there exists x such that $w = x^k$, with $k \geq 2$.

2. For all $t = w[1..i]$, $|f(t)| \geq 1$, t, $f(t)$ not powers of some $x \in V^*$ do 3&4.

3. Let x be the shortest of t and $f(t)$, and y the longest. Apply Shifts Lemma!

4. We construct a maximal prefix $w[i+1..s-1] \in \{x, y\}^*$ of $w[i+1..n]$:
 - Initially, $s = i + 1$.
 - Let $M = \max\{p \mid x^p$ prefix of $w[s..n]\}$, $N = \max\{p \mid x^p$ prefix of $y\}$;
 - If $w[s..n] = x^M$, we are done!
 - If $x^{M-N}y$ occurs at position s, shift $s+ = (M - N)|x| + |y|$, iterate;
 - If $M > N$ and $x^{M-N-1}yx$ occurs at s, shift $s+ = (M - N - 1)|x| + |y|$, iterate;

Time complexity:
- For general: $O(\sum_{1 \leq i \leq n} \lfloor n/i \rfloor) = O(n \log n)$.
- For uniform: $O(\sum_{i=1}^{i=n} i |n/i|) = O(n \log \log n)$.

F. Manea
Hidden Repetitions
Toronto, April 2013
Deciding whether \(w \) is an \(f \)-repetition

1. Test whether there exists \(x \) such that \(w = x^k \), with \(k \geq 2 \).

2. For all \(t = w[1..i] \), if \(|f(t)| \geq 1 \), \(t \), \(f(t) \) not powers of some \(x \in V^* \) do 3&4.

3. Let \(x \) be the shortest of \(t \) and \(f(t) \), and \(y \) the longest. Apply Shifts Lemma!

4. We construct a maximal prefix \(w[i + 1..s - 1] \in \{x, y\}^* \) of \(w[i + 1..n] \):
 - Initially, \(s = i + 1 \).
 - Let \(M = \max\{p \mid x^p \text{ prefix of } w[s..n]\} \), \(N = \max\{p \mid x^p \text{ prefix of } y\} \);
 - If \(w[s..n] = x^M \), we are done!
 - If \(x^{M-N}y \) occurs at position \(s \), shift \(s+ = (M - N)|x| + |y| \), iterate;
 - If \(M > N \) and \(x^{M-N-1}yx \) occurs at \(s \), shift \(s+ = (M - N - 1)|x| + |y| \), iterate;

Time complexity:
- \(f \) general \(\mathcal{O}(\sum_{1 \leq i \leq n} \lfloor \frac{n}{i} \rfloor) \subseteq \mathcal{O}(n \log n) \).
Deciding whether \(w \) is an \(f \)-repetition

1. Test whether there exists \(x \) such that \(w = x^k \), with \(k \geq 2 \).

2. For all \(t = w[1..i] \), \(|f(t)| \geq 1 \), \(t \), \(f(t) \) not powers of some \(x \in V^* \) do 3&4.

3. Let \(x \) be the shortest of \(t \) and \(f(t) \), and \(y \) the longest. Apply Shifts Lemma!

4. We construct a maximal prefix \(w[i+1..s-1] \in \{x, y\}^* \) of \(w[i+1..n] \):
 - Initially, \(s = i + 1 \).
 - Let \(M = \max\{p \mid x^p \text{ prefix of } w[s..n]\} \), \(N = \max\{p \mid x^p \text{ prefix of } y\} \);
 - If \(w[s..n] = x^M \), we are done!
 - If \(x^{M-N}y \) occurs at position \(s \), shift \(s+ = (M - N)|x| + |y| \), iterate;
 - If \(M > N \) and \(x^{M-N-1}yx \) occurs at \(s \), shift \(s+ = (M - N - 1)|x| + |y| \), iterate;

Time complexity:
- \(f \) general: \(\mathcal{O}(\sum_{1 \leq i \leq n} \lfloor \frac{n}{i} \rfloor) \subseteq \mathcal{O}(n \log n) \).
- \(f \) uniform: \(\mathcal{O}(\sum_{i|n} \lfloor \frac{n}{i} \rfloor) \subseteq \mathcal{O}(n \log \log n) \).
Optimal time for f uniform

- In the algorithm: $y = f(t)$ and $x = t$.
 Each shift: $|t^k f(t)|$. But k can be 0...
In the algorithm: $y = f(t)$ and $x = t$. Each shift: $|t^k f(t)|$. But k can be 0...

Idea: shift with a word from $\{t, f(t)\}^\alpha$, for some fixed α depending on n but not on t.
Optimal time for f uniform

- In the algorithm: $y = f(t)$ and $x = t$.
 Each shift: $|t^k f(t)|$. But k can be 0...
- Idea: shift with a word from $\{t, f(t)\}^\alpha$, for some fixed α depending on n but not on t.
- Consequence: for each t we do $\frac{n}{\alpha |t|}$ steps...
- ... the overall complexity $O\left(\frac{n \log \log n}{\alpha}\right)$.
Optimal time for f uniform

- In the algorithm: $y = f(t)$ and $x = t$.
 Each shift: $|t^k f(t)|$. But k can be 0...
- Idea: shift with a word from $\{t, f(t)\}^\alpha$, for some fixed α depending on n but not on t.
- Consequence: for each t we do $\frac{n}{\alpha|t|}$ steps...
- ... the overall complexity $O\left(\frac{n \log \log n}{\alpha}\right)$.
- Linear time: $\alpha = \lceil \log \log n \rceil$.

F. Manea
Hidden Repetitions
Toronto, April 2013 9
Optimal time for f uniform

- In the algorithm: $y = f(t)$ and $x = t$.
 Each shift: $|t^k f(t)|$. But k can be 0...
- Idea: shift with a word from $\{t, f(t)\}^\alpha$, for some fixed α depending on n but not on t.
- Consequence: for each t we do $\frac{n}{\alpha |t|}$ steps...
- ... the overall complexity $O\left(\frac{n \log \log n}{\alpha}\right)$.
- Linear time: $\alpha = \lceil \log \log n \rceil$.
- Doable: preprocessing + careful organisation of data ...
Theorem (STACS 2013)

Given $w \in V^*$ and $f : V^* \rightarrow V^*$ be a constant size anti-/morphism. One can decide whether $w \in t \{ t, f(t) \}^+$ in $O(n \log n)$ time. If f is uniform we only need $O(n)$ time.
Theorem (STACS 2013)

Given \(w \in V^* \) and \(f : V^* \rightarrow V^* \) be a constant size anti-/morphism. One can decide whether \(w \in t\{t, f(t)\}^+ \) in \(\mathcal{O}(n \log n) \) time. If \(f \) is uniform we only need \(\mathcal{O}(n) \) time.

Theorem (STACS 2013)

Given \(w \in V^* \) and \(f : V^* \rightarrow V^* \) be a constant size anti-/morphism, we decide whether \(w \in \{t, f(t)\}\{t, f(t)\}^+ \) in \(\mathcal{O}(n^{1 + \frac{1}{\log \log n}} \log n) \) time. If \(f \) is non-erasing we solve the problem in \(\mathcal{O}(n \log n) \) time, while when \(f \) is uniform we only need \(\mathcal{O}(n) \) time.
The second problem

Given \(w \in V^+ \), decide whether there exists an anti-/morphism \(f : V^* \rightarrow V^* \) and a prefix \(t \) of \(w \) such that \(w \in t\{t, f(t)\}^+ \).

Theorem (CiE 2013)

Given a word \(w \) and a vector \(T \) of \(|V|\) numbers, we decide whether there exists an anti-/morphism \(f \) of length type \(T \) such that \(w \in t\{t, f(t)\}^+ \) in \(O(n(\log n)^2) \) time. If \(T \) defines uniform anti-/morphisms: \(O(n) \) time.
The second problem

Given $w \in V^+$, decide whether there exists an anti-/morphism $f : V^* \to V^*$ and a prefix t of w such that $w \in t\{t, f(t)\}^+$.

Theorem (CiE 2013)

Given a word w and a vector T of $|V|$ numbers, we decide whether there exists an anti-/morphism f of length type T such that $w \in t\{t, f(t)\}^+$ in $O(n(\log n)^2)$ time. If T defines uniform anti-/morphisms: $O(n)$ time.

Theorem (CiE 2013)

For a word $w \in V^+$, deciding the existence of $f : V^* \to V^*$ and a prefix t of w such that $w \in t\{t, f(t)\}^+$ with $|t| \geq 2$ (respectively, $w \in t\{t, f(t)\}\{t, f(t)\}^+$) takes linear time (respectively, is NP-complete) in the general case, is NP-complete for f non-erasing, and takes $O(n^2)$ time for f uniform.
Repetitive factors

Given a word $w \in V^*$ and f,

1. Enumerate all (i, j, ℓ), $1 \leq i, j, \ell \leq |w|$, such that there exists t with $w[i..j] \in \{t, f(t)\}^\ell$.

2. Given ℓ, enumerate all (i, j), $1 \leq i, j \leq |w|$, so there exists t with $w[i..j] \in \{t, f(t)\}^k$.
Repetitive factors

Given a word $w \in V^*$ and f,

1. Enumerate all (i, j, ℓ), $1 \leq i, j, \ell \leq |w|$, such that there exists t with $w[i..j] \in \{t, f(t)\}^\ell$.

2. Given ℓ, enumerate all (i, j), $1 \leq i, j \leq |w|$, so there exists t with $w[i..j] \in \{t, f(t)\}^k$.

General approach:

Construct data structures enabling us to answer in constant time queries $rep(i, j, \ell)$:

"Is there $t \in V^*$ such that $w[i..j] \in \{t, f(t)\}^\ell$?,

for all $1 \leq i \leq j \leq |w|$ and $1 \leq \ell \leq |w|$.
Repetitive factors

Given a word $w \in V^*$ and f,

(1) Enumerate all (i, j, ℓ), $1 \leq i, j, \ell \leq |w|$, such that there exists t with $w[i..j] \in \{t, f(t)\}^\ell$.

(2) Given ℓ, enumerate all (i, j), $1 \leq i, j \leq |w|$, so there exists t with $w[i..j] \in \{t, f(t)\}^k$.

General approach:

Construct data structures enabling us to answer in constant time queries $\text{rep}(i, j, \ell)$:

“Is there $t \in V^*$ such that $w[i..j] \in \{t, f(t)\}^\ell$?”, for all $1 \leq i \leq j \leq |w|$ and $1 \leq \ell \leq |w|$.

Second question: we answer queries $\text{rep}(i, j, \ell)$ for a fixed ℓ, given as input together with w.
Building the data structures (answer queries for all ℓ, resp. for given ℓ)

- f general: $\mathcal{O}(n^{3.5})$, resp. $\mathcal{O}(n^2\ell)$.
- f non-erasing: $\mathcal{O}(n^3)$, resp. $\mathcal{O}(n^2)$.
- f literal: $\mathcal{O}(n^2)$, resp. $\mathcal{O}(n^2)$.

Tools: combinatorics on words (the Uniqueness Lemmas) + number theoretic algorithms + data structures.
Results (STACS 2013)

Building the data structures (answer queries for all ℓ, resp. for given ℓ)

- f general: $O(n^{3.5})$, resp. $O(n^2 \ell)$.
- f non-erasing: $O(n^3)$, resp. $O(n^2)$.
- f literal: $O(n^2)$, resp. $O(n^2)$.

Tools: combinatorics on words (the Uniqueness Lemmas) + number theoretic algorithms + data structures.

Finding the set of all ℓ-repetitive factors (for all ℓ, resp. for a given ℓ):

- f general: $O(n^{3.5})$, resp. $O(n^2 \ell)$.
- f non-erasing: $\Theta(n^3)$, resp. $\Theta(n^2)$.
- f literal: $\Theta(n^2 \log n)$, resp. $\Theta(n^2)$.

Highlighted bounds: no other algorithm performs better in the worst case.
THANK YOU!